Supporting information

Indole-rhodamine-based ratiometric fluorescent probe for Pd²⁺ determination

and cell imaging

Wenfeng Luo^{a,b}, Mengmeng Lei^{a,b}, Yuan Wang^{c,*}, Haolei Gao^b, Yang Wang^{a,b}, Qihang Zhou^{a,b}, Zhihong Xu^{a,b,*}, Fengling Yang^{a*}

a. College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China

b. Key Laboratory of Chemo/Biosensing and Detection, School of Chemistry and Chemical Engineering, Xuchang University, 461000, P. R. China

c. College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China

*Corresponding author. Tel.: +86 374 4369297; e-mail: wangyuan08@hpu.edu.cn (Y. Wang); xuzhihong1980@yahoo.com (Z.-H. Xu); 13903900069@163.com (F.-L. Yang).

Contents

1. The fluorescence intensities ratio (F_{590}/F_{410}) for R1 as a function of Pd²⁺

concentration

2. Job plots of R1 with Pd²⁺

3. The Benesi-Hildebrand plot of the R1-Pd²⁺ complex.

- 4. ESI-MS spectrum of the probe R1 with Pd²⁺
- 5. The effect of pH
- 6. The effect of 1 equiv. coexistent metal cations
- 7. Time course for the fluorescence response
- 8. ESI-MS, ¹H NMR and ¹³C NMR spectrum of R1

1. The fluorescence intensities ratio (F_{590}/F_{410}) for **R1** as a function of Pd²⁺ concentration

Fig. S1 The fluorescence intensities ratio (F_{590}/F_{410}) for R1 as a function of Pd²⁺ concentration in

CH₃OH/PBS (5 mM, pH = 7.40, 50% CH₃OH) solution (excited at 330 nm).

2. Job plots of **R1** with Pd^{2+}

Fig. S2 Job plots of **R1** with Pd^{2+} in CH₃OH/PBS (5 mM, pH = 7.40, 50% CH₃OH) solution according to the absorbance at 570 nm. The total concentration of **R1** and Pd^{2+} were all kept at 10 μ M.

3. The Benesi-Hildebrand plot of the **R1**-Pd²⁺ complex.

Fig. S3 The Benesi-Hildebrand plot of the R1-Pd²⁺ complex.

4. ESI-MS spectrum of the probe $\mathbf{R1}$ with \mathbf{Pd}^{2+}

Fig. S4 ESI-MS spectrum of the probe **R1** with Pd^{2+} in EtOH solution.

5. The effect of pH

Fig. S5 The effect of pH (2.0-12.0) on the relative fluorescence intensity of 5 μ M probe R1 with 1 equiv. Pd²⁺ in CH₃OH/PBS (5 mM, pH = 7.40, 50% CH₃OH) solution.

6. The effect of 1 equiv. coexistent metal cations

Fig. S6 The effect of 1 equiv. coexistent metal cations on the relative fluorescence intensity at 410 and 590 nm (excited at 330 nm) of 5 μ M R1 with 1 equiv. Pd²⁺ in CH₃OH/PBS (5 mM, pH = 7.40, 50% CH₃OH) solution

7. Time course for the fluorescence response

Fig. S7 Time course for the fluorescence response at 410 nm and 590 nm (excited at 350 nm) of 5 μ M **R1** upon the addition of 1.0 eq. Pd²⁺ in CH₃OH/PBS (5 mM, pH = 7.40, 50% CH₃OH) solution at room temperature.

8. ESI-MS, ¹H NMR and ¹³C NMR spectrum of **R1**

Fig. S8 ESI-MS spectrum of R1 in EtOH solution.

Fig. S9 ¹H NMR spectrum of R1.

Fig. S10¹³C NMR spectrum of R1.