Supporting Information

Simultaneous determination of Amlodipine and Losartan using iron metal organic framework/mesoporous carbon nanocomposite modified glassy carbon electrode by differential pulse voltammetry

Anuja S. Rajpurohit, Dimple K. Bora, Ashwini K. Srivastava*

Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai -400 098, India

* Corresponding Author. Tel.: +91 22 26543570

Email: <u>aksrivastava@chem.mu.ac.in,akschbu@yahoo.com</u>

Figures:

Fig. S1 SEM image of MC showing the range of average size of the particle

Fig. S2 Effect of different supporting electrolytes on the electrochemical behavior of AML and LOS

Fig. S3 Comparison of different electrodes viz. bare GCE, FeMOF/GCE, MC/GCE and FeMOF/MC/GCE in standard K_3 [Fe(CN)₆] solution

Fig. S4 DPV curves of 7.0 x 10⁻⁴ M AML and LOS solution recorded at Bare GCE, FeMOF/GCE, MC/GCE and FeMOF/MC/GCE

Fig. S5(A) DPV curves of AML in the concentration range of 0.0089 to 470 μ M and the figure inset represents the calibration curve obtained for peak current ($I_p/\mu A$) versus concentration (μ M); (**B**) DPV curves of LOS in the concentration range of 0.008 to 800 μ M and the figure inset represents the calibration curve obtained for peak current ($I_p/\mu A$) versus concentration (μ M)

Fig. S6 A plot of storage stability of the FeMOF/MC/GCE sensor for over 50 days

Tables:

Table S1.Precision and Bias of assay for standard AML and LOS solutions by the proposed

 voltammetric procedure:

Molecule	Concentration taken (10 ⁻⁶ M)	Concentration found (10 ⁻⁶ M)	Recovery (%) (n=5)	Bias (%)	Precision % R.S.D. (n=5)
	Intra day				
4 N 67	3.5	3.48	99.42	0.57	1.12
AML	Inter day				
	4.32	4.29	99.30	0.69	1.57
	Intra day				
LOG	3.78	3.76	99.47	0.53	1.15
LOS	Inter day				
	4.65	4.62	99.35	0.64	1.61

Table S2. Determination of AML and LOS in tablet dosage forms by proposed method:

Sample	AN	/IL	LOS		
	Amount of drug present in the sample (mg)	Amount of drug calculated by proposed method (mg) ± %RSD (n=5)	Amount of drug present in the sample (mg)	Amount of drug calculated by proposed method (mg) ± %RSD (n=5)	
Norvasc	5.0	4.90 ± 0.42			
Norvasc	10.0	9.89 ± 0.26			
Cosart 25			25.0	24.60 ± 0.40	
Covance 50			50.0	49.40 ± 0.24	
Amlokind L	5.0	4.79 ± 0.98	50.0	49.57 ± 0.17	
Covamlo	5.0	4.55 ± 1.93	50.0	49.60 ±0.17	

Sample		AN	/IL		LOS			
	1	2	3	4	1	2	3	4
A) Pharmaceutical Formulations								
		32.1						
Norvasc	19.2	50.8	99.02	99.28				
(5 mg)	37.0	68.6	99.27	± 0.20				
_	53.5	85.2	99.57					
		41.2						
Norvasc	19.2	59.6	98.67	99.18				
(10 mg)	37.0	77.9	99.61	± 0.33				
	53.5	94.0	99.26					
_						16.2		
Cosart 25					15.3	31.0	98.41	98.72
					22.6	38.1	98.19	± 0.52
_					29.6	38.8	99.56	
						21.8		
Covance					11.5	32.9	98.79	99.10
50					16.9	38.4	99.22	± 0.19
-					22.3	43.8	99.31	
		1.12				36.3		
Amlokind	4.22	5.32	99.62	99.56	13.6	49.5	99.19	99.10
L	8.34	9.40	99.36	± 0.13	20.1	55.8	98.93	± 0.11
-	12.37	13.45	99.70		26.3	62.1	99.20	
		3.21				40.2		
Covamlo	2.51	5.69	99.47	99.36	12.0	51.6	98.85	98.84
-	4.96	8.12	99.38	± 0.10	15.7	54.8	98.03	± 0.57
-	7.36	10.49	99.24		19.2	59.2	99.66	
B) Biologica	al Fluids							
		ND				ND		
Blood	11.7	11.4	97.43		14.1	13.9	98.58	
Serum	17.2	17.1	99.41	98.35	18.5	18.2	98.37	98.83
	22.5	22.1	98.23	± 0.71	22.9	22.8	99.56	± 0.45
		ND				ND		
Urine	16.2	16.0	98.76	98.94	13.7	13.6	99.27	98.85
	23.8	23.5	98.73	± 0.25	18.9	18.7	98.94	± 0.33
	31.2	31.0	99.35		24.0	23.6	98.34	
		ND				ND		
Saliva	25.1	24.8	98.81	98.70	16.5	16.3	98.78	99.22
	37.0	36.6	98.92	± 0.21	24.4	24.2	99.18	± 0.32
	48.5	47.7	98.35		32.0	31.9	99.7	

Table S3. Recovery studies for AML and LOS in real samples

* ND – Not detected; 1: Standard drug (AML/LOS) added (10⁻⁶ M); 2: Drug (AML/LOS) found (10⁻⁶ M);

3: Recovery (%); 4: Average Recovery (%) ±RSD

Table	S4:	Comparison	of	developed	sensors	with	previously	reported	MOF	based
electrochemical sensors for the determination of organic molecules:										

No.	Target Analyte	Modified Electrode	odified Electrode Limit of Detection	
1	Land	Mp(TDA)/SWCNT/CCE	$\frac{(\mu NI)}{0.038}$	21
-1	Leau		0.038	31
2	Hydrazine	COMOF/MPC/GCE	1.75	32
	Nirtobenzene		0.27	
3	Glucose	NiMOF/GCE	0.25	33
4	Urea	NiMOF/MWCNT/ITO	3.0	34
5	Hydrogen peroxide	MIL-100(Fe)/LMC/GCE	1.2	35
	Hydrazine			
			0.213	
6	Hydrogen peroxide	CuMOF/MPC/GCE	3.2	36
	NADH			
			6.52	
7	Hydroquinone	Cu ₃ (btc) ₂ /CS/ERGO/GCE	0.44	37
	Catechol		0.41	
	Resorcinol		0.33	
8	Nitrite	GC/Au/ZnMOF	1.0	38
	Nitrobenzene		15.3	
9	AML	FeMOF/MC/GCE	0.00127	This study
	LOS		0.00203	

*GC and GCE: Glassy carbon electrode; MOF: Metal organic framework; TPA: Terephthalic acid; SWCNT: Single walled carbon nanotubes; MPC: Macroporous carbon; MWCNT: Multi walled carbon nanotubes; ITO: Indium tin oxide glass; MIL-100(Fe): Fe based MOF; LMC: Large mesoporous carbon; Cu₃(btc)₂: Cu based MOF; CS: Chitosan; ERGO: Electrochemically reduced graphene oxide; Au/ZnMOF: Gold nanoparticles incorporated ZnMOF