Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2018

Electronic Supporting Information

Development of a Novel Fluorescence Ratiometric Glucose Sensor based on Carbon Dots and Potencial

Fluorophor m-Dihydroxybenzene

Hong Zhai*, Yunfeng Bai, Haiqing Wang, Jun Qin, Huijun Liu, Feng Feng*

College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong 037009, China

* Corresponding author.

E-mail: zhaihong1981@163.com, Tel: +86-352-7158662, Fax : +86-352-610028.

feng-feng64@263.net, Tel: +86-352-7158662, Fax : +86-352-610028.

Fig. S1 The UV spectrum (a) and fluorescence spectrum (b) of carbon dots.

Fig. S2 Infrared spectrum of carbon dots.

Fig. S3 The fluorescence spectra of 0.01 mg/ml CDs solution at different time (a→h: 0, 1, 2, 3, 6, 9 months).

Fig. S4 The optimization of GOX concentration, and the final concentration of GOX are 0.005, 0.01, 0.02, 0.05,

0.1mg/ml, respectively, (C_{CDs} = 0.01mol/L, $C_{glucose}$ = 200 $\mu M,\,C_{mDHB}$ = 500 μM) .

Fig. S5 The optimization of HRP concentration, and the final concentration of HRP are 0.001, 0.002, 0.004, 0.01,

0.02 mg/ml, respectively, (C_{CDs} = 0.01mol/L, $C_{glucose}$ = 200 $\mu M,\,C_{mDHB}$ = 500 μM).

Fig. S6 Fluorescence spectra of CDs with different concentrations of mDHB, and the final concentrations of mDHB were 50μ M, 100μ M, 250μ M, 500μ M, 1000μ M, respectively ($C_{CDs} = 0.01$ mg/ml).