Electronic Supplementary Information

Robust Epidermal Tattoo Electrode Platform for Skin Physiology Monitoring

Keana De Guzman,^a Ghayadah Al-Kharusi,^b Tanya Levingstone^b and Aoife Morrin^{*a}

a. Insight Centre for Data Analytics, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland

^{b.} Centre for Medical Engineering Research (MEDeng), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland

S1. Images of the porous adhesive films used in the tattoo platforms. (a) 7 pores, (b) 27 pores, (c) 31 pores, and (d) 46 pores. Pore diameter: 1.2 mm.

S2.(a) Schematic of the experimental set-up using the tattoo electrodes. (b) Example of wristband connection using spring loaded pins to electrically contact the electrodes.

S3. Average surface height (ASH) measurements of tattoo electrodes over a lateral dimension of 500 μ m using a Dektak XT profilometer. The thickness of the electrodes printed from the silver inks was calculated to 11.64 ± 1.55 μ m (n=4) and for the electrodes printed from the silver-elastomer inks was 11.20 ± 1.63 μ m (n=4).

S4. Representative Nyquist plot of the inner forearm as measured by the silver-elastomer tattoo platform in Adhesive contact mode.

S5. Images of tattoo platforms upon stretching on skin whereby tattoo platform comprised: (a) silver electrodes (Direct contact), (b) silver-elastomer electrodes (Direct contact), (c) silver electrodes (Adhesive (27 pore) contact) and (d) silver-elastomer electrodes (Adhesive (27 pore) contact).

S6. Stress-strain responses for the different tattoo platforms.