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The 102 database entries stored in OpenFluor were extracted from the website on October 29th, 2018 

(http://openfluor.org). Emission and excitation spectra were subsequently processed in Matlab 

(v.9.5, MathWorks Inc.). To compare spectra, the components of all models were interpolated to 

increments of one nanometre and cut to ranges of 270 -440 nm and 300 -540 nm for excitation and 

emission, respectively. In some cases, missing numbers (wavelengths not covered in a particular 

study) were replaced either with zeros for components where no spectral features were present in the 

missing range or estimates from gaussian fits were used in cases where spectral features were detected 

on the edges of measured data. In cases where missing wavelengths occurred at wavelengths below 

the captured spectral range, monotonic extrapolations were used to estimate missing wavelengths. 

Models with excessive amounts of missing wavelengths were excluded from further analysis (first 

excitation > 280 nm, first emission > 330 nm, last emission <490 nm). Five models were excluded 

for such reasons (Søndergaard et al. 2003; Cawley et al. 2012a; b; Bianchi et al. 2014; Tanaka et al. 

2014), while an additional six were excluded for non-DOM sample source [data sets containing pure 

organic compound fluorescence (Wünsch et al. 2015)] or highly autochthonous character [four 

models of Antarctic ice cores dominated by ultraviolet wavelength range fluorescence (D’Andrilli 

et al. 2017). All remaining spectra were smoothed using a Savitzky-Golay filter with a window 

length of 21 nm and a 2nd order polynomial (Savitzky and Golay 1964; Steinier et al. 1972). Spectra 

were subsequently normalized by division with their Frobenius norm to account for the new, 

equal wavelength increments. Figure S1 depicts an example of raw and fully processed 

spectra. The resulting dataset included 90 models and 478 emission and excitation spectra. A list of 

all models and their corresponding publications is available at https://openfluor.lablicate.com/

of/measurement. 

Figure S1: Example of raw and processed OpenFluor PARAFAC spectra (Yamashita et al. 2013). (A): Excitation spectra (B): Emission 

spectra. 

While it is common to report multiple excitation maxima for PARAFAC components (Stedmon et al. 

2003), we aimed to calculate the Stokes shift of spectra and thus determined the wavelength at which 

the maximum fluorescence emission and first fluorescence excitation occurred (Reynolds 2014). The 

Stokes shift was then calculated as the difference between first excitation (when plotted against 

wavenumber, i.e. the “last” peak when plotted against wavelength) and emission peak in wavenumber 

and expressed in electron volts (eV). Fig. S1 shows examples of determined peak positions. 

http://openfluor.org/
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The Tucker congruence coefficient (TCC) was modified to increase its sensitivity to shape differences 

and peak shifts. The shift- and shape-sensitive congruence (SSC) was based on the classic definition 

of TCC (Tucker 1951; Lorenzo-Seva and ten Berge 2006): 

𝑇𝐶𝐶 (𝑥, 𝑦) =  
∑ 𝑥 𝑦

√∑ 𝑥2 ∑ 𝑦2
, (1) 

where x and y are loadings of two factors with identical x-axis-scale. TCCs are traditionally calculated 

for emission and excitation spectra (TCCex and TCCem) to form the overall TCCem x ex (Murphy et al. 

2014). While excitation spectra of chromophores are typically very distinct and respond to changes 

in molecular structure sensitively, emission spectra do not have similarly unique features and vary 

less in comparison (Wünsch et al. 2015). To quantify the divergence of the two emission spectra x 

and y with regards to peak wavelength differences, the penalty term α was defined as: 

𝛼(𝑥, 𝑦) =
|𝜆𝑥−𝜆𝑦|

𝜆𝑚𝑎𝑥−𝜆𝑚𝑖𝑛
, (2) 

where |λx - λy| is the difference between peak positions of spectrum x and y in nanometres and 

λmax -λmin represents the range of observed wavelengths in nanometres. For example, a 10 nm 

difference between peaks of spectrum x and y when x and y were measured between 300 and 550 nm 

results α = 0.04. Moreover, SSC was introduced to allow a more sensitive quantification of peak area 

differences. We defined the penalty term β, which quantifies the differences between the areas of two 

peaks as follows: 

𝛽(𝑥, 𝑦) =
| ∫ 𝑥− ∫ 𝑦|

𝜆𝑚𝑎𝑥−𝜆𝑚𝑖𝑛
, (3) 

where |∫x - ∫y| is difference between the integrals of spectra x and y normalized by their uniform 

norm. SSC was then calculated based on the subtraction of the two penalty terms β and α from 

TCC: 

𝑆𝑆𝐶 (𝑥, 𝑦) = 𝑇𝐶𝐶 − ∑ 𝛼, 𝛽. (4) 

The penalty terms α and β are used to sensitize Tuckers congruence coefficient (TCC) to the 

occurrence of peak shifts and shape differences between compared spectra. To quantify how the 

resulting shift / shape sensitive congruence differs from TCC, TCCs between a reference spectrum 

and modified spectra were compared to TCC- α and TCC- β (Fig. S2). The result of our analysis 

indicated that SSCs are significantly more sensitive towards shifts in peak wavelength and changes 

in the broadness between peaks since the band of highly similar spectra identified by TCC compared 

to TCC-α or TCC- β was narrower (Fig. S2B, D). Importantly, α and β behaved predictively (Fig. 

S2A, C). 

Next, TCC and SSC were calculated for a set of 14 emission spectra of pure organic substances 

(Wünsch et al. 2015). To perform a sensitivity analysis, TCCs and SSCs between all unique 

comparisons (N = 273) were calculated. Since no two spectra are identical, any quantification of 

spectral similarity suggesting identity of two spectra presents a type I error (false positive). 
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Figure S2: Assignment of spectral identity by Tuckers congruence and shift- and shape sensitive congruence. (A): Response of 

shift-penalty α to divergence in peak positions without shape changes. (B): Band of shifted peaks classified as highly similar according 

to Tuckers congruence (red) and TCC- α (blue). (C): Response of the shape penalty β to shape changes (difference between peak widths 

σ). (D): Band of peaks with varying peak broadness classified as highly similar by TCC (red) and TCC-β (blue). 

Figure S3: Tuckers congruence and shift / shape sensitive similarity between emission spectra of pure organic compounds. (A): 

Emission spectra of 14 organic compounds. (B): Comparison of Tuckers congruence (TCC) between all unique comparisons and the 

Shape / Shift sensitive congruence (SSC). The dashed line represents the line of equal sensitivity. Notations of increased or decreased 

sensitivity refer to SSC in comparison to TCC. 

Figure S3 shows the comparison between TCC and SCC. In all comparisons, SSCs were lower 

compared to corresponding TCCs. Assuming a threshold of 0.95 as evidence for sufficient spectral 

similarity to assume identity of spectra, TCC classified 12.1% of spectra as indistinguishable, while 

the SSC only classified 4.4 % as indistinguishable. Considering all unique comparisons, the SSC 

reduced the rate of type I errors by 63 %. This demonstrates that the SSC is more sensitive than TCC 

to spectral differences. 
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To document the influence of under-specification (fitting too few components) in PARAFAC models 

describing DOM fluorescence, a dataset describing the molecular-size distribution of fluorescent 

DOM in Pony Lake (Antarctica, International Humic Substances Society standard 1R109F) was 

investigated. The particular dataset was generated from a chromatographic separation of a single 

sample, producing 252 EEMs from which a six-component model was developed and validated 

(Wünsch et al. 2017). Here, we investigated how the peak position of the component with the longest 

fluorescence emission would be impacted by assuming the presence of fewer components. Figure S4 

shows how the peak position of the longest-emitting component exhibits emission maxima from 

~510 nm in the validated six-component model. When fitting fewer components, the final emission 

peak occurs at shorter and shorter wavelengths until it occurs at 465 nm in the two-component model. 

The apparent change in emission maximum wavelength can be explained by spectral averaging of 

multiple peaks that occurs when PARAFAC models are under-specified. 

Figure S4: Effect of under-specification on the longest emitting PARAFAC component. The black line shows the weighted 

probability distribution of emission peaks in the OpenFluor database. Superimposed are the emission positions of the PARAFAC 

component with the longest emission maximum in two- to six component models of an EEM dataset from Pony Lake (Antarctica, 

IHSS standard 1R109F) (Wünsch et al. 2017). When fewer components are fitted, the peak maximum of the longest-emitting 

component moves to shorter wavelengths. 
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To investigate the primary factors responsible for model similarity, a meta-analysis of matching 

models was carried out. First, the best matching model for all 90 entries analysed in this study was 

identified. Secondly, four meta-variables (primary sample source, number of components, 

instrument, and number of components with emission maxima > 400 nm) were compared for each 

matched model. For all comparisons and meta-variables, the results were plotted in heatmaps (Fig. 

S5). If a particular meta-variable is a strong predictor for the similarity between models, high counts 

should be visible along the diagonal in the heatmap. On the other hand, scatter would indicate that a 

particular meta-variable is not a strong predictor of the similarity between models. 

Figure S5: Meta-analysis of OpenFluor PARAFAC model similarity. The four plots show number of most-similar models as a 

function of primary sample source (A), number of components in the models (B), fluorometer (C), and number of components with 

emission maxima > 400 nm (D). In (C), variables were anonymized to avoid associations with commercial products. 

The meta-analysis of the PARAFAC models in the OpenFluor database revealed that the similarities 

between models appears to be driven by the total number of PARAFAC components in the model 

(Fig. S5B), especially the number of visible-wavelength components with emission maxima 

> 400 nm (Fig. S5D). On the other hand, the high similarity between e.g. riverine or treated water 
studies (Fig. S5A) were most likely driven my methodological similarities (multiple models derived 
in a single study). Patterns with regards to the fluorometer used in PARAFAC studies may only 

reflect the fact that most studies used one of two popular fluorometers (Fig. S5C). 

With regards to the overall number of components, the following patterns were observed (Fig. S5B, 

D). There was a tendency for models with similar numbers of components to be spectrally well 

matched, since a total of 30 models with five or six components best matched models with the same 
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number of components. Moreover, a similar trend was observed when the number of visible-

wavelength components was considered (Fig. S5D). Models with the same or similar number of 

components emitting light at  > 400 nm often were best matched with each other.  

To investigate the occurrence of source-specific components, all 478 components were grouped 

according to the primary sample source (excluding source categories containing less than 

three models, Fig. S6). Source-specific components could not be visually identified. Rather revealed 

similar distributions across samples sources. For example, Open Ocean models showed similar 

component distributions compared to models describing treated (fresh)water. 

Figure S6: Peak positions of OpenFluor components by primary sample source. Dots are coloured and sized by the frequency they 

match other components in the database (TCCEx > 0.95, SSCEm > 0.95). 
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