Computational Design, Synthesis and Utilization of a Magnetic Molecularly Imprinted

Polymer on Graphene Oxide Nanosheets for Highly Selective Extraction and

Determination of Buprenorphine in Biological Fluids and Tablet

Farideh Ganjavi¹, Mehdi Ansari², Maryam Kazemipour^{*,1}, Leila Zeidabadinejad¹

¹Department of Chemistry, Kerman Branch, Islamic Azad University, Kerman, Iran

² Department of Drug and Food Control, Faculty of Pharmacy, Kerman University of Medical Sciences,

Kerman, Iran

Method	LOD	LOQ	DLR	RSD (%)	Reference
MMISPE- HPLC-UV	0.6	2.5	2.5-500	< 8.2	Present work
MISPE- HPLC-UV	3.0	10.0	10-500	< 6.5	[1]
EME-CE ^a -UV	1.0	3.0	3-700	< 3.8	[2]
LLE-HPLC-FLD ^b	1.0	3.0	3-300	-	[3]
LLE-HPLC-UV	-	2.0	2-50	< 4.9	[4]
SPE-LC-MS/MS°	0.002	0.007	0.01-5.0	< 4.0	[5]
LLE-LC-MS/MS	0.83	5.00	5.00-1000	6.6	[6]

 Table 1S

 Comparison of the proposed method with other methods applied for extraction and determination of BUP.

^a Electro membrane extraction-capillary electrophoresis

^b Fluorescence detection

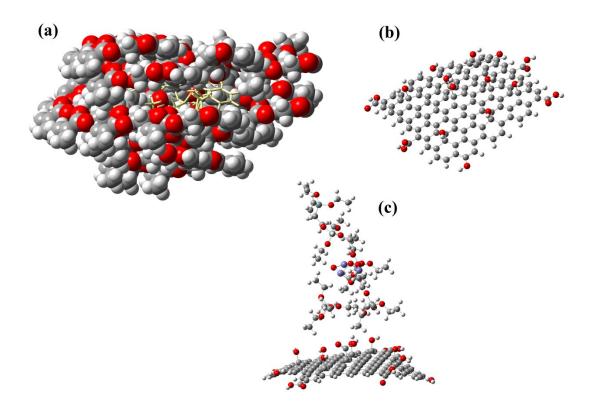
^c liquid chromatography-tandem mass spectrometry

All concentrations are based on $\mu g L^{-1}$.

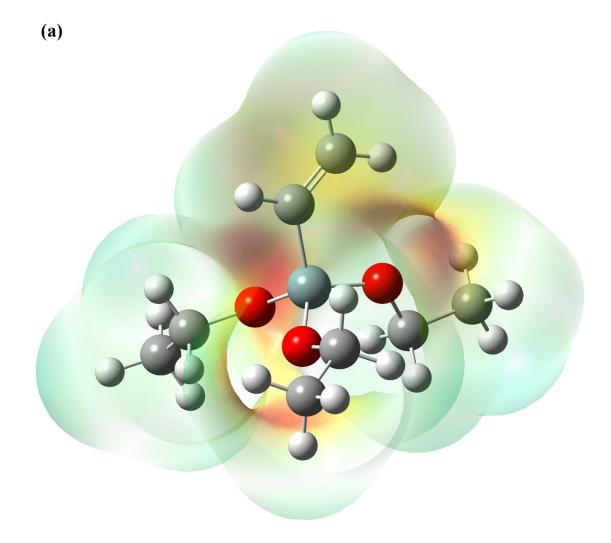
[1] F. Ganjavi, M. Ansari, M. Kazemipour, L. Zeidabadinejad, Computer-aided design and synthesis of a highly selective molecularly imprinted polymer for the extraction and determination of buprenorphine in biological fluids, J. Sep. Sci. (2017) 10.1002/jssc.201700213.

[2] K.S. Hasheminasab, A.R. Fakhari, Development and application of carbon nanotubes assisted electromembrane extraction (CNTs/EME) for the determination of buprenorphine as a model of basic drugs from urine samples, Anal. Chim. Acta 767 (2013) 75-80.

[3] S.T. Ho, J.J. Wang, W. Ho, O.Y.P. Hu, Determination of buprenorphine by highperformance liquid chromatography with fluorescence detection: application to human and rabbit pharmacokinetic studies, J. Chromatogr. B 570 (1991) 339-350.


[4] F. Lagrange, F. Pehourcq, M. Baumevieille, B. Begaud, Determination of buprenorphine in plasma by liquid chromatography: application to heroin-dependent subjects, J. Pharm. Biomed. Anal. 16 (1998) 1295-1300.

[5] A. Ceccato, R. Klinkenberg, P. Hubert, B. Streel, Sensitive determination of buprenorphine and its N-dealkylated metabolite norbuprenorphine in human plasma by liquid


chromatography coupled to tandem mass spectrometry, J. Pharm. Biomed. Anal. 32 (2003) 619-631.

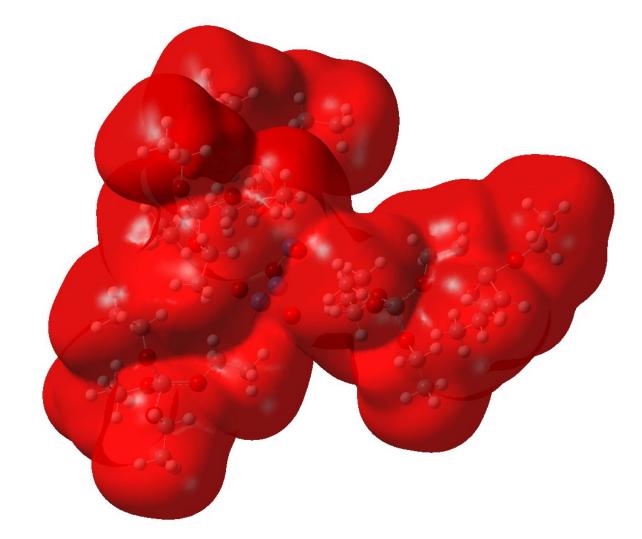

[6] H.R. Lin, C.L. Chen, C.L. Huang, S.T. Chen, A.C. Lua, Simultaneous determination of opiates, methadone, buprenorphine and metabolites in human urine by superficially porous liquid chromatography tandem mass spectrometry, J. Chromatogr. B, 925 (2013) 10-15.

Fig. 1S: The most stable structures of (a) BUP- $(AA)_5$ - $(EGDMA)_{35}$, (b) GO and $GO@Fe_3O_4@vinyl$.

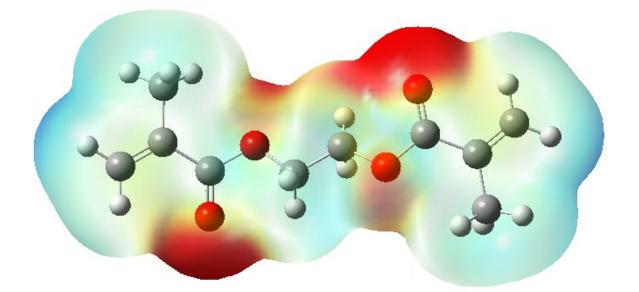
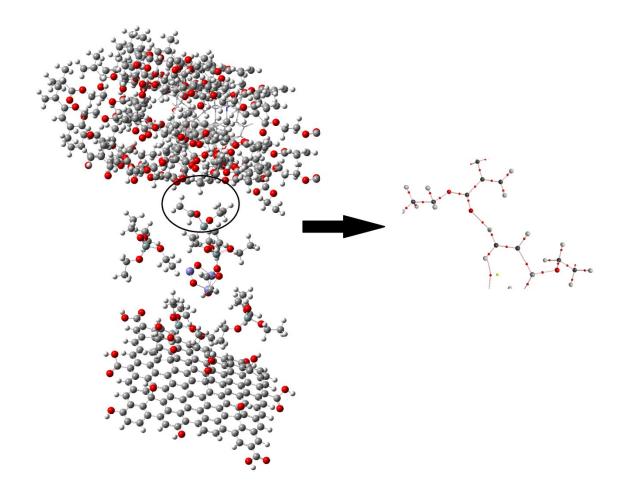


Fig. 2S: Electron density surface maps with electrostatic potential surface for (a) 3-VTES, (b) Fe₃O₄@vinyl and (c) EGDMA



(c)

(b)

Fig. 3S: Hydrogen bonding between GO@Fe₃O₄@vinyl and EGDMA.

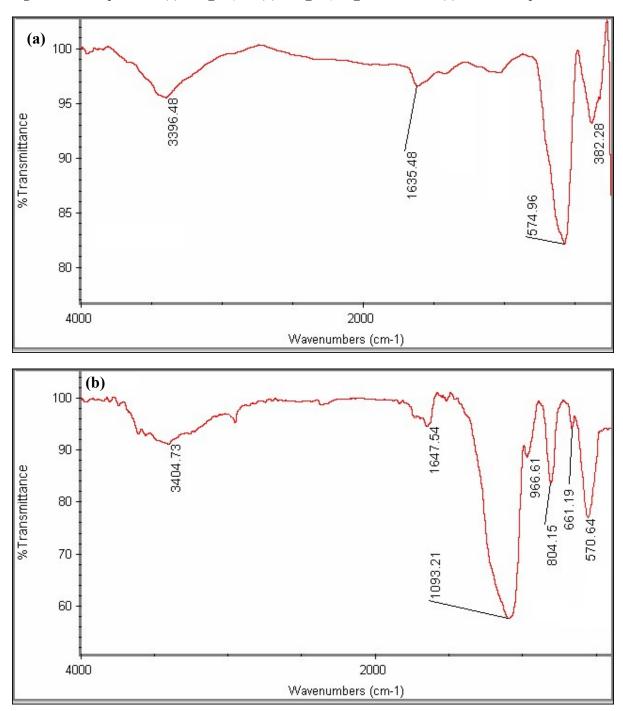
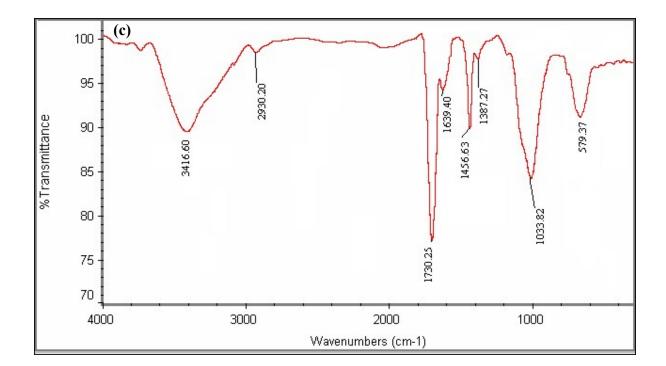



Fig. 4S: FT-IR spectra of (a) GO@Fe₃O₄, (b) GO@Fe₃O₄@3-VTES and (c) MMIP composites.

