Electronic supplementary information

β-cyclodextrin protected gold nanoparticles based cotton swabs as an effective candidates for specific sensing of trace level of cyanide

R. Rajamanikandan and M. Ilanchelian*

Department of Chemistry,

Bharathiar University, Coimbatore - 641046, Tamil Nadu, India

*Corresponding author: E-mail: chelian73@yahoo.com,

Tel: +91 422 2428317; Fax: +91 - 422 2422 387

Fig. S1. Absorption spectrum of β -CD AuNPs and inset shows corresponding photograph.

Fig. S2. Absorption spectra of freshly prepared and three months aged β -CD AuNPs and inset shows corresponding photographs of (a) freshly prepared and (b) three months aged β -CD AuNPs.

Fig. S3. FT-IR spectra of pristine β -CD and β -CD AuNPs.

Fig. S4. Zeta potential result of β -CD AuNPs.

Fig. S5. Absorption spectra of β -CD AuNPs after the addition of different amounts of water.

Fig. S6. DLS observations for β -CD AuNPs before and after the addition of CN⁻ ions.

Fig. S7. EDX spectrum of β -CD AuNPs embedded cotton swab.

Method	Nanoprobe	Linear range	LOD	Reference
Fluorescence	Lysozyme stabilized AuNCs	5-120 μM	0.19 µM	11
Fluorescence	Rhodamine B- adsorbed AuNPs	0.15-45 μM	80 nM	12
Fluorescence	CdSe QDs		1.1 µM	13
Fluorescence	Au nanodots	0.29-8.87 μM	0.15 µM	41
Fluorescence	Bovine serum albumin stabilized Ce/AuNCs	0.1-15 μM	0.05 μΜ	42
Fluorescence	Polymer-coated AuNPs	3-930 µM	3 μΜ	43
Fluorescence	OVA-AuNCs	0.5-7.5 μΜ	68 nM	44
Colorimetry	Ag@Au core-shell NPs	0.4 - 32 μM	0.18 µM	16
Colorimetry	Au@Ag core/shell NPs	8-80 μM	0.4 µM	45
Colorimetry	AgNPs	16.7 - 133.3 μM	1.8 µM	46
Colorimetry	AuNPs		14 µM	47
Colorimetry	PS20-AuNPs	0-7 µM	100 nM	48
Colorimetry	β-CD AuNPs	4.5-99 μM	93 nM	This work

Table S1. Comparison of various nanomaterials based optical methods for CN⁻ ions with present analytical methodology.