Supporting information for

Pyrrole-containing hydrazone and its resultant Cu²⁺ complex: an

easily accessible optical chemosensor system for the successive

detection of Zn²⁺/Cu²⁺ and pyrophosphate

Yang Wang,^{a,b} Xufeng Hou,^b Zhensheng Li,^b Qihang Zhou,^{a,b} Mengmeng Lei,^{a,b} Shanshan Hu,^b

0.25 0.20 Absorbance 0.15 0.10 0.05 CUR XNA × CU * 40 * C4.24 CU⁴⁴ Cures Vires Cu³ Cura Var 0.00 CU24

Xiaopei Wu,^b Chenming Li,^b Zhihong Xu,^{*,a,b} Yuan Wang,^{*,c}

Fig. S1 The effect of 10 μM coexistent metal cations on the absorbance at 432 nm of 10 μM 1 with 10

 μ M Cu²⁺ in DMF/H₂O (8/2, v/v, pH = 7.40) solution.

Fig. S2 The linear relation of the absorbance at 432 nm and the concentration of Cu^{2+} (0-10 μ M).

Fig. S3 Job plots of 1 and Cu^{2+} in DMF/H₂O (8/2, v/v, pH = 7.40) solution according to the absorbance

at 432 nm. The total concentration of 1 and Cu^{2+} were all kept at 20 $\mu M.$

Fig. S4 The Benesi-Hildebrand plot of the $1+Cu^{2+}$ complex (where $R = A_{432}/A_{346}$).

Fig. S5 Time course for the absorbance response of 10 μ M 1 upon the addition of 10 μ M Cu²⁺ in DMF/H₂O (8/2, v/v, pH = 7.40) solution at room temperature.

Fig. S6 The effect of pH (2.0-12.0) on the absorbance at 432 nm of 10 μ M probe 1 with 10 μ M Cu²⁺ in DMF/H₂O (8/2, v/v, pH = 7.40) solution.

Fig. S7 The effect of 10 μ M coexistent metal cations on the fluorescence intensity at 532 nm of 10 μ M 1 with 10 μ M Zn²⁺ in DMF/H₂O (8/2, v/v, pH = 7.40) solution.

Fig. S8 The effect of 20 μ M masking reagents (F⁻ for Al³⁺/Fe³⁺, I⁻ for Cu²⁺, H₂O₂ and N(CH₂CH₂OH)₃ for Cr³⁺) on the fluorescence emission of 10 μ M 1 with 10 μ M Zn²⁺ and 10 μ M coexistent metal cations in DMF/H₂O (8/2, v/v, pH = 7.40) solution.

Fig. S9 Absorption spectra of 10 μ M probe 1 upon the addition of Zn²⁺ (0-55 μ M) in DMF/H₂O (8/2,

v/v, pH = 7.40) solution.

Fig. S10 The linear relation of the fluorescence intensity at 532 nm and the concentration of Zn^{2+} (0-15

μM).

Fig. S11 Job plots of 1 and Zn²⁺ in DMF/H₂O (8/2, v/v, pH = 7.40) solution according to the fluorescence intensity at 532 nm. The total concentration of 1 and Zn²⁺ were all kept at 20 μ M.

Fig. S12 The Benesi-Hildebrand plot of the $1+Zn^{2+}$ complex.

Fig. S13 Time course for the fluorescence response of 10 μ M 1 upon the addition of 10 μ M Zn²⁺ in DMF/H₂O (8/2, v/v, pH = 7.40) solution at room temperature.

Fig. S14 Fluorescence intensity changes at 532 nm of 1 (10 μ M) upon alternating addition of Zn²⁺ (10 μ M) and EDTA (10 μ M) in DMF/H₂O (8/2, v/v, pH = 7.40) solution.

Fig. S15 The effect of pH (2.0-12.0) on the fluorescence intensity at 532 nm of 10 μ M probe 1 with 10 μ M Zn²⁺ in DMF/H₂O (8/2, v/v, pH = 7.40) solution.

Fig. S16 Partial of ESI-MS spectra of 1 with Cu²⁺ in DMF solution.

Fig. S18 Partial of ESI-MS spectra of 1 in DMF solution.

Fig. S20 ¹³C NMR of **1** in DMSO- d_6 solution.