Supporting Information

Construction of salicylaldehyde analogues as turn-on fluorescence probes and their electronic effect on sensitive and selective detection of $\mathrm{As}(\mathrm{V})$ in groundwater

Lina Wang, Yong Li, Xike Tian*, Chao Yang, Liqiang Lu, Zhaoxin Zhou, Yunjie Huang, Yulun Nie
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
*Corresponding author. Tel.: +86 02767883739 . Email: xktian@cug.edu.cn

Figure captions:

Figure S1 Infrared spectra of HBHP (a), HBBP (b), HMBP (c) and HNBP (d).
Figure S2 Mass spectra of HBHP (a), HBBP (b), HMBP (c) and HNBP (d).
Figure S3 Absorption spectra of HBHP (a), HBBP (b), HMBP (c) and HNBP (d).
Figure $\mathrm{S} 4{ }^{1} \mathrm{H}$ NMR spectra of HBHP (a), HBBP (b), HMBP (c) and HNBP (d).

Figure $55{ }^{13} \mathrm{C}$ NMR spectra of HBHP.
Figure S6 (a) Fluorescence spectra of HBBP with the gradual addition water in DMF, (b) Fluorescence intensity response of HBBP with the water fraction changes.

Figure S7 (a) Fluorescence spectra of HNBP with the gradual addition of water in DMF, (b) Fluorescence intensity response of HNBP with the water fraction changes.

Figure S8 (a) Fluorescence spectra of HMBP with the gradual addition water in DMF, (b) Fluorescence intensity response of HMBP with the water fraction changes.

Figure S9 Fluorescence intensity response of HBBP (a) and HMBP (b) in the presence and absence of $\operatorname{As}(\mathrm{V})$ with time from 0 to 65 min .

Figure S10 Electronic absorption spectra response of HBBP (a) and HMBP (b) with increasing amounts of $\mathrm{As}(\mathrm{V})(0-200 \mu \mathrm{M})$.

Figure S11 Fluorescence spectra of HBBP (a) and $\mathrm{HMBP}(\mathrm{b})$ upon the gradual addition of $\mathrm{As}(\mathrm{V})$ in DMF.

Figure S12 (a) The fluorescence intensity of HBBP under $\mathrm{As}(\mathrm{V})$ concentration from $0-130 \mu \mathrm{M}$; Inset: The linear relationship between fluorescence intensities changes and $\mathrm{As}(\mathrm{V})$ concentration from $0-80 \mu \mathrm{M}$. (b) The fluorescence intensity of HMBP under $\mathrm{As}(\mathrm{V})$ concentration from $0-400 \mu \mathrm{M}$; Inset: The linear relationship between fluorescence intensities changes and $\mathrm{As}(\mathrm{V})$ concentration from $0-200 \mu \mathrm{M}$.

Figure S13 Job's Plot of $\operatorname{HBBP}(\mathrm{a})$ and $\mathrm{HMBP}(\mathrm{b})$ and $\mathrm{As}(\mathrm{V})$.

Figure S14 Determination of binding constant of HBBP (a) and HMBP (b) with $\mathrm{As}(\mathrm{V})$.

Figure S15 DFT theoretical calculation and geometry optimization of HBBP and $\mathrm{HBBP}+\mathrm{As}(\mathrm{V})$.

Figure S16 DFT theoretical calculation and geometry optimization of HMBP and $\mathrm{HMBP}+\mathrm{As}(\mathrm{V})$.
Figure S17 The selectivity and anti-interference of HBHP toward $\mathrm{As}(\mathrm{V})$. The black bars represent the fluorescence responses of HBHP to 10 equiv of various cations. The red bars represent the fluorescence response of the above mixture solutions upon sequent addition of 10 equiv of $\mathrm{As}(\mathrm{V})$. All the experiments were performed in $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}$ mixture solution (v/v, 4:6).

Figure S 18 (a) The selectivity and anti-interference of HBBP toward $\mathrm{As}(\mathrm{V})$. The black bars represent the fluorescence responses of HBHP to 10 equiv of various anions. The red bars represent the fluorescence response of the above mixture solutions upon sequent addition of 10 equiv of $\mathrm{As}(\mathrm{V})$. All the experiments were performed in DMF. (b) The selectivity and anti-interference of HMBP toward $\mathrm{As}(\mathrm{V})$. The black bars represent the fluorescence responses of HBHP to 10 equiv of various anions. The red bars represent the fluorescence response of the above mixture solutions upon sequent addition of 10 equiv of $\mathrm{As}(\mathrm{V})$. All the experiments were performed in DMF.

Table S1 Comparisons of detection limit of HBHP toward $\mathrm{As}(\mathrm{V})$ with some instrumental detection methods and reported fluorescence molecules.

Figure S1 Infrared spectra of HBHP (a), HBBP (b), HMBP (c) and HNBP (d).

Figure S2 Mass spectra of HBHP (a), HBBP (b), HMBP (c) and HNBP (d).

Figure S3 Absorption spectra of HBHP (a), HBBP (b), HMBP (c) and HNBP (d).

Figure $\mathrm{S} 4{ }^{1} \mathrm{H}$ NMR spectra of HBHP (a), HBBP (b), HMBP (c) and HNBP (d).

Figure S5 ${ }^{13} \mathrm{C}$ NMR spectra of HBHP

Figure S6 (a) Fluorescence spectra of HBBP with the gradual addition water in DMF, (b) Fluorescence intensity response of HBBP with the water fraction changes.

Figure S7 (a) Fluorescence spectra of HNBP with the gradual addition of water in DMF, (b)
Fluorescence intensity response of HNBP with the water fraction changes.

Figure S8 (a) Fluorescence spectra of HMBP with the gradual addition water in DMF, (b)
Fluorescence intensity response of HMBP with the water fraction changes.

Figure S9 Fluorescence intensity response of HBBP (a) and HMBP (b) in the presence and absence of $\mathrm{As}(\mathrm{V})$ with time from 0 to 65 min .

Figure S10 Electronic absorption spectra response of HBBP (a) and HMBP (b) with increasing amounts of $\operatorname{As}(V)(0-200 \mu \mathrm{M})$.

Figure S11 Fluorescence spectra of HBBP (a) and HMBP (b) upon the gradual addition of As(V) in DMF.

Figure S12 (a) The fluorescence intensity of HBBP under $\mathrm{As}(\mathrm{V})$ concentration from $0-130 \mu \mathrm{M}$; Inset: The linear relationship between fluorescence intensities changes and $\operatorname{As}(\mathrm{V})$ concentration from $0-80 \mu \mathrm{M}$. (b) The fluorescence intensity of HMBP under $\mathrm{As}(\mathrm{V})$ concentration from $0-400 \mu \mathrm{M}$; Inset: The linear relationship between fluorescence intensities changes and $\mathrm{As}(\mathrm{V})$ concentration from $0-200 \mu \mathrm{M}$.

Figure S13 Job's Plot of $\operatorname{HBBP}(\mathrm{a})$ and $\mathrm{HMBP}(\mathrm{b})$ and $\mathrm{As}(\mathrm{V})$.

Figure S14 Determination of binding constant of HBBP (a) and HMBP (b) with As(V).

Figure S15 DFT theoretical calculation and geometry optimization of HBBP and HBBP+As(V)

Figure S16 DFT theoretical calculation and geometry optimization of HMBP and HMBP+As(V)

Optimized structure

Figure S17 The selectivity and anti-interference of HBHP toward $\mathrm{As}(\mathrm{V})$. The black bars represent the fluorescence responses of HBHP to 10 equiv of various cations. The red bars represent the fluorescence response of the above mixture solutions upon sequent addition of 10 equiv of $\mathrm{As}(\mathrm{V})$. All the experiments were performed in $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}$ mixture solution (v / v, 4:6).

Figure S18 (a) The selectivity and anti-interference of HBBP toward $\operatorname{As}(\mathrm{V})$. The black bars represent the fluorescence responses of HBHP to 10 equiv of various anions. The red bars represent the fluorescence response of the above mixture solutions upon sequent addition of 10 equiv of $\operatorname{As}(\mathrm{V})$. All the experiments were performed in DMF. (b) The selectivity and anti-interference of HMBP toward $\mathrm{As}(\mathrm{V})$. The black bars represent the fluorescence responses of HBHP to 10 equiv of various anions. The red bars represent the fluorescence response of the above mixture solutions upon sequent addition of 10 equiv of $\mathrm{As}(\mathrm{V})$. All the experiments were performed in DMF.

Table S1 Comparisons of detection limit of HBHP toward $\mathrm{As}(\mathrm{V})$ with some instrumental detection methods and reported fluorescence molecules.

Fluorescence molecules or detection methods	Detection limit	References
HG-AFS	$0.0374 \mathrm{ng} \cdot \mathrm{mL}^{-1}$	11
CSV	0.2 ppb	12
CE-ICP-MS	$8 \mathrm{ng} \cdot \mathrm{L}^{-1}$	13
Hydride generation-atomic absorption spectra	$0.34 \mu \mathrm{~g} \cdot \mathrm{~L}^{-1}$	35 M
(4E)-4-(2-Hydroxybenzylideneamino)-1,2-dihydro-		
2,3-dimethyl-1-phenylpyrazol-5-one	3 nM	21
Naphthalene-salisaldehyde	$0.23 \mu \mathrm{M}$	36
2-hydroxy-5-methyl-benzene-1,3-dicarboxaldehyde		
di-oxime	15 nM	37
2,6-Bis(N-ethylhydrazonethiocarbamide)-4-methyl-		
phenol		
HBHP		

