Electronic Supporting Information

Cu²⁺ modulated DNA-templated silver nanoclusters as a turn-on fluorescence probe for the detection of quinolones

Renjun Wang ^a†, Xiaolu Yan^b†, Jing Sun^c, Xiao Wang^d, Xian-En Zhao^b, Wei Liu^d,

Shuyun Zhu b*

^a College of Life Science, Qufu Normal University, Qufu City, Shandong Province,
273165, China.

^b College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, Shandong Province, 273165, China.

E-mail: shuyunzhu1981@163.com (S. Zhu).

^c Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining City, Qinghai Province, 810001, Qinghai, China

^d Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), 19 Keyuan Street, Jinan 250014, China

[†] The authors contributed equally to this work.

Fig. S1 Fluorescence emission spectra of free DNA-AgNCs, and DNA-AgNCs in the presence of Cu^{2+} , EDTA, and both Cu^{2+} and EDTA. The final concentrations of Cu^{2+} and ciprofloxacin are 80 nM and 400 nM, respectively.

Table S1 The linear equations, linear ranges, and LODs for the analysis of quinolone
using DNA-AgNCs-Cu ²⁺ system.

Quinolones	Linear equation	Linear range	LOD
nalidixic acid	y=-1.5678+0.0831x	20-100 nM	2.0 nM
cinoxacin	y=0.00922+0.00394x	5-120 nM	1.2 nM
ciprofloxacin	y=0.5904+0.04684x	5-100 nM	1.0 nM
moxifloxacin	y=0.0162+0.10219x	1-60 nM	96 pM

Fig. S2 The stability test of DNA-AgNCs in the absence (black) and presence of human urine sample (1‰) (red).

Quinolones	Amount (nM)	Added (nM)	Detected (nM)	Recovery (%)	RSD (%)
					(n=3)
ciprofloxacin	10	5	14.6	92.0	3.12
	10	10	19.3	93.0	2.78
	10	50	63.5	107	2.45
moxifloxacin	5	2	6.89	94.5	3.13
	5	5	9.7	94.0	3.02
	5	25	31.5	106.0	2.14

 Table S2 Determination of ciprofloxacin and moxifloxacin in tablets.

Quinolones	Added (nM)	Founded (nM)	Recovery (%)	RSD (n=3, %)
nalidixic acid	0	N.D.		
	40	38.3	95.7	2.46
	60	62.6	104.3	2.13
cinoxacin	0	N.D.		
	40	38.5	96.25	3.12
	60	58.4	97.3	2.45
ciprofloxacin	0	N.D.		
	40	42.2	105.5	2.18
	60	64.3	107.1	2.35
moxifloxacin	0	N.D.		
	20	18.9	94.5	1.89
	40	43.1	107.7	2.44

 Table S3 Determination of quinolones in human urine.