Supporting information

Engineering MOF-magnetic graphene oxide nanocomposite for enantioselective capture

Yu Gao,^a Wenrui Du,^a Ajuan Yu, *^a Xinglin Li,^a Wuduo Zhao,^b Shusheng Zhang^b

^a College of Chemistry and Molecular Engineering, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China.

^b Center of Advanced Analysis and Computational Science, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China.

Contents:

Section 1. Experimental section

Section 2. Figures S1-S3

Supplement of Experimental section

Synthesis of MOF $[Zn_2(BTC)(NO_3)(DMA)_3]_n$ (ZnBND). $Zn(NO_3)_2 \cdot 6H_2O$ (1.368 g) and H_3BTC (0.3192 g) and DMA (23 mL) were mixed in a 100 mL three-necked round-bottomed flask. The mixture was heated in oil-bath at 110 °C for 60 h with mechanical agitation. Then colorless powder were collected, washed with ultrapure water and ethanol, and dried in vacuum oven to obtain the MOF (ZnBND).

Synthesis of Fe₃O₄@SiO₂@ZnBND composite. 7 Wt % of Fe₃O₄@SiO₂ were added into the mixed DMA of Zn(NO₃)₂·6H₂O (1.368 g) and H₃BTC (0.3192 g). The suspension was sonicated for 30 min, and then heated in oil-bath at 110 °C for 60 h with mechanical agitation. Dark gray powder were collected, washed with ultrapure water and ethanol, and dried in vacuum oven to get the Fe₃O₄@SiO₂@ZnBND.

Synthesis of Fe₃O₄@SiO₂-NH₂@ZnBND composite. Same to the above synthetic step, 7 wt % of Fe₃O₄@SiO₂-NH₂ were added, and then gray powder Fe₃O₄@SiO₂-NH₂@ZnBND was gained.

Figure S1. Preparation of Fe₃O₄@SiO₂-NH₂@ZnBND(MGO-ZnBND)

Figure S2. The experimental powder X-ray diffractogram of as-synthesised ZnBND (normal plot) and corresponding simulation result (inverted plot).

Figure S3. "Enantioselective capture" process for benzoin using MGO-ZnBND. (a) Optimization of the extraction solvent; (b) Optimization of the elution solvent; (c) Optimization of the percentage of MGO; (d) Optimization of the dosage of MGO-ZnBND; (e) Optimization of the extraction time and desorption time; (f) Recycle use of MGO-ZnBND composite.