Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2018

SUPPLEMENTARY INFORMATION (SI)

SI-1: Spectroscopic characterization of MHDI and its Co complex

A) UV-Vis. spectra for the reagent MHDI and its complex with Co²⁺. Inset-B denotes Job's plot.

The reagent MHDI (SI-1a, b) presents in two tautomeric forms i.e., *keto* and *enol* where in the solution the latter (enol form) is more predominant in complex formation with Co²⁺ producing the final end product (SI-1c). The UV-Vis spectra of the reagent MHDI showed two transitions at 3.3×10^4 and 2.3×10^4 cm⁻¹ and were safely assigned to $\pi \to \pi^*$ and $\pi \to \pi^*$ electronic transition at 3.3×1^4 and 2.3×1^4 cm⁻¹ (SI-2A) [1], respectively. On complex formation with Co²⁺, the electronic spectrum showed two energy transitions at 2.13×10^4 and 2.0×10^4 cm⁻¹ corresponding to internal ligand $\pi \to \pi^*$ and charge transfer transition (O \to Co) and color

change were noticed indicating strong interaction between Co²⁺ centers (Co-Co) in octahedral planar geometry [2]. Three spin allowed d \rightarrow d transitions assigned to⁴T_{1g} \rightarrow ⁴A_{2g} v₁ (d_{x2}y₂ \rightarrow d_{z2}²), ⁴T1g(F) \rightarrow ⁴T1g (P) v₂ (d_{x2}-y₂ \rightarrow d_{xy}) d-d transitions are noticed in octahedral planar Co²⁺ complex (SI-2A) [2, 3]. Assuming formation of one complex species of Co²⁺ and based on the methods of continuous variations and molar ratio data (SI-2A, inset) [4], it can be concluded that, formation of 1:2 Co²⁺ to MHDI molar ratio is achieved. Thus, the most probable structure of Co²⁺complex is CoL₂(H₂O)₂ (where L= MHDI) as shown in SI-1c.

B) FTIR spectra for the reagent MHDI and its complex with Co²⁺.

The most important FTIR vibrations of MHDI and its Co²⁺ complex are presented (SI-2B). The reagent spectrum showed vibrations at 3400 (υ OH), 3250 (υ NH), 1700 (υ C=O) and 1580 (υ C=N) cm⁻¹ [5]. The characteristics infrared (FTIR) spectra of MHDI reagent was changed after

its reaction with Co^{2+} . The bands at 3025 and 3085 cm⁻¹ for v(C-H) in the FTIR spectrum of the free reagent remained unchanged even after complex formation whereas the band at 3400 cm⁻¹ due to v(O-H) was shifted to 3240 cm⁻¹ upon complex formation via hydroxyl group [5]. Complex formation was further confirmed by the participation of the v (-C=N-) N atom of the free MHDI with the Co²⁺. The vibrations at 523 and 418 cm⁻¹ were assigned to v (Cu-N) and (Cu-O) in the FTIR spectrum of the complex.

SI-2: Comparison of Co²⁺ and Zn²⁺ assay on the developed platform

Analytes (mg/L)	Tap water (TW)	Industrial wastewater (IWW)
Ag	BDL*	BDL
Al	BDL	BDL
В	0.366	0.08
Ba	BDL	BDL
Ca	13.10	34.25
Cd	BDL	BDL
Co	BDL	0.102**
Cr	BDL	BDL
Cu	BDL	0.24
Fe	BDL	BDL
K	0.82	21.75
Mg	0.47	14.05
Mn	BDL	0.004
Ni	BDL	BDL
Pb	BDL	BDL
Zn	BDL	BDL

SI-3: Composition of real water samples based on ICP-OES analysis.

*BDL: Below detection limit ** 0.102 mg/mL=1.73 μM

References:

[1] Ramachandran, R., Prakash, G., Selvamurugan, S., Viswanathamurthi, P., Malecki, J. G., Linert, W., Gusev, A., *RSC Advances* 2015, *5*, 11405-11422.

[2] Lever, A. B. P., Inorganic electronic spectroscopy, Elsevier 1984.

[3] Basuli, F., Peng, S.-M., Bhattacharya, S., Inorganic Chemistry 2001, 40, 1126-1133.

[4] Sawyer, D. T., Heinemann, W. R., Beebe, J. M., *Chemistry Experiments for Instrumental Methods*, John Wiley & Sons 1984.

[5] Nakamoto, K., *Infrared and Raman Spectra of Inorganic and Coordination Compounds*, Wiley Interscience, New York 1971.