Electronic Supplementary Information (ESI †)

For

A highly selective ICT-based fluorescent probe for cysteine sensing and its application in living cells imaging

Srimanta Manna,^a Parthasarathi Karmakar,^a Syed Samim Ali,^a Uday Narayan Guria,^a Sandip kumar Samanta,^a Ripon Sarkar,^b Pallab Datta^b and Ajit Kumar Mahapatra ^{*a}

^a Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah – 711103, India.

^b Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India.

*Corresponding author. Fax: +91 33 26684564; Tel: +91 33 2668 4561;

E-mail: <u>mahapatra574@gmail.com</u> (A. K. Mahapatra)

Table of Contents

	Description	page
1.	Synthesis and characterization	2
2.	Analytical data of compounds and intermediates	2-12
3.	Calculation for detection limit	12-13
4.	UV-vis and Emission spectra of BPQ2	13
5.	¹ H-NMR titration of BPQ1	14
6.	Competitive Experiments of BPQ1	14-15
7.	Kinetic studies	15-16
8.	Cell study of BPQ1	16-17
9.	Computational studies	17-18
10	Similar type fluorescence based probes for the detection of biothiols (Table 1)	18-20

Reagent & condition: (i) Ac₂O, DMAP, DIPEA, DCM, 2h, rt, 93% ; (ii) POCl₃, DMF, 110 °C, 2.5h, 59.8%; (iii) phenyl boronic acid, Pd(PPh₃)₂Cl₂, 2M Na₂CO₃, DME, 90 °C, overnight, 75.6%; (iv) 2-Aminothiophenol, KHSO₄, reflux, 12h, 57%; (v) Na₂S, NMP, 140 °C, overnight, 62%; (vi) Acryolyl chloride, Et₃N, DCM, 5h, 43%; (vii) 4-Hydroxy phenyl boronic acid, Pd(PPh₃)₂Cl₂, 2M Na₂CO₃, DME, 90 °C, overnight, 79% ; (viii) 2-Aminothiophenol, KHSO₄, reflux, overnight, 54%; (ix) Acryolyl chloride, Et₃N, DCM, 5h, 46%.

Analytical data of compounds and intermediates

Fig. S1: ¹H NMR of compound 2 in DMSO-d₆.

Fig. S2: ESI-MS of compound 2

Fig. S3: ¹H NMR of compound 3 in CDCl₃

Fig. S4: ESI-MS of compound 3

Fig. S5: ¹H NMR of compound 4 in CDCl₃

Fig. S6: ESI-MS of compound 4

Fig. S7: ¹H NMR of compound 5 in CDCl₃

Fig. S8: ESI-MS of Compound 5

Fig. S9: ¹H NMR of compound **6** in DMSO-d₆

Fig. S10: ESI-MS of Compound 6

Fig. S11: ¹H NMR of probe BPQ1 in CDCl₃

Fig. S12: ESI-MS of probe BPQ1

Fig. S13: ¹³C NMR spectra of BPQ1 in CDCl₃

Fig. S14: ¹H NMR of compound 7 in DMSO-d₆

Fig. S15: ESI-MS of Compound 7

Fig. S16: ¹H NMR of compound **8** in DMSO-d₆

Fig. S17: ESI-MS of Compound 8

Fig. S18: ¹H NMR of probe BPQ2 in CDCl₃

Fig. S19: ESI-MS of probe BPQ2

Calculations for detection limit:

The detection limit (DL) of Probe **BPQ1** was determined from the following equation: DL = K* Sb1/S

Where K = 2 or 3 (we take 2 in this case); Sb1 is the standard deviation of the blank solution;

S is the slope of the calibration curve.

From graph Sb1=3.80209, S=1.60535 x 10⁸

Detection limit = 2 x $3.80209/1.60535 \times 10^8 = 4.7 \times 10^{-8} = 0.047 \text{ ppm} = 47 \text{ ppb}.$

Fig. S20. Calibration curve for Fluorescence titration of BPQ1 at 506 nm with Cys.

Fig. S21. (a) UV-vis spectra of **BPQ2** (10 μ M) in DMSO: H₂O (7:3, v/v) using 10 mM buffer pH 7.4 in presence of Cys (0-100 μ M); (b)Emission spectra changes of **BPQ2** (10 μ M) in aqueous DMSO (7:3, v/v, 10 mM HEPES Buffer pH 7.4) upon addition of Cys (0-1.25 equiv)

with excitation at 400 nm. Attach photos are the photographs of the solution of **BPQ2** in the absence (left) and presence of Cys (right) for both (a & b).

Fig. S22. BPQ1 showed the signals of the acryloyl protons of 3 appear at 6.64, 6.52 and 6.23 ppm in DMSO-d₆ as solvent. Upon addition of Cys to **BPQ1** (1:1) in DMSO-d₆, these 3 protons disappeared and a new peak appeared at around 10.65 ppm corresponding to phenolic moiety of 6 was distinctly observed and showed lactam moiety as byproduct.

Fig. S23 (b) Fluorescence selectivity of the probe **BPQ1** (10 μ M) to Cys in the absence and presence of various amino acids (100 μ M) in aqueous DMSO (DMSO: H₂O = 7:3, v/v, 10 mM HEPES buffer, pH = 7.4). The black bars represent the emission changes of **BPQ1** in the presence of other amino acids (all were 100 μ M). The green bars represent the emission changes of **BPQ1** with Cys in the presence of other amino acids. Various amino acids including: 0-Blank, 1- Ala, 2- Glu, 3- Arg, 4- Hcy, 5- GSH, 6- Lys, 7- Asp, 8- Gly, 9- Leu, 10- Tyr, 11- His, 12- Trp, 13- Ile, 14- Thr, 15- Phe, 16- Pro, 17- Met, 18-Val. The intensities were recorded at 506 nm.

Fig. S24 Photograph taken in presence of various aminoacids in day light (top) and uv lamp (bottom) of **BPQ1** (10 μ M) in DMSO: H₂O (7:3, 10 mM HEPES Buffer pH 7.4) in presence of Cys (100 μ M). From 0-19: blank, Ala, Glu, Arg, Cys, Hcy, GSH, Lys, Asp, Gly, Leu, Tyr, His, Trp, Ile, Thr, Phe, Pro, Met and val.

Kinetic Studies:

Fig. S25 Pseudo first-order kinetic plot of reaction of **BPQ1** (10 μ M) with Cys (100 equiv.), slope=-0.17433 min⁻¹ (b) Kinetic plot of **BPQ1** with 25 equiv. Cys (c) Kinetic plot of **BPQ1** with 50 equiv. Cys (d) Kinetic plot of **BPQ1** with 80 equiv. Cys in DMSO: H₂O (7:3, 10 mM HEPES Buffer, pH 7.4)

The second-order rate constant for this reaction is thus the slope of a linear plot of k[/] versus the concentration of Cys (Fig.26): $k = 29.76171 \text{ M}^{-1} \text{ min}^{-1}$

Fig. S26 Plot of the observed k' versus the concentration of Cys for the pseudo first-order reaction of BPQ1 (10 μ M) with varying concentration of Cys (10-150 Eq). Slope = 29.76171 M⁻¹ min⁻¹

Cell viability assay:

To determine the cell viability, MG-63 cells were treated with 10 μ M probe **BPQ1** for 1 h followed by 1 h treatment with 100 μ M Cys as described previously. After treatment, cell viability was measure using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) solution as per manufacturer protocol (Himedia Laboratories, India).

Cytotoxic effect of **BPQ1** and Cys was determined by cell viability assay. The standard MTT assays revealed that **BPQ1** as well as Cys had low cytotoxic effect on MG-63 cells (Fig. S27). The cell viability were 84.41%, 75.42%, 65.23%, 61.23% and 51.52% for 10 mM, 20 mM, 30

mM, 40 mM and 50 mM respectively. This result revealed that either **BPQ1** or both **BPQ1** and Cys were less cytotoxic effect to the living cells.

Fig. S27 Cell viability assay of MG63 cells to observe the cytotoxic effect of BPQ1 and Cysteine.

Computational studies:

Table S1: Selected electronic excitation energies (eV), oscillator strengths (f) and main configurations of **BPQ1** and **BPQ1+Cys**. The data were calculated by TDDFT//B3LYP/6-311+G (d,p) based on the optimized ground state geometries.[a] Only selected excited states were considered. The numbers in parentheses are the excitation energy in wavelength. [b] Oscillator strength. [c] H stands for HOMO and L stands for LUMO

Molecules	Excitation Energy ^a	f ^b	Composition ^c	(composition) %
BPQ1	3.6750 eV 337.37 nm	0.3388	$H \rightarrow L$	62.9
	4.3062 eV 287.92 nm	0.1532	H -2→ L+1	58.48
BPQ1+Cys	3.8929eV 401.49 nm	0.1917	$H \rightarrow L$	65.51
	4.1252V 339.55 nm	0.1054	$H \rightarrow L+1$	51.76

Table S2: Energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of **BPQ1** and **BPQ1 + Cys.**

Species	E _{HOMO} (a.u)	E _{LUMO} (a.u)	ΔE(a.u)	ΔE(eV)	∆E(kcal/mol)
BPQ1	-0.29381	-0.07501	0.2188	5.953	137.29
BPQ1+Cys	-0.22247	-0.06865	0.1538	4.184	96.50

Table-1 (Comparison of this work with some reported Cys probes)

	Probe	Fluorescence enhancement (fold)	Detection limit (µM)	Reaction time (mins)	Analyte	Strokes shift (nm)	Ref
1	Ex=410 nm, Em=506 nm	992	0.047	12	Cys	96	This work

2	F ₂ B N N Ex=480 nm, Em=517 nm	23	0.05	5	Cys	37	[1]
3	NC $(Ex=550 \text{ nm}, Em=610 \text{ nm})$	NA	0.3	10	Cys	60	[2]
4	NC CN (Ex=557nm,Em=673 nm)	NA	0.16	20	Cys	116	[3]
5	(Ex=574nm,Em=675 nm)	60	0.2	10	Cys Hcy GSH	101	[4]
6	0 (Ex=458nm,Em=498 nm)	NA	0.012	10	Cys Hcy GSH	40	[5]

7	0 0 0 0 0 0 0 0 0 0 0 0 0 0	10	0.120	3	Cys	33	[6]
8	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	4	NA	25	Cys	185	[7]
9	(Ex=452nm,Em=547 nm)	60	1.8	7	Cys Hcy	95	[8]

Fig. S28 (a) Fluorescence intensity changes of **BPQ1** (10 μ M) using aqueous DMSO (7:3, v/v, 10 mM HEPES Buffer pH 7.4) upon addition of Glutathione (0-200 μ M) with excitation at 410 nm.

References

[1] Y.-J. Fu, Z. Li, C.-Y. Li, Y.-F. Li, P. Wu and Z.-H. Wen, *Dyes and Pigments*, 2017, **139**, 381-387.

[2] J.-T. Hou, J. Yang, K. Li, K. K. Yu and X.-Qi. Yu, Sensors and Actuators B, 2015, 214, 92–100.

[3]Y. Yu, H. Xu, W. Zhang, Q. Han, B. Wang and Y. Jiang, *J. Photochem. Photobiol. A. Chem.*, 2017, **346**, 215-220.

[4] S. Feng, Y. Fang, W. Feng, Q. Xia and G. Feng, Dyes and Pigments, 2017, 146, 103-111.

[5] Q. Zhang, D. Yu, S. Ding and Guoqiang Feng, Chem. Commun., 2014, 50, 14002-14005.

[6] S. Manna, P. Karmakar, S. S. Ali, U. N. Guria, R. Sarkar, P. Datta, D. Mandal and A. K. Mahapatra, *New J. Chem.*, 2018, **42**, 4951-4958.

[7] G. Liu, D. Liu, X. Han, X. Sheng, Z. Xu, S. Hua Liu and L. Zeng, J. Yin., *Talanta*, 2017, **170**, 406–412.

[8] J. Shi, Y. Wang, X. Tang, W. Liu, H. Jiang, W. Dou and W. Liu, Dyes and Pigments, 2014, **100**, 255–260.