Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2019

- 1 Electronic supplementary information (ESI)
- 2

³ Using castor oil to separate microplastics from four

4 different environmental matrices

5

6 Thomas Mani,¹ Stefan Frehland,¹ Andreas Kalberer,¹ and Patricia Burkhardt-Holm^{*1}

7

- 8 ¹The Man-Society-Environment Program, Department of Environmental Sciences, University
- 9 of Basel, Vesalgasse 1, 4051 Basel, Switzerland
- 10 *Corresponding author:
- 11 Patricia Burkhardt-Holm, patricia.holm@unibas.ch

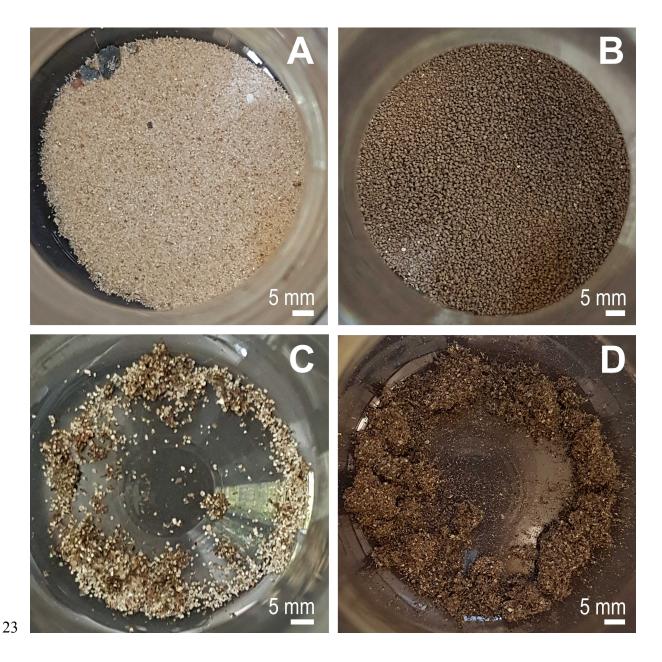
12

13 Content Summary: fourteen pages, seven tables, thirteen figures

15 MATERIALS AND INSTRUMENTS

- 16 **Table S1** Details of materials and instruments used in the protocol, as mentioned in section 2.
- 17 Materials and Methods in their respective order of occurrence.

Material / Instrument	Details
Neuston net mesh	0.3 mm mesh cods, attached to a metal and
	bamboo construction.
Geological sieves	1.0, 0.5, 0.3 mm; Retsch, Haan, Germany
Incubator for drying samples at 40 °C	BINDER BD 115, Tuttlingen, Germany
Scales for weighing samples to nearest mg	Mettler Toledo XS 105 DualRange, Columbo
	OH, USA
Heated laboratory stirrer	Schott laboratory stirrer SLR, Mainz, Germany
Grinder for polymer fragmentation	Merlin 123 household grinder, WS-Teleshop,
	Neudorf, Austria
Stereomicroscope	Olympus SZ61, Tokyo, Japan
Fourier-Transform Infrared Spectrometer (FT-	Bruker ALPHA, platinum Diamond-ATR
IR)	QuickSnap Sampling Module, Bruker, Billerica,
	MA, USA
Software Opus 7.5	Bruker, Billerica, Massachusetts, USA; B-
	KIMW ATR-IR Polymers, Plastics and
	Additives, 898 entries, library is available upon
	request
Castor oil	Cold pressed, organic, lot-no.: 1703A0138,
	Armonia GmbH, Azmoos, Switzerland
	https://www.armonia-shop.ch/online-
	shop/basis%C3%B6le-1/
Separation funnel	Lenz, Sqibb-F., grad., 2000 mL, PTFE-cock NS
	18,8; ground joint NS 29/32
Filter paper	Hahnemühle DP 1505 110, pore size: 25 µm,
	diameter: 11 cm, Dassel, Germany
Labware detergent	Mucasol universal detergent, Schülke,
	Norderstedt, Germany
Hydrogen peroxide, H ₂ O ₂ (30%)	Sigma-Aldrich, St. Louis, MO, USA


19 ENVIRONMENTAL MATRICES SEPARATED WITH THE OIL SEPARATION

20 PROTOCOL

Name	Sample description	sampling location	date	figure
MBS	Clastic sediment, consisting	36°00'42.8"N, 5°36'31.3"W,	09/2017	S1 (A)
Marine Beach	mainly of quartz; low organic	Atlantic, Tarifa, Andalusia,		
Sediment	content (< 1%)	Spain		
AS Agricultural Soil	Agricultural soil	47°31'57.6"N, 7°36'53.5"E, Münchenstein, canton of Basel Country, Switzerland	10/2017	S1 (B)
MSS Marine Suspended Surface Solids	Suspended surface solids; mainly algae and fine sand	36°00'40.9"N, 5°35'41.7"W, Mediterranean, Tarifa, Andalusia, Spain	09/2017	S1 (C)
FSS Fluvial	Suspended surface solids; 90% organic biogenic content	47°32'26.3"N, 7°36'59.3"E, Saint-Albanteich, Basel,	01/2018	S1 (D)
Suspended Surface Solids		canton of Basel-City, Switzerland		
FSS(n=5) for	Suspended surface solids; 90%	1. 47°30'16.8"N	08/2016	No
calibration of	organic biogenic content	8°14'14.0"E, 86.3		fotos
MOSeS with		m ³ , Limmat River,		
environmental		Untersiggenthal,		
microplastics		canton of Aargau,		
		Switzerland		

21 Table S2 Basic Characteristics of the Four Environmental Matrices

	2.	47°33'19.6"N,	09/2016
		7°35'54.8"E, 94.4	
		m ³ , Rhine River,	
		Basel, canton of	
		Basel-City,	
		Switzerland	
	3.	47°33'25.9"N,	09/2016
		7°36'27.8"E, 85.6	
		m ³ , Rhine River,	
		Basel, canton of	
		Basel-City,	
		Switzerland	
	4.	50°37'47.0"N,	09/2016
		7°12'47.1"E, 70.3	
		m ³ , Rhine River, Bad	
		Honnef, North	
		Rhine-Westphalia,	
		Germany	
	5.	51°45'22.6"N,	09/2016
		6°24'06.7"E, 84.7	
		m ³ , Rhine River,	
		Rees, North Rhine-	
		Westphalia,	
		Germany	
		5	

- 24 Fig S1 Environmental matrix samples before performing the oil separation protocol. (A)
- 25 Marine beach sediment (MBS), (B) agricultural soil (AS, 10 g each) and (C) marine
- 26 suspended surface solids (MSS), (D) fluvial suspended surface solids (FSS, 1 g each).

SCHEMATIC DIAGRAM FOR THE OIL SEPARATION PROTOCOL 27

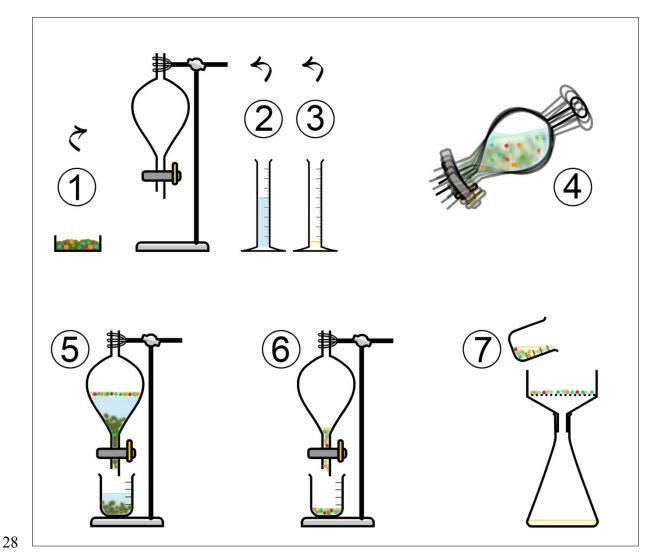


Fig S2 Castor oil separation protocol depicted in seven steps: add environmental sample (1) 29 30 and 100 mL of aq. dest. water (2) to the separation funnel and make sure to wet the entire sample. Next, add 10 mL of Castor oil (3) to the separation funnel. Seal and shake the separation funnel for 1 min (4). Let the mixture separate and release lower, aqueous and solid phase (5). Release oil phase to different container (6) and filter oil phase for the recovery of microplastics (7). Diagram was constructed using the CHEMIX School software v2.8.1 (Arne 34

Standnes, Bergen, Norway). 35

36

31

32

37 PLASTIC SPIKE RECOVERY AND ENVIRONMENTAL MATRIX REDUCTION

38 Table S3 Petrochemical Polymer Spike Recovery Rates and Environmental Matrix Reduction

		Recovery rate for reference polymer particles								
ental		Small particles (0.3–0.5 mm)			Large particles (0.5–1 mm)			ental		
onm	ate	PP	PS	PMMA	PET-G	PP	PS	PMMA	PET-G	onm x dw tion
Environmental matrix	replicate	(<i>n</i> = 15)	(<i>n</i> = 15)	(<i>n</i> = 15)	(<i>n</i> = 15)	(<i>n</i> = 10)	Environmental matrix dw reduction			
	1	100%	100%	100%	100%	100%	100%	100%	100%	94%
S	2	100%	100%	100%	100%	100%	100%	100%	100%	95%
MSS	3	100%	93%	100%	100%	100%	100%	100%	100%	93%
	4	100%	100%	100%	93%	100%	100%	100%	100%	93%
	1	100%	100%	100%	100%	100%	100%	100%	100%	92%
<i>s</i>	2	100%	100%	100%	93%	100%	100%	100%	100%	93%
FSS	3	100%	93%	93%	87%	100%	100%	100%	100%	92%
	4	100%	100%	100%	93%	100%	100%	100%	100%	85%
	1	100%	93%	87%	87%	100%	100%	100%	100%	96%
S	2	100%	100%	100%	100%	100%	100%	100%	100%	98%
MBS	3	100%	93%	100%	100%	90%	100%	100%	90%	96%
	4	93%	93%	93%	87%	100%	100%	100%	90%	96%
	1	100%	100%	100%	100%	100%	100%	100%	100%	97%
	2	100%	100%	100%	100%	100%	100%	100%	100%	99%
AS	3	100%	100%	100%	100%	100%	100%	100%	100%	98%
	4	87%	100%	87%	100%	100%	100%	100%	100%	98%

39 Rates for All Experiment Replicates (n = 4 for each Matrix)

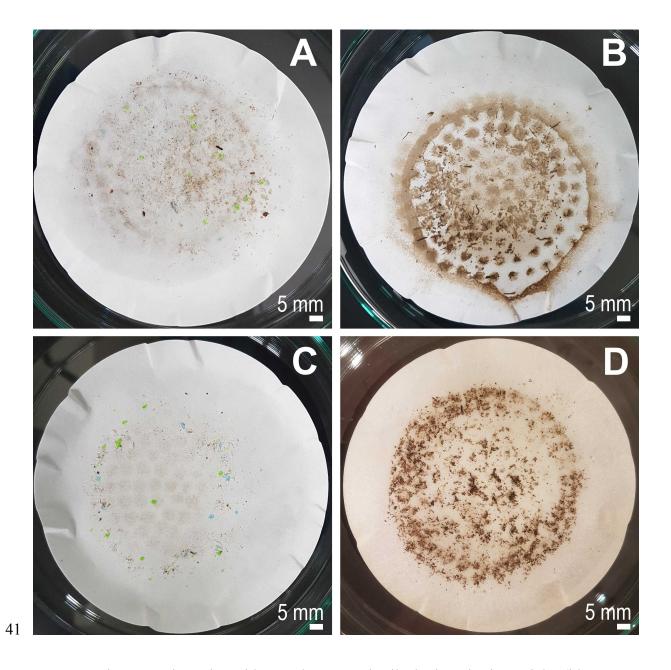


Fig S3 Environmental matrix residues and recovered spiked microplastic particles (blue: PS,
green: PET-G; size range: 0.3–1 mm, visible in panels A and C) on cotton/cellulose filter
paper (Hahnemuehle DP 1505 110, pore size: 25 μm, diameter: 11 cm, Dassel, Germany)
after performing the MOSeS protocol. (A) Marine beach sediment (MBS), (B) agricultural
soil (AS), (C) marine suspended surface solids (MSS) and (D) fluvial suspended surface
solids (FSS).

49 MICROPLASTICS IN FIVE NON-SPIKED FSS SAMPLES

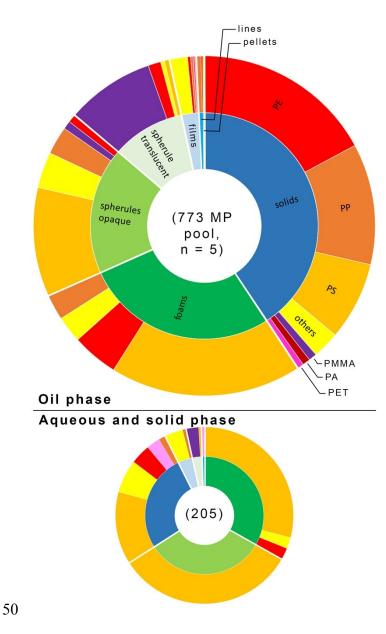


Fig S4 Relative proportions of microplastic (MP) categories (inner ring) and polymer types 51 52 (outer ring) retrieved from the oil (above) and the aqueous and solid phases (below), respectively. The two diagrams together represent the pooled amount of MP from five Rhine 53 River surface samples. After oil separation the five upper oil phases combined contained 773 54 (79.1%) and the lower aqueous and solid phases contained 205 (20.9%) of the total 978 55 (100%) MP particles from all five samples. The two inner rings, representing the relative 56 57 shares of MP categories, are scaled in percental proportion to each other by surface area according to number of particles. 58

59 MICROPLASTIC PARTICLES FOR SPIKING

60 Table S4 Basic Characteristics of the Polypropylene (PP) used for Spiking

Polymer/Density	Product	Retailer	Fragmentation method (0.3–0.5; 0.5–1.0 mm)
Polypropylene (PP),	Kitchen strainer RONDO 32.5 cm red	Rotho Kunststoff	Coffee grinder (Merlin 123 household grinder, WS-
0.84 g cm ⁻³	https://www.rothoshop.de/Kueche/Sieb-RONDO-32-	AG, Würenlingen,	Teleshop, Neudorf, Austria), geological sieves (1 mm,
	5-cm.html, accessed on 05.06.18	Switzerland	0.5 mm and 0.3 mm, Retsch, Haan, Germany)

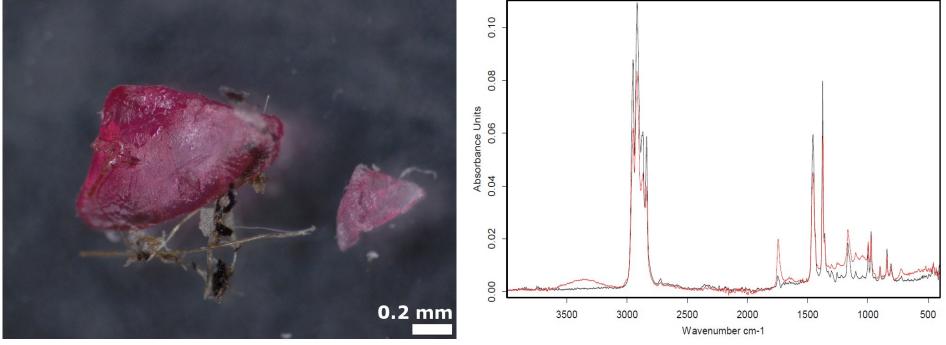


Fig S5 Large (left) and small (right) PP particles after recovery

Fig S6 FT-IR Spectrum of PP before (black) and after (red) separation using the MoSeS protocol (Bruker ALPHA, Billerica, MA, USA)

62 **Table S5** Basic Characteristics of the Polystyrene (PS) used for Spiking

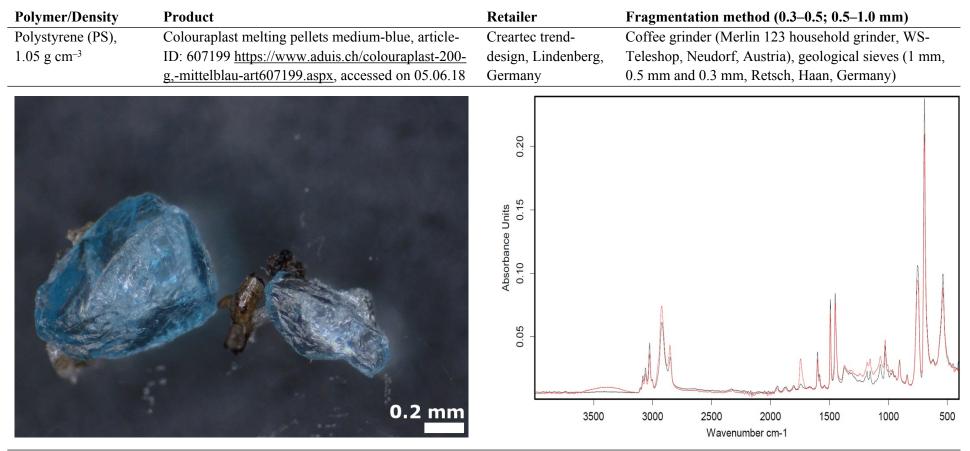


Fig S7 Large (left) and small (right) PS particles after recovery

Fig S8 FT-IR Spectrum of PS before (black) and after (red) separation using the MoSeS protocol (Bruker ALPHA, Billerica, MA, USA)

64 Table S6 Basic Characteristics of the Polymethyl Methacrylate (PMMA) used for Spiking

Polymer/Density	Product	Retailer	Fragmentation method (0.3–0.5; 0.5–1.0 mm)
Polymethyl	Acrylic glass sheet (3 mm) Evonik, article-ID:	Modulor Material	coffee grinder (Merlin 123 household grinder, WS-
methacrylate	3000813 https://www.modulor.de/plexiglas-gs-	Total, Berlin,	Teleshop, Neudorf, Austria), geological sieves (1 mm,
(PMMA),	farbig-3-mm-3-0-x-120-x-250-mm-orange-	Germany	0.5 mm and 0.3 mm, Retsch, Haan, Germany)
1.19 g cm ⁻³	transparent-2c04.html, accessed on 05.06.18		
	0.2 mm	Absorbance Units Absorbance Units 0.0 0.1 0.2 0.3 0.4 	3000 2500 2000 1500 1000 500 Wavenumber cm-1

Fig S9 Large (right) and small (left) PMMA particles after recovery

Fig S10 FT-IR Spectrum of PMMA before (black) and after (red) separation using the MoSeS protocol (Bruker ALPHA, Billerica, MA, USA)

66 Table S7 Basic Characteristics of the Polyethylene Glycol-Modified (PET-G) used for Spiking

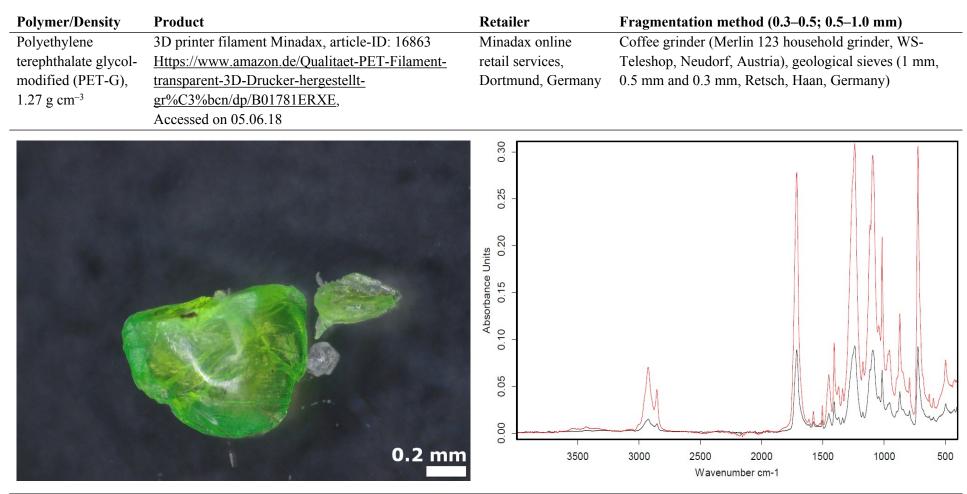
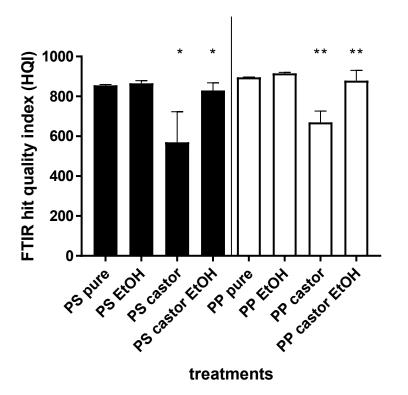



Fig S11 Large (left) and small (right) PET-G particles after recovery

Fig S12 FT-IR Spectrum of PET-G before (black) and after (red) separation using the MoSeS protocol

castor oil FTIR interference (n = 3)

69

70 Fig S13 Comparison of ATR-FTIR hit quality indices for four treatments of PS and PP virgin

71 microplastics (0.5–1.2 mm, longest axis) using unpaired t tests. Columns marked with

72 asterisks indicate significant differences between the treatments of interest (castor oil removal

vising EtOH; * = p<0.05, ** = p<0.01). HQI>700 is regarded as a reliable level for confirming

74 synthetic poylmers^{1 2}.

75 **References**

- 76 1 R. C. Thompson, Y. Olsen, R. P. Mitchell, A. Davis, S. J. Rowland, A. W. G. John, D.
- 77 McGonigle and A. E. Russell, *Science (New York, N.Y.)*, 2004, **304**, 838.
- 78 2 R. W. Obbard, S. Sadri, Y. Q. Wong, A. A. Khitun, I. Baker and R. C. Thompson, Earth's
- 79 *Future*, 2014, **2**, 315–320.