Supporting Information

Facile preparation Ag nanoparticles by using uric acid and their application in colorimetric detection and catalysis

Qijun Dai,^{a,b} Te Wei,^b Changli Lv, *^a and Fang Chai *^{a,b,c}

a Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China.

b Faculty of Chemistry, Harbin Normal University, Harbin 150025, P. R. China.

c Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.

Materials	Analytes	Calibration range	Detection limit	References
fluorescent sensor by combining a novel monoazacryptand type of fluorophore and micelles	Ba ²⁺	1.0 × 10 ⁻⁶ M, - 1.0 × 10 ⁻² M	0.24 mM	1
silver nanoparticles with 6- mercaptonicotinic acid and melamine	Ba ²⁺	10 µM to 370 µM	80.21 nM	2
11-mercaptoundecylphosphonic acid functionalized gold nanoparticles	Ba ²⁺	20–120 µМ	43.27 μM	3
G-quadruplex-based fluorescent biosensor	Ba ²⁺	0–600 nM	4 nM	4
chemosensor organic nanoparticles	Sr ²⁺	30–300 µМ	184 μM	5
Polyamine based ratiometric fluorescent chemosensor	Sr ²⁺	0 μM to 1.5 μM	9 nM	6
Chemo-Paper-Sensor	Sr ²⁺	500 ppm to 100 ppb	200 ppb	7
imaging optical fiber microsphere sensor	Sr ²⁺	6.7×10^{-7} M to 6.7 ×10 ⁻⁴ M	3×10^{-8} to 8×10^{-8} M	8
UA-Ag NPs	Ba ²⁺	1 nM-50 μM	52.1 nM	This work
UA-Ag NPs	Sr ²⁺	0.003-1 μM	27.5 nM	This work

$\begin{array}{c} \textbf{Table S1} \ Comparison \ between \ proposed \ sensor \ and \ previously \ reported \ literature \\ values \ for \ Ba^{2+} \ and \ Sr^{2+} \ ions \ detection. \end{array}$

Reference:

- 1. Y. Nakahara, T. Kida, Y. Nakatsuji and M. Akashi, Chem. Commun. 2004, 35, 224-225.
- 2. R.P. Modi, V.N. Mehta and S.K. Kailasa, Sens. Actuators B: Chem. 2014, 195, 562-571.
- 3. B.A.G. Grajeda, S.G.S. Acosta, S.A. Aguila, H.P. Guevara, M.E. D áz-Garc á, A.C. Enr quez and J.J. Campos-Gaxiola, *RSC Adv*. 2017, 7, 31611-31618.
- 4. L.J. Xu, Y. Chen, R.H. Zhang, T. Gao, Y.J. Zhang, X.Q. Shen and R.J. Pei, *Journal of Fluorescence*. 2017, 27, 569-574.
- 5. S. Kaur, A. Kaur, N. Kaur and N. Singh, Org. Biomol. Chem. 2014, 12, 8230-8238.
- 6. A. Kaur, G. Kaur, A. Singh, N. Singh and N. Kaur, *ACS Sustainable Chem. Eng.* 2016, 4, 94-101.
- 7. S.M. Kang, S.C. Jang, Y. S. Huh, C. S. Lee, C. Roh, Chemosphere. 2016, 152, 39-46.
- 8. D.J. Monk, J. Ueberfeld and D.R. Walt, J. Mater. Chem. 2005, 15, 4361-4366.

Species of ions	Cd^{2+}	Cu ²⁺	Mn ²⁺	Ni ²⁺	Fe ²⁺	Zn ²⁺	Pb ²⁺	Cr ³⁺	Hg ²⁺	Ba ²⁺	Sr ²⁺
Concentration (nM/L)	265.1	278.9	879.7	403.0	172.4	891.1	_	_	_	_	_

Fig. S1 The selectivity of detection: (a) UV-vis spectra of UA-Ag NPs with 50 μ M of metal ions, (b) The A_{520/A410} values of UA-Ag NPs with 50 μ M of different metal ions and corresponding photo images of all samples (A520 and A410 represented the absorbance of UA-Ag NPs at 520 nm and 410 nm, respectively).

Fig. S2 The sensitivity of detection for Ba^{2+} (a) The LSPR spectra of UA-Ag NPs with various concentrations of Ba^{2+} (0.001–50 μ M), (b) Corresponding photo images of UA-Ag NPs with various concentrations of Ba^{2+} .

Fig. S3 The sensitivity of detection for Sr^{2+} , (a) The SPR spectra of UA-Ag NPs with various concentrations of Sr^{2+} (0.001–50 μ M), (b) Corresponding photo images of UA-Ag NPs with various concentrations of Sr^{2+} .

Fig. S4. The UV-vis characteristic peaks of freshly prepared 4-nitrophenol and 4-nitrophenolate ion aqueous solution at 317 and 400 nm, respectively.

Fig. S5. (a) Absorption spectra of aqueous mixture solutions of -NTP and NaBH₄ at different concentrations of 4-NTP. (b) Plot of the peak absorbance against the concentration of 4-NTP.

Table S3 The reduction of nitrophenols in the presence of different quantity of UA-

Nitrophenols	Amount of nitrophenols	Amount of NaBH4	Rate constant (K)
2-nitrophenol (2-NP)	0.01 M, 90 uL	0.5 M , 600 μL	7.3×10 ⁻² s ⁻¹
3-nitrophenol (3-NP)	0.01 M, 150 uL	0.5 M, 1 mL	1.76×10 ⁻² s ⁻¹
4-nitrophenol (4-NP)	0.01 M, 25 uL	0.5 M, 200 μL	$1.6 \times 10^{-2} \text{ s}^{-1}$

Ag NPs as catalyst.