Supplementary Information

A MnO₂ nanosheets-o-phenylenediamine oxidative system for the sensitive fluorescent determination of alkaline phosphatase activity

Xionghong Tan^{a,b,c}, Zheng Li^d, Yanlin Du^{a,b,c}, Aixian Zheng^c, Yongyi Zeng^c, Xiaolong Zhang^{c,*},

Xiaolong Liu $^{\rm b,c,\ast}\text{,}$ and Niancai Peng $^{\rm d,}\ensuremath{^{\ast}}$

^a College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China.

^{b.}Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.

^{c-}The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China.

^d State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.

*Corresponding Authors. E-mail addresses: <u>xiaolongdo@gmail.com</u> (X. Zhang), <u>xiaoloong.liu@gmail.com</u> (X. Liu), <u>pnc@mail.xjtu.edu.cn</u> (N. Peng)

Fig. S1 Effects of buffer pH value for the MnO₂ nanosheets-OPDA system. Fluorescence emission spectra (A) and the curve for fluorescence intensity in response to pH (B). Concentrations: OPDA, 75 μ M; MnO₂, 12.5 μ g/mL.

Fig. S2 Fluorescence change of the MnO_2 nanosheets-OPDA system toward different temperature. Fluorescence emission spectra (A) and the curve for fluorescence intensity in response to temperature (B). Concentrations: OPDA, 75 μ M; MnO₂, 12.5 μ g/mL.

Fig. S3 Effects of reaction time on the MnO₂ nanosheets-OPDA system. Fluorescence emission spectra (A) and the curve for fluorescence intensity in response to reaction time (B). Concentrations: OPDA, 75 μ M; MnO₂, 12.5 μ g/mL.

Fig. S4 Catalytic reactivity of the MnO₂ with different concentrations in the MnO₂ nanosheets-OPDA sensing system. Fluorescence emission spectra (A) and the curve for fluorescence intensity in response to MnO2 with various concentrations (B). Concentrations: OPDA, 75 μ M; MnO₂, 2, 4, 6, 8, 10, 12.5, 15 μ g/mL.

Fig. S5 Effects of incubation time between MnO_2 nanosheets and AA on the fluorescence emission spectra of MnO_2 nanosheets-OPDA system (A) and the corresponding curve for fluorescence change (B). Concentrations: OPDA, 75 μ M; MnO_2 , 12.5 μ g/mL; AA, 400 U/L.

Fig. S6 The UV-vis absorption spectra (A) and corresponding photographs (B) of MnO_2 nanosheets solution before and after AA treatment. Concentrations: MnO_2 , 12.5 µg/mL; AA, 50 µM.

Fig. S7 The effect of AAP or ALP alone, AAP and ALP on fluorescence emission spectra (A) of MnO_2 nanosheets-OPDA sensing system and corresponding photographs (B). Concentrations: OPDA, 75 μ M; MnO_2 , 12.5 μ g/mL; AAP, 5 mM; ALP, 600 U/L.

Materials	Detection method	Linear range	Detection limit	Reference
		(U/L)	(U/L)	
DNA-Cu(II) complexes	Colorimetric method	20-200	0.84	\$1
Cu ²⁺ -modulated G-				
Quadruplex-based	Colorimetric method	0.07–100	0.07	S2
DNAzymes				
CdSe quantum dots	Electrochemiluminescence	2–25	2	S3
p-nitrophenyl	Electrochemistry	0.4-2000	0.3	S4
phosphate				
CuS/GR	Electrochemistry	0.1-100	0.02	S5
p-nitrophenyl	Electrochemistry	5-250	0.5	S6
phosphate				
Polymer nanoparticles	Fluorescence	25–200	10	S7
Carbon dots	Fluorescence	0.01–25	0.001	S8
CDs–MnO ₂	Fluorescence	1-100	0.4	S9
F-PDA–MnO ₂	Fluorescence	1-80	0.34	S10
MnO ₂ nanosheets-	Fluorescence	0.1-200	0.1	This work
OPDA				

Table S1. Comparison of ALP assay in analytical performance.

References

- (S1) J. Yang, L. Zheng, Y. Wang, W. Li, J. Zhang, J. Gu and Y. Fu, *Biosensors & Bioelectronics*, **2015**, 77, 549-556.
- (S2) Z. Tang, H. Zhang, C. Ma, P. Gu, G. Zhang, K. Wu, M. Chen and K. Wang, *Microchimica Acta*, **2018**, 185, 109.
- (S3) H. Jiang and X. Wang, Analytical Chemistry, **2012**, 84, 6986-6993.
- (S4) W. Sun and K. Jiao, Bulletin of the Chemical Society of Ethiopia, 2005, 19, 163-173.
- (S5) J. Peng, X. X. Han, Q. C. Zhang, H. Q. Yao and Z. N. Gao, Analytica chimica acta, 2015, 878, 87-94.
- (S6) S. Qin, International Journal of Electrochemical Science, 2017, 8908-8917.
- (S7) J. Deng, Y. Ping, Y. Wang and L. Mao, Analytical Chemistry, 2015, 87, 3080-3086.
- (S8) G. Li, H. Fu, X. Chen, P. Gong, G. Chen, L. Xia, H. Wang, J. M. You and Y. Wu, *Analytical Chemistry*, **2016**, 88, 2720.
- (S9) F. Qu, H. Pei, R. Kong, S. Zhu and X. Lian, Talanta, 2016, 165, 136.

(S10) T. Xiao, J. Sun, J. Zhao, S. Wang, G. Liu and X. Yang, *Acs Applied Materials & Interfaces*, **2018**, 10, 6560-6569.