Electrochemical immunosensor based on a multiple signal amplification strategy

for highly sensitive detection of prostate specific antigen

Li Liu, Guanhui Zhao, Xue Dong, Xuan Li, Weiyang Lu, Qin Wei, Wei Cao*

Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of

Shandong,

School of Chemistry and Chemical Engineering,

University of Jinan,

Jinan 250022, P.R. China

*Corresponding author. Tel.: +86-53182767890; fax: +86-53187161600.

E-mail address: jncw88@163.com (W. Cao), jn_chm302@163.com

Reagents and apparatuses

Human PSA antibody (Ab₁, Ab₂) and antigen were purchased from Biocell Science Co., Ltd. (Shanghai, China). Bovine serum albumin (BSA, 96-99%) was bought from Sigma Reagent Co., Ltd. (St. Louis, MO, USA). Cobalt chloride (CoCl₂·6H₂O), copper chloride (CuCl₂·2H₂O) and 3-aminopropyl-triethoxysilane (APTES, 98%) were purchased from Shanghai Aladdin Chemistry Co., Ltd. (Shanghai, China). HAuCl₄·4H₂O was obtained from Sinopharm Chemical Reagent Shanghai Co., Ltd., China. Phosphate buffer saline (PBS) was prepared by using 1/15 mol L⁻¹ Na₂HPO₄ and 1/15 mol L⁻¹ KH₂PO₄ solution and used as an electrolyte for all electrochemical measurement. All other reagents are at analytical grade and used directly without further purification. Ultrapure water (18.25 MΩ, 25 °C) was used throughout the study.

All electrochemical measurements were operated on a CHI760D electrochemical workstation (Chenhua Instrument Shanghai Co., Ltd., China). A saturated calomel electrode (SCE), a platinum wire electrode and a glassy carbon electrode (GCE) (4 mm in diameter) were used as reference, counter, working electrodes. The surface morphology of nanomaterial was observed using a JSM-6700F scanning electron microscopy (SEM). Transmission electron microscopic (TEM) image was obtained from a JEOL-1400 microscope (Japan). The presented elements of the nanocomposite were obtained using Energy Dispersive X-ray Spectroscopy (EDX).

Fig. S1 The electrocatalytic current responses of the immunosensor after addition of H_2O_2 correspond to reproducibility, selectivity and stability.

Fig. S2 Effect of incubation time between PSA and Ab₁ (A) and between PSA and Ab₂-Pd@Pt-APTES-Cu₂O@Co₃O₄ (B) on the electrocatalytic current response of the immunosensor for the detection of 1 ng mL⁻¹ PSA. Error bar=RSD (n=5).

standard ELISA methods (ng/mL)			
Sample	1	2	3
Immunosensor	0.83	1.29	2.32
ELISA	0.79	1.32	2.25
Relative error (%)	4.8	-2.3	3.0

Table S1 Assay results of clinical serum samples using the immunosensor and

Function of BSA

In order to prove the effect of BSA on eliminating nonspecific binding, we operated a comparative experiment.

Firstly, the GCE was polished with 1.0, 0.3 and 0.05 µm alumina powder successively and cleaned thoroughly before use. Then, 6 µL of Au-CS-Gr solution was dropped on the electrode surface and dried at room temperature. Subsequently, 6 μ L of 10 μ g mL⁻¹ Ab₁ was added onto the electrode and incubated for 1 h. For comparison, after washing with PBS (pH=7.4), 3 µL of 1% BSA was modified on one electrode and another one was not added. Finally, 6 µL of 1.8 mg mL⁻¹ Ab₂-Pd@Pt-APTES-Cu₂O@Co₃O₄ dispersion was dropped onto the modified electrode and incubated for one more hour. Amperometric i-t curve was used to record the electrocatalytic current signal with the constant scanning potential at -0.4 V. 10 µL of 5 mmol L⁻¹ H₂O₂ was added in the PBS at pH=6.8 when the background current was stable. The experiment result was shown in Fig. S3. It exhibited very low current response when 3 µL of 1% BSA was added on the electrode (curve a). This phenomenon can be explained as BSA blocked the non-specific binding sites. Ab₂-Pd@Pt-APTES-Cu₂O@Co₃O₄ was hardly modified on the electrode. However, the electrode showed a significant current response without BSA added (curve b). This is caused by the adsorption of Ab2-Pd@Pt-APTES-Cu2O@Co3O4 onto the electrode surface and the substrate material. Therefore, BSA ensured specific binding of antigen to antibody by eliminating nonspecific binding.

Fig. S3 The Amperometric *i-t* curve of the electrode with 3 μL of 1% BSA added(a) and without 3 μL of 1% BSA added (b).