Supporting Information

Novel AIEgens with 3,5-dibromobenzaldehyde skeleton: molecular design, synthesis, tunable emission and detection application

Yunsuo Kuang^{a,b}, Linfeng Chen^a, Xike Tian^{a,*}, Yong Li^a, Liqiang Lu^a, Chao Yang^a, Zhaoxin Zhou^a and Yulun Nie^a

^a Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China

^b Guizhou central laboratory of geology and mineral resources, Guiyang, 550018, PR China

Synthesis of S1

Scheme S1 Synthesis of S1

S1: ¹H NMR (400MHz, *d*₆-DMSO) δ (ppm): 10.12 (s, 1H), 8.14-7.80 (m, 9H), 7.60-7.45 (m, 6H), 4.31-4.25 (t, 1H), 3.07-2.89 (m, 2H), 2.36-2.41 (t, 1H).

¹³C NMR (100MHz, *d*₆-DMSO) δ (ppm): 171.15, 160.03, 135.24, 134.01, 132.27, 127.11,
126.13, 122.79, 120.45, 119.45, 60.07 and 24.47.

ESI-MS (m/z): calcd for $C_{22}H_{19}NO_2S$ [M]⁺, 361.5; found, 361.1.

Elemental analysis: calcd for C₂₂H₁₉NO₂S: C, 73.10; H, 5.30; N, 3.88; S, 8.85. Found: C, 73.12; H, 5.31; N, 3.92; S, 8.84.

Scheme S2 Synthesis of S2

S2: ¹H NMR (400MHz, *d*₆-DMSO) δ (ppm): 9.88 (s, 1H), 7.79-7.60 (m, 10H), 7.93-7.91 (d, 3H), 7.40-7.45 (m, 4H), 7.33-7.37 (m, 3H), 4.35-4.29 (t, 1H), 3.77-3.61 (m, 4H), 3.14-3.26 (2H), 1.34-1.30 (t, 6H).

¹³C NMR (100MHz, *d*₆-DMSO) δ (ppm): 173.39, 162.46, 134.45, 133.06, 128.98, 127.05, 125.70, 122.41, 120.40, 117.32, 65.32, 51.79, 27.14, 13.97 and 13.74.

ESI-MS (m/z): calcd for C₃₈H₃₃N₃O₂S [M]⁺, 595.4; found, 595.1.

Elemental analysis: calcd for C₃₈H₃₃N₃O₂S: C, 76.61; H, 5.58; N, 7.05; S, 5.38. Found: C, 76.63; H, 5.57; N, 7.02; S, 5.40.

Synthesis of S3

Scheme S3 Synthesis of S3

S3: ¹H NMR (400MHz, *d*₆-DMSO) δ (ppm): 9.82 (s, 1H), 8.23-8.16 (m, 4H), 8.01-7.88 (m, 2H), 7.67-7.48 (m, 10H), 7.41-7.23 (m, 12H), 4.1 (t, 1H), 3.11-2.94 (m, 2H).

¹³C NMR (100MHz, *d*₆-DMSO) δ (ppm): 167.49, 158.31, 140.61, 137.33, 130.63, 128.12, 127.16, 126.63, 123.18, 120.97, 114.03, 111.97, 110.03, 66.43, and 26.14.

ESI-MS (m/z): calcd for C₄₆H₃₃N₃O₂S [M]⁺, 691.2; found, 691.1.

Elemental analysis: calcd for C₄₆H₃₃N₃O₂S: C, 79.86; H, 4.81; N, 6.07; S, 4.63. Found: C, 79.77; H, 4.84; N, 6.11; S, 4.62.

Fig. S1 The ¹H NMR spectrum of **S1** in d_6 -DMSO

Fig. S2 The ¹³C NMR spectrum of S1 in d_6 -DMSO

Fig. S3 The ¹H NMR spectrum of S2 in d_6 -DMSO

Fig. S4 The 13 C NMR spectrum of S2 in d_6 -DMSO

Fig. S5 The ¹H NMR spectrum of **S3** in d_6 -DMSO

Fig. S7. The fluorescence spectra of S2 and S3 (10 $\mu M)$ in solid-film state and THF-water mixtures (v/v, 1/9).

Fig. S8 ESI-Mass spectrum of S1

Fig. S9 ESI-Mass spectrum of S2

Fig. S10 ESI-Mass spectrum of S3

Fig. S11 ESI-Mass spectrum of S1 after the addition of As^{3+} (240 ppb).

Fig. S12 ESI-Mass spectrum of S2 after the addition of As³⁺ (240 ppb).

Fig. S13 ESI-Mass spectrum of S3 after the addition of As^{3+} (240 ppb).

Fig. S14 The selectivity and anti-interference of S1, S2 and S3 toward As^{3+} in water-THF mixtures (v/v, 7/3). The cyan, magenta and yellow bars represent the fluorescence responses of S1, S2 and S3 (10 μ M) to various cation ions (As³⁺, 200 ppb; As⁵⁺, Pb²⁺, Cu²⁺, 400 ppb; the other, 2000 ppb), respectively. The green, red and blue bars represent the fluorescence of above solution upon subsequent addition of 200 ppb of As³⁺.

Fig. S15 The selectivity and anti-interference of S1, S2 and S3 toward As^{3+} in water-THF mixtures (v/v, 7/3). The cyan, magenta and yellow bars represent the fluorescence responses of S1, S2 and S3 (10 μ M) to various anions (the concentration for various anion was 2000 ppb), respectively. The green, red and blue bars represent the fluorescence of above solution upon subsequent addition of 200 ppb of As^{3+} .

Fig. S16 The ¹H NMR spectra of **S3** in d_6 -DMSO before (a) and after (b) addition of 240 ppb of As³⁺.

Method	LOD(ppb)
Coumarin-Appended Benzothiazolines ^{1, 2}	0.14-0.23
Functionalized gold nanoparticles ³	2.58-2.84
Schiff base system ⁴	4.10
Cationic polymers and aptamers probe ⁵	5.30
GO/Fe ₃ O ₄ @GSH ⁶	0.1
Rhodamine based fluorescence reagent ⁷	0.22
Glutathione-capped CdTe quantum dots ⁸	1.50
IC-HG-AFS ⁹	1.0-3.0
Gold cluster-based fluorescent sensor ¹⁰	4.01
Nano-sized arsenic-imprinted polymer ¹¹	37.50
Pulsed Laser-Induced Desorption ¹²	1.87
S1	6.74
S2	2.63
S3	1.32

Table S1 Comparison of the LOD for the detection of As³⁺by fluorescence chemsensors

References

- 1. V. C. Ezeh and T. C. Harrop, Inorg. Chem, 2012, 51, 1213-1215.
- 2. V. C. Ezeh and T. C. Harrop, Inorg. Chem, 2013, 52, 2323-2334.
- 3. R. Domínguez-González, V. L. González and P. Bermejo-Barrera, Talanta, 2014, 118, 262-269.
- 4. S. Lohar, S. Pal, B. Sen, M. Mukherjee, S. Banerjee and P. Chattopadhyay, *Anal. Chem.*, 2014, 86, 11357-11361.
- 5. Y. Wu, S. Zhan, F. Wang, L. He, W. Zhi and P. Zhou, Chem. Commun., 2012, 48, 4459.
- 6. Ş. Saçmacı, M. Saçmacı and C. Kök, New J. Chem., 2018, 42.
- 7. N. Öksüza, Ş. Saçmacı, M. Saçmacı, A. Ülgenb, Food Chem., 2019, 270, 579-584.8.
- 8. X. Wang, Y. Lv and X. Hou, Talanta, 2011, 84, 382-386.
- 9. N. S. Keller, A. Stefánsson and B. Sigfússon, Talanta, 2014, 128, 466-472.
- 10. S. Roy, G. Palui and A. Banerjee, Nanoscale, 2012, 4, 2734-2740.
- 11. T. Alizadeh and M. Rashedi, Anal. Chim. Acta, 2014, 843, 7-17.
- C. I. Weng, J. S. Cang, J. Y. Chang, T. M. Hsiung, B. Unnikrishnan, Y. L. Hung, Y. T. Tseng, Y. J. Li, Y. W. Shen and C. C. Huang, *Anal. Chem.*, 2014, 86, 3167.