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1. Photographs of silica crystals

 

 

 

Figure S1 Photographs of silica crystals (a) on planar slides, (b) on the inner 

face of bottles, and (c) RIOPs in ACN/NAc (v/v, 50/50, pH5.5) 

2. Photographs of silica crystals
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Figure S2 UV-VIS absorption spectra silica moldings on glass slides 

and ENR emission

3. Setup of fluorescence measurement

 

Figure S3 Scheme of fluorescence measurement setup

4. Absorption of enrofloxacin
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Figure S4 UV-Vis absorption of enrofloxacin in ACN/NAc (v/v, 50/50, pH5.5)

5. Absorption spectrum of MIM and NIM
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Figure S5 UV-Vis absorption of NIM and MIM in ACN/NAc (v/v, 50/50, pH5.5)

6. Structures of enrofloxacin and analogues and absorption spectrum of ENR
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Figure S6 Structure of enrofloxacin (ENR), flumequine (FLU) and 
dropropizine (DPP)
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7. Bulk polymer preparation

The polymer composition is the same as the RIOPs. After dissolving the 

monomers, oxygen was removed from the solution by purging it with nitrogen during 

15 min. The glass tube was then sealed and polymerisation was allowed to proceed 

thermally by placing the tube in an oven set at 60 °C for 24 h. The MIP was crushed 

and sieved afterwards, and particles in the size range 74–200 μm were collected. 

Soxlet extraction was performed to fully remove templates with methanol containing 

10% (v/v) acetic acid. Then they were washed several times with methanol to fully 

remove acetic acid. Afterwards, the polymers were vacuum dried at 60 °C for 24 

hours. Non-imprinted polymers (NIP) were prepared and cleaned the same way as 

MIP but without the addition of DPP. 

8. Batch sorption and sorption isotherm

In detail, about 20mg of polymer was weighed and filled into a 5mL 

polypropylene vial. Then 2mL DPP in ACN/NAc buffer was added. The vial was then 

sealed and incubated at 25 °C for 12h. After rebinding was over, the supernatants in 

each vial were filtered with a 0.22μm Nylon filter and the template in the supernatent 

was measured with UHPLC (Agilent 1290). 
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Figure S7. ENR adsorbed on MIP and NIP
9. Absorption and emission spectrums of enrofloxacin and analogues
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Figure S8 Emission of enrofloxacin (ENR, 500ppb) and dropropizine (DPP, 
500ppb) ACN/NAc (v/v, 50/50, pH5.5) under the fluorescence 
measurement setup with a 390nm long-wave pass (LWP) filter

 
10. Absorption spectra of M220 in different solvents and buffers
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Figure S9 Absorption spectra of M220 in solvents (a) and 

ACN/buffers (b)

11. Response time of M220
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Figure S10 Emission of blank solution, ENR with M220, and blank solution 
with M220 (Inset: emission intensity at 443nm as a function of time after 

incubation with M220)
12. Emission spectrums of enrofloxacin with and without M220
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Figure S11 ENR emission without (a) and with (b) M220 in ACN:NAc (50:50, v/v)

13. Limit of detection of ENR
Table S1 Limit of detection of ENR

M220 with blank solution Blank solution
I, a.u. [ENR], ppb I, a.u. [ENR], ppb

1 560.7 45.8 37.1 5.74
2 557.8 45.6 38.6 5.93
3 553.1 45.2 39.8 6.09
3 560.9 45.8 39.8 6.08
5 567.1 46.3 41.5 6.31
6 561.0 45.9 41.1 6.25
σ 4.61 0.35 1.61 0.21



7

DL — 0.082 — 0.080

14. Comparison of imprinted RIOP and other analytical systems
Table S2 Comparison between current analytical systems for antibiotics determination

No. Target Sensing platform Limit of Detection Ref.

1 Amoxicillin Surface Plasmon resonance 73 pM [1]

2 Amoxicillin Quartz crystal microbalance 0.2 nM [2]

3 Sulfamethizole Surface acoustic wave 1.7 nM [3]

4 Levofloxacin Electrochemical 530 nM [4]

5 Flumequine Surface Acoustic Wave 1000 nM [5]

6 Sulfadimethoxine Electrochemical 70000 nM [6]

7 Enrofloxacin Raman Scattering 1.5 nM [7]

8 Enrofloxacin Fluorescence 228 nM this work
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