Electronic Supplementary Information (ESI) for:

Sensitive electrochemical aptasensor for detection of Aflatoxin B2 based on polyacrylamide/phytic acid/polydopamine hydrogel modified screen printed carbon electrode

Girma Selale Geleta,^{a,b,c} Zhen Zhao,^{a,b} Zhenxin Wang^{a,*}

^a State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of sciences, Changchun 130022, China.

^b University of Chinese Academy of Sciences, Beijing, 100039, China.

^c Jimma University, College of Natural Sciences, Department of Chemistry, Jimma, 378, Ethiopia.

*Corresponding author: Phone/Fax: (+86) 431-85262243. E-mail: wangzx@ciac.ac.cn

Contents

- 1. Additional Figures S1-S6
- 2. Additional Table S1
- 3. Additional References

2. Additional Figures

Fig.S1 A photograph of the PAM/PA/PDA hydrogel inside a glass vial.

Fig.S2 (A, B and C) SEM micrographs of PAM/PA/PDA hydrogel of different magnification and (D) EDX of PAM/PA/PDA hydrogel

Fig.S3 (A) N_2 adsorption-desorption isotherms, (B) BJH pore-size distribution of dehydrated PAM/PA/PDA hydrogel.

Fig.S4 (A) Thermal gravimetric analysis of PAM/PA/PDA hydrogel and (B) FTIR spectrum of PAM/PA/PDA hydrogel.

The H₂O content of the PAM/PA/PDA hydrogel was around 90 % (wt/wt) (as shown in Fig.S4A). The high H₂O content arises from hydrophilic functional groups attached to the polymeric backbone, which provides a favourable microenvironment for immobilizing biomolecules.^{S1,S2} The FTIR spectrum of PAM/PA/PDA hydrogel is shown in Fig.S4B. The characteristic peak at 3340 cm⁻¹ and 3185 cm⁻¹ are assigned to asymmetric and symmetric stretching vibrations of NH₂.^{S3} Whereas the broad peak around 3300 cm⁻¹ is attributed to stretching vibrations of OH that indicate an abundance of hydroxyl groups.^{S4} In addition, the strong absorption peaks at 1652 cm⁻¹ and 1609 cm⁻¹ are arised from the vibrations of C=O and C=C, respectively.^{S5} Beside the band at 1452 cm⁻¹ is associated with the vibration of C-N (C-N stretching for primary amide), and the characteristic bands of PO₄³⁻ are appeared at 1055 cm⁻¹. This result confirmed presence of abundant functional groups on the surface of PAM/PA/PDA hydrogel which is considered advantageous for immobilizing aptamer onto an electrode surface.

Fig.S5 Stability of the proposed SPCE/PAM/PA/PDA/Apt.

Fig.S6 DPV responses of the SPCE/PAM/PA/PDA/Apt in buffer and real samples containing [Fe(CN)₆]^{3-/4-} redox couple (5 mmol L⁻¹) without AFB2.

3. Additional Table

PAM/PA/PDA hydrogels	DA/AM (wt%)	AM (g)	KPS/AM (wt%)	TMEDA (µL)	MBA/AM (wt%)	Water (µL)	PA/AM (wt%)	Time (min)
А	0.5	0.28	8	20	0.27	250	0.31	1
В	0.5	0.28	8	5	0.27	250	0.31	3
С	0.5	0.28	8	1	0.27	250	0.31	8
D	0.8	0.28	8	2	0.27	250	0.31	15
Ε	0.8	0.28	8	0.5	0.27	250	0.31	120
F	4.65	0.28	8	0.5	0.27	250	0.31	-

Table S1. Optimization of precursor concentrations and reaction conditions for

 preparation of PAM/PA/PDA hydrogel

Chemicals used: dopamine (DA), acrylamide (AM), potassium peroxydisulfate (KPS),

N, N'-Methylene bisacrylamide (MBA) and tetramethylethylenediamine (TMEDA).

The polymerization parameters such as reaction time, monomer concentration, and initiator concentration were optimized to obtain PAM/PA/PDA hydrogels of desired properties. As shown in Table S1, the PAM/PA/PDA hydrogel cannot form when the weight ratios of DA/AM were higher than 0.8wt%, because the reductive DA molecules affected the activity of the initiator (KPS) and thus retard the polymerization of AM monomers.^{S6} In this regard, row D was selected for preparation of PAM/PA/PDA hydrogel by taking into consideration the modification time of SPCEs.

4. Additional References

- S1 F. Qu, Y. Zhang, A. Rasooly, M. Yang, Anal. Chem., 2014, 86, 973-976.
- S2 D. Buenger, F. Topuz, J. Groll, Prog. Polym. Sci., 2012, 37, 1678–1719.
- S3 Q. Wu, J. Wei, B. Xu, X. Liu, H. Wang, W. Wang, Q. Wang, W. Liu, Sci. Rep., 2017, 7, 1–11.
- S4 D. Kim, Y. Choi, E. Shin, Y.K. Jung, B.S. Kim, RSC Adv., 2014, 4, 23210– 23213.
- S5 Z. Zhao, H. Chen, H. Zhang, L. Ma, Z. Wang, *Biosens. Bioelectron.*, 2017, 91, 306–312.
- S6 L. Han, L. Yan, K. Wang, L. Fang, H. Zhang, Y. Tang, Y. Ding, L.T. Weng, J. Xu, J. Weng, Y. Liu, F. Ren, X. Lu, Tough, NPG Asia Mater., 2017, 9, e372.