Supplementary12 information to

Rapid Screening of Antimalarial Drugs using Low-Temperature Plasma Desorption/Ionization Orbitrap Mass Spectrometry

Derick N Ateacha,^a Christopher Kuhlmann,^a Carsten Engelhard^{a,b*}

^aDepartment of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57076 Siegen, Germany

^bCenter of Micro- and Nanochemistry and -Engineering, University of Siegen, Adolf-

Reichwein-Strasse 2, D-57076 Siegen, Germany

E-Mail: <u>engelhard@chemie.uni-siegen.de</u>

MS scan parameters		
Scan range	50-550	
HCD gas	ON	
Resolution	High	
Polarity	Positive/negative	
Lock masses	Off	
Automatic gain control (AGC)	On	
Maximum ion injection time	100 ms	
MS source parameters		
Sheath gas flow rate (L/hr)	0	
Aux. gas flow rate (L/hr)	0	
Sweep gas flow rate (L/hr)	0	
Spray voltage (V)	0	
Capillary voltage (V)	35	
Capillary temperature (°C)	300	
Tube lens voltage (V)	100	
Skimmer voltage (V)	20	

Table S 1: LTP-Orbitrap-MS parameters used fort the LTP-MS analysis.

Figure S 1: Positive ion mode low-temperature plasma high-resolution mass spectrometry (LTP (+)-HR-MS) spectra of quinine with additional heating: A) 5.0 V (~35 °C) heating, B) 10.0 V (~50 °C) heating, and C) 14 V (~65 °C) heating Analyte: 10 μ g/mL (30 ng absolute) of quinine (*m*/*z* 325.1916, C₂₀H₂₅N₂O₂⁺).

Figure S 2: Proposed fragmentation pathway of quinine showing the formation of free radical cations during LTP (+)-HR-MS analysis.

Figure S 3: Fragmentation pattern of the protonated molecule of quinine with known characteristic fragments as reported in literature.¹

¹ JEOL Mass Spectrometers, 2006, Tandem Mass Spectrometery (MS/MS), https://www.jeolusa.com/DesktopModules/Bring2mind/DMX/API/Entries/Download?En tryId=78&Command=Core_Download&language=en-US&PortalId=2&TabId=337, Acessed November 15th, 2018

Nominal mass (<i>m</i> / <i>z</i>)	Exact mass (m/z)	Relative mass accuracy (ppm)	Fragment ions	Source
109	109.0891	-	$C_7H_{11}N^{\bullet+}$	Quinine
129	129.0578	-	$C_9H_7N^{\bullet+}$	Quinine
136	136.1124	2.3	$C_9H_{14}N^+$	Quinine
149	149.0239	1.4	$C_8H_5O_3^+$	Phthalic
				anhydride
160	160.0760	2.2	$C_{10}H_{10}ON^+$	Quinine
166	166.1231	3.0	$C_{10}H_{16}ON^+$	Quinine
171	171.0268	-3.9	$C_{11}H_9NO^{+}$	Quinine
188	188.0712	-3.2	$C_{11}H_{10}O_2N^+$	Quinine
325	325.1914	-1.2	$C_{20}H_{25}O_2N_2^+$	Quinine
341	341.1863	1.0	$C_{20}H_{25}O_{3}N_{2}^{+}$	Quinine oxide
357	357.1812	1.0	$C_{20}H_{25}O_4N_2^+$	Quinine
				dioxide
375	375.1920	1.5	$C_{20}H_{25}O_5N_2^+$	Quinine
				trioxide

Table S 2: Proposed fragment ions of quinine obtained with LTP (+)-HR-MS.

Nominal mass (m/z)	Exact mass (m/z)	Relative mass accuracy (ppm)	Fragment ions	Source
109	109.0891	-	$C_7H_{11}N^{\bullet+}$	Quinine
129	129.0578	-	$C_9H_7N^{\bullet+}$	Quinine
136	136.1124	2.6	$C_9H_{14}N^+$	Quinine
149	149.0239	1.7	$C_8H_5O_3^+$	Phthalic
				anhydride
160	160.0760	1.2	$C_{10}H_{10}ON^+$	Quinine
166	166.1231	2.5	$C_{10}H_{16}ON^+$	Quinine
171	171.0268	-3.9	$C_{11}H_9NO^{\bullet+}$	Quinine
188	188.0712	-2.7	$C_{11}H_{10}O_2N^+$	Quinine
325	325.1914	-0.6	$C_{20}H_{25}O_2N_2{}^+$	Quinine
341	341.1863	0.65	$C_{20}H_{25}O_{3}N_{2}{}^{+}$	Quinine oxide
357	357.1812	0.75	$C_{20}H_{25}O_4N_2{}^+$	Quinine
				dioxide
375	375.1920	0.88	$C_{20}H_{25}O_5N_2^+$	Quinine
				trioxide

Table S 3: Proposed fragment ions of quinine obtained with LTP (+)-HR-MS with high-energy collision-induced dissociation (HCD) fragmentation

Table S 4: Compounds screened from drug tablet with their boiling point and vapour pressure.

Compound	Boiling point (°C) ^a	Vapour pressure (mBar) ^b
Artemether	357.5 ± 42.0	7.48 x 10 ⁻⁵
Lumefantrine	642.0 ± 55.0	2.93 x 10 ⁻¹⁷
Atovaquone	535.0 ± 50.0	3.76 x 10 ⁻¹²
Proguanil	325.1 ± 44.0	3.15 x 10 ⁻⁴

^a Values calculated at 760 Torr (1013.24 mbar), ^b Calculated at 25 ° C The values were obtained from <u>https://scifinder.cas.org/scifinder</u>, and were calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994-2017 ACD/Labs).

Figure S 4: ESI(+)-MS/MS spectra of the ammonium adduct of artemether ($C_{16}H_{26}O_5$) (A) at *m*/*z* 316, and the protonated molecular ion of lumefantrine ($C_{30}H_{32}Cl_3NO$) (B) at *m*/*z* 528 with, ³⁵Cl₃ and (C) at *m*/*z* 530, with ³⁵Cl₂ ³⁷Cl.

Scan parameters		
Mass range	100 - 420	
Scan duration (sec)	3.00	
Inter scan delay (sec)	0.15	
Ionization mode	ESI+	
Data type	Accurate mass	
ESI source		
Capillary voltage (V)	3.00	
Cone voltage (V)	15.0	
Extractor voltage (V)	5.0	
RF lens voltage (V)	5.0	
Source block temp. (°C)	100	
Desolvation temp (°C)	400	
Analyser vacuum (mBar)	6.8 x 10 ⁻⁶	
Gas cell vacuum (mBar)	2.0 x 10 ⁻⁵	
Nebulizer gas flow (L/hr)	68.0	
Desolvation gas flow (L/hr)	636.0	

Table S 5: Liquid chromatography triple quadrupole mass spectrometry (LC-QQQ-MS) parameters applied for the screening of artemether from Coartem drug tablet.

Scan parameters		
Mass range	200 - 600	
Scan duration (sec)	3.00	
Inter scan delay (sec)	0.15	
Ionization mode	ESI+	
Data type	Accurate mass	
ESI source		
Capillary voltage (V)	3.00	
Cone voltage (V)	60.0	
Extractor voltage (V)	5.0	
RF lens voltage (V)	5.0	
Source block temp. (°C)	100	
Desolvation temp (°C)	400	
Analyser vacuum (mBar)	6.8 x 10 ⁻⁶	
Gas cell vacuum (mBar)	2.0 x 10 ⁻⁵	
Nebulizer gas flow (L/hr)	68.0	
Desolvation gas flow (L/hr)	636.0	

Table S 6: LC-QQQ-MS parameters used for the screening of lumefantrine from Coartem drug tablet.