1 Supporting Information 2 A novel metronidazole electrochemical sensor based on surface 3 imprinted vertically cross-linking two-dimension Sn₃O₄ nanoplates 4 Juan Wang^a, Wei Du^a, Xingqi Huang^a, Junling Hu^a, WeiWei Xia^c, Dangqin Jin^d, 5 Yun Shu^a, Oin Xu^{a*}, Xiaoya Hu^{a,b*} 6 7 ^a School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 8 225002, China; 9 ^b Guangling College, Yangzhou University, Yangzhou 225002, China; 10 ^c College of Physics Science and Technology & Institute of Optoelectronic 11 Technology, Yangzhou University, Yangzhou 225002, China; 12 ^d Department of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou 13 225127, China. 14 Tel: +86 514 87971818; Fax: +86 514 87975244; 15 E-mail: xuqin@yzu.edu.cn; xyhu@yzu.edu.cn 16 17 18 19 20 21

Table S1 Comparison of different methods for the detection of MNZ

Analytical Method	Linear range(M)	LOD(M)	Ref.
HPLC ^a -UV	1.4×10 ⁻⁷ -2.9×10 ⁻⁵	6.6×10 ⁻⁸	1
HPLC/MS ^b	2.9×10 ⁻⁸ -3.5×10 ⁻⁵	2.9×10 ⁻⁸	2
HPLC-DAD ^c	5.8×10 ⁻⁶ -1.7×10 ⁻⁴	1.7×10 ⁻⁶	3
HPLC-MIP	5.8×10 ⁻⁷ -1.2×10 ⁻⁴	1.7×10 ⁻⁸	4
HF-SPME ^d /GC ^e -MS	5.8×10 ⁻⁸ -5.8×10 ⁻³	1.7×10 ⁻⁸	5
SPE ^f -LC-DAD	5.8×10 ⁻⁸ -2.9×10 ⁻⁷	2.3×10 ⁻¹⁰	6
sweeping-MSS ^g -CZE ^h	5.8×10 ⁻⁸ -1.2×10 ⁻⁴	1.7×10 ⁻⁸	7
Voltammetry	1 0×10-7 1 5×10-4	2.5×10 ⁻⁸	8
determination	1.0×10 ⁻⁷ -1.5×10 ⁻⁴		0
Voltammetry	1.0×10 ⁻⁷ -2.0×10 ⁻⁶	2.0×10 ⁻⁸	Q
determination			,
Voltammetric	2.0×10 ⁻⁸ -1.6×10 ⁻⁶	4.1×10 ⁻⁹	10
determination			10
SERS ⁱ	2.9×10 ⁻⁵ -2.9×10 ⁻⁴	6.4×10 ⁻⁶	11
CD-IMS ^j	2.9×10 ⁻⁷ -4.1×10 ⁻⁴	2.6×10 ⁻⁸	12
flow-injection	1 510 7 4 410 3	6.3×10 ⁻¹⁰	13
chemiluminescence	1.5×10 ⁻⁷ -4.4×10 ⁻⁵		15
Near-infrared	1.0×10 ⁻⁷ -1.0×10 ⁻²	10.10%	14
fluorescence		1.0×10-°	14
fluorescence	5.8×10 ⁻⁸ -5.8×10 ⁻⁷	4.7×10 ⁻⁸	15

^aHPLC: high performance liquid chromatography; ^bMS: mass spectrometry; ^cDAD:
diode array detection; ^dHF-SPME: hollow fiber solid phase micro-extraction; ^eGC:
gas chromatography; ^fSPE: solid phase extraction; ^gMSS: micelle to solvent stacking;
^hCZE: capillary zone electrophoresis; ⁱSERS: surface-enhanced Raman spectroscopy;
^jCD-IMS: corona discharge ionization ion mobility spectrometer

50 -	imprinted polymer	modified electrochei	diffed electrochemical methods for MNZ detection. near range(M) LOD(M) Ref. $0 \times 10^{-7} - 1.0 \times 10^{-3}$ 1.2×10^{-7} 16 $7 \times 10^{-7} - 7.6 \times 10^{-4}$ 5.7×10^{-9} 17				
	Electrode	Linear range(M)	LOD(M)	Ref.			
	AuNPs/MIP	5.0×10 ⁻⁷ -1.0×10 ⁻³	1.2×10 ⁻⁷	16			
	AuNPs/MIP	5.7×10 ⁻⁷ -7.6×10 ⁻⁴	5.7×10-9	17			
	DMIP ^a /CPE ^b	4.0×10 ⁻⁷ -2.0×10 ⁻⁴	9.1×10 ⁻⁸	18			
	Fe ₃ O ₄ /SiO ₂ /MIP	5.0×10 ⁻⁸ -1.0×10 ⁻⁶	1.6×10 ⁻⁸	19			
	/MGCE ^c						
	MMIPs ^d /r-	3.2×10 ⁻⁸ -3.4×10 ⁻⁶	1.2×10 ⁻⁹	20			
	GO/MGCE ^e						
	MIP/Sn ₃ O ₄ /GCE	2.5×10 ⁻⁸ -2.5×10 ⁻⁶	3.2×10 ⁻⁹	This work			

49 Table S2 Comparison of this proposed method with several reported molecularly
50 imprinted polymer modified electrochemical methods for MNZ detection.

51 ^aDMIP: duplex molecularly imprint polymer; ^bCPE: carbon paste electrode; ^cMGCE:magnetic glassy carbon electrode; ^dMMIP: magneticmolecularly imprinted polymer; ^eMGCE ^emagnetic-controlled glassy carbon electrode

Samula	Added (µM)	measured by MIP/2D Sn ₃ O ₄ /GCE (µM)			measured by HPLC- MS(µM)		
Sample		Found	Recovery (%)	RSD(%)	Found	Recovery (%)	RSD(%)
	0.00	0.087	-	_	0.080	_	-
	0.050	0.048	98.0	3.09	0.047	94.0	2.69
Honeybee	0.100	0.105	105.0	3.25	0.102	102.0	2.24
	0.500	0.521	104.2	2.97	0.491	98.2	3.76
	1.000	0.925	92.5	3.41	0.985	98.5	1.58

69 Table S3 Determination of MNZ in honey samples by the MIP/Sn₃O₄/GCE sensor
70 (n=5)

88

89 References

- 90 1. Y. Q. Wang, P. P. Zhang, N. L. Jiang, X. J. Gong, L. Meng, D. W. Wang, N.
- 91 Ou and H. B. Zhang, J. Chromatogr. B, 2012, 899, 27-30.
- 92 2. K. Zhong, Z. W. Gao, Q. Li, D. F. Zhong and X. Y. Chen, J. Chromatogr. B,
- 93 2014, **961**, 49-55.
- 94 3. R. M. Youssef, Acta Chromatogr, 2014, 26, 67-80.
- M. Liu, X. Y. Li, J. J. Li, X. M. Su, Z. Y. Wu, P. F. Li, F. H. Lei, X. C. Tan
 and Z. W. Shi, *Anal. Bioanal.Chem.*, 2015, 407, 3875-3880.
- 97 5. J. Li, Y. B. Wang, L. Wu, K. Y. Li and W. Feng, *Anal. Methods*, 2014, 6,
 98 1404-1411.
- 99 6. M. Vosough and H. M. Esfahani, *Talanta*, 2013, **113**, 68-75.
- 100 7. X. P. Yang, X. M. Cheng, Y. Y. Lin, Z. J. Tan, L. X. Xie and M. M. F. Choi, J.
- 101 *Chromatogr. A*, 2014, **1325**, 227-233.
- 102 8. A. Mao, H. Li, L. Yu and X. Hu, J. Electroanal. Chem., 2017, 799, 257-262.
- 103 9. R. Piech, J. Smajdor, B. Paczosa-Bator and M. Rumin, *J. Serb. Chem. Soc.*,
 104 2017, 82, 879-890.
- 105 10. M. Riedel and F. Lisdat, ACS Appl Mater Inter, 2018, 10, 267-277.
- 106 11. S. Benítez-Martínez, Á. I. López-Lorente and M. Valcárcel, Microchem. J.,
- 107 2015, **121**, 6-13.
- 108 12. M. T. Jafari, B. Rezaei and B. Zaker, Anal. Chem., 2009, 81, 3585-3591.
- 109 13. Z. Y. Yan, A. Xiao, H. Lu, Z. Liu and J. Q. Chen, New Carbon Mater., 2014,

29, 216-224.

- 111 14. L. Meng, J. H. Yin, Y. Q. Yuan and N. Xu, Anal. Methods, 2017, 9, 768-773.
- 112 15. A. Hatamie, F. Marahel and A. Sharifat, *Talanta*, 2018, **176**, 518-525.
- 113 16. Y. Gu, X. Y. Yan, C. Li, B. Zheng, Y. R. Li, W. L. Liu, Z. Q. Zhang and M.
- 114 Yang, *Biosens. Bioelectron.*, 2016, **77**, 393-399.
- 115 17. E. Roy, S. K. Maity, S. Patra, R. Madhuri and P. K. Sharma, *RSC Adv.*, 2014,
 4, 32881-32893.
- 117 18. N. Xiao, J. Deng, J. L. Cheng, S. Q. Ju, H. Q. Zhao, J. Xie, D. Qian and J. He,
- 118 Biosens. Bioelectron., 2016, **81**, 54-60.
- 119 19. D. Chen, J. Deng, J. Liang, J. Xie, C. H. Hu and K. H. Huang, Sens. Actuators,
- 120 *B*, 2013, **183**, 594-600.
- 121 20. G. M. Yang, F. Q. Zhao and B. Z. Zeng, *Electrochim. Acta*, 2014, 135, 154-
- 122 160.
- 123
- 124