Efficient "Ratiometric" fluorescence chemosensor for selective detection of Hg²⁺

ions based on phosphonates: its live cell imaging and molecular keypad lock

applications

Gujuluva Gangatharan Vinoth Kumar¹, Ramaraj Sayee Kannan², Thomas Chung-Kuang Yang^{4*}, Jegathalaprathaban Rajesh^{1*}, Gandhi Sivaraman^{3*}

¹Chemistry Research Centre, Mohamed Sathak Engineering College, Kilakarai-623 806, Tamil Nadu, India.

²Department of chemistry, Thiagarajar College, Madurai-625 009, Tamilnadu, India.

³ Department of Chemistry, Gandhigram rural institute- Deemed to be university, Gandhigram, Dindigul- 641 602, Tamilnadu, India.

⁴ Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1 Section 3, Zhong-Xiao East Road, Taipei 10608, Taiwan (ROC).

Supporting information

Supplementary Figures

Fig. S1. (a) ¹H NMR spectrum of synthesized sensor L1. (b) ¹³C NMR spectrum of sensor L1.
(c) ESI-MS spectra of the synthesized sensor L1.

Fig. S2. (a) ¹H NMR spectrum of synthesized sensor L2. (b) ¹³C NMR spectrum of synthesized sensor L2.

Fig. S3. (a) & (b) Colorimetric detection of sensors L1 and L2 (30 μM) with 2 equiv. of different metal ions. Sensors, Hg²⁺, Ni²⁺, Cu²⁺, Co²⁺, Zn²⁺, Fe²⁺, and Mn²⁺ (Top left to right), Mg²⁺, Pb²⁺, Ag⁺, Na⁺, Ca²⁺, Ba²⁺, K⁺, Cd²⁺ and Li⁺ (Bottom left to right).

Fig. S4. (a) Determination of association constant values of Hg²⁺ with L1 by using Benesi-Hildebrand (B-H) plot analysis from absorption titration (at 434 nm wavelength).
(b) Determination of association constant values of Hg²⁺ with L2 by using B-H plot analysis from absorption titration (at 424 nm wavelength).

Fig. S5. (a) Absorption spectra of the calibration curve of Hg^{2+} with L1. (b) Absorption spectra of the calibration curve of Hg^{2+} with L2.

Fig. S6. ESI-MS spectra of L1 with addition of 1 equiv.of Hg^{2+} ion.

Fig. S7. (a) Determination of association constant values of Hg²⁺ with L1 by using Benesi-Hildebrand (B-H) plot analysis from fluorescence titration (Intensity measured at 520 nm). (b) Determination of association constant values of Hg²⁺ with L2 by using B-H plot analysis from fluorescence titration (Intensity measured at 545 nm).

Fig. S8. (a) Fluorescence spectra of the calibration curve of Hg^{2+} with L1. (b) Fluorescence spectra of the calibration curve of Hg^{2+} with L2.

Fig. S9. (a) FTIR spectra of L1 and L1 + Hg²⁺ ion. (b) FTIR spectra of L2 and L2 + Hg²⁺ ion.

Fig. S10. (a) Sensing results for the colorimetric response of L1 with Hg^{2+} in tap water, river water and bottled water. (b) Sensing results for the colorimetric response of L2 with Hg^{2+} in tap water, river water and bottled water.

Fig. S11. (a) & (b) Photograph of the test kits with L1 and L2 for sensing Hg²⁺ ion in aqueous solution. (i) Different concentration of Hg²⁺ ion. 0, 1×10⁻³ M and 1×10⁻⁴ M (From left to right).
(ii) Sensing other metal ions (1×10⁻⁴ M). Sensors, Hg²⁺, Cu²⁺, Co²⁺, Zn²⁺, Fe²⁺, Mn²⁺, Mg²⁺, Pb²⁺, Ag⁺, Na⁺, Ca²⁺, Ba²⁺, K⁺, Cd²⁺ and Li⁺ (From left to right).

Fig. S12. (a) Color changes of L1 in the solid state upon addition of aqueous solution of Hg^{2+} . L1, L1+0.0001 M Hg²⁺, L1+0.001 M Hg²⁺ and L1+0.01 M Hg²⁺ (From left to right). (b) Color changes of L2 in the solid state upon addition of aqueous solution of Hg^{2+} . L2, L2+0.0001 M Hg^{2+} , L2+0.001 M Hg^{2+} and L2+0.01 M Hg^{2+} (From left to right).

Supplementary Tables

Table S1. Detection limits of present work to compare with other reported values.Table S2. Determination of Hg²⁺ ion in real samples.

Fig. S1.

Fig. S2.

Fig. S3.

Fig. S4.

Fig. S5.

Fig. S6.

Fig. S7.

Fig. S8.

Fig. S9.

Fig. S10.

Fig. S11.

Chemosensors	Selectivity	Method	Solvent system	Detection	References
				limit	
Calix[4]arenediazacrown	Hg ²⁺	Colorimetric	Water/MES	1×10 ⁻⁵	[33]
ether based					
Azobenzene based	Hg ²⁺	Colorimetric	DMSO/H ₂ O	0.5×10 ⁻⁶	[34]
		and			
		Fluorescent			
Schiff base	Hg^{2+}	Fluorescence	DMF/H ₂ O	1.5×10 ⁻⁵	[35]
DCF-Coumarin based	Hg^{2+}	Fluorescence	DMSO/H ₂ O	4.3×10 ⁻⁶	[36]
Benzothiadiazole based	Hg^{2+}	Fluorescence	CH ₃ CN/H ₂ O	1.6×10 ⁻⁷	[37]
				&5×10 ⁻⁷	
BODIPY based	Hg^{2+}	Fluorescence	HEPES	7.7×10 ⁻⁸	[38]
Benzimidazole and	Hg^{2+}	Fluorescence	HEPES/DMSO	7.0×10 ⁻⁸	[39]
Coumarin based					
α -aminophosphonate	Hg^{2+}	Fluorescence	MeOH/H ₂ O	2.53×10 ⁻⁸	Present
based				&8.14×10 ⁻⁹	work

Table S1

Sensor	Sample	Hg ²⁺ spiked	Found Hg ²⁺	Recovery
		(µM)	mean ^a \pm SD ^b (μ M)	(%)
	Tap water 1	10	9.6 ± 0.08	96
	Tap water 2	20	17.95 ± 0.05	89.8
	Tap water 3	30	31.7 ± 0.1	105.7
	River water 1	10	8.95 ± 0.06	89.5
L1	River water 2	20	19.5 ± 0.12	97.5
	River water 3	30	28.15 ± 0.15	93.8
	Bottled water 1	10	9.2 ± 0.08	92
	Bottled water 2	20	18.25 ± 0.12	91.25
	Bottled water 3	30	28.5 ± 0.13	95
	Tap water 1	10	7.18 ± 0.16	71.8
	Tap water 2	20	17.2 ± 0.09	86
	Tap water 3	30	27.68 ± 0.1	92.23
	River water 1	10	9.53 ± 0.14	95.3
L2	River water 2	20	20.48 ± 0.8	102.4
	River water 3	30	28.35 ± 0.06	94.5
	Bottled water 1	10	9.4 ± 0.11	94
	Bottled water 2	20	21.5 ± 0.20	107.5
	Bottled water 3	30	30.57 ± 0.15	101.9

Table	S2
-------	-----------

^amean of three determination. ^bSD, standard deviation.