Electronic Supplementary information

Development of Highly Selective Potentiometric Thorium (IV) Ion-selective Electrode: Exploration Supported with Optical and DFT Analysis

R. Selvakumar^a, S.K. Ashok Kumar^{a*}, Kari Vijayakrishna^{a,d}, AkellaSivaramakrishna^a, C.V.S. BrahmmanandaRao^b, N. Sivaraman^b, and Suban K. Sahoo^c.

^a Department of Chemistry, School of Advanced Sciences, VIT University, Vellore-632014, Tamil Nadu, India. E-mail:ashokkumar.sk@vit.ac.in; ashok312002@gmail.com

^b Indira Gandhi Centre for Atomic Research, HomiBhabha National Institute, Kalpakkam-603102, Tamil Nadu, India.

° Department of Applied Chemistry, S. V. National Institute Technology, Surat-395007, Gujarat, India

^d School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Arugul, Khurda, Odisha, India-752050 India

ESI Captions

Figure 1S: ¹H NMR of HQ-Al

Figure 2S: ¹³C NMR of HQ-Al

Figure 3S: Mass spectra of HQ-Al

Figure 4S: ¹H NMR of HQ-OH

Figure 5S: ¹³C NMR of HQ-OH

Figure 6S: Mass spectra of HQ-OH

Figure 7S: ¹H NMR of HQ-MeCl

Figure 8S: ¹³C NMR of HQ-MeCl

Figure 9S: Mass spectra of HQ-MeCl

Figure 10S: FT-IR spectra of L

Figure 11S: ¹H NMR spectra of L

Figure 12S: ³¹P NMR spectra of L

Figure 13S: ¹³C NMR spectra of L

Figure 14S: DEPT-135 NMR spectra of L

Figure 15S: HR-MS of L

Figure 16S. TDDFT based excitation spectra of L and L₂Th⁴⁺

Figure 17S: Potentiometric titration plot represented using Gran's method

Table 1S. Comparison of experimental and theoretical UV-Vis spectral characteristics**Table 2S.** Analytical performance of ISE-10

Table 3S. Assessment of present Th⁴⁺-ISE with previously reported work.

Figure 1S: ¹H NMR of HQ-Al

Figure 3S: Mass spectra of HQ-Al

Figure 5S: ¹³C NMR of HQ-OH

Figure 7S: ¹H NMR of HQ-MeCl

Figure 8S: ¹³C NMR of HQ-MeCl

Figure 9S: Mass spectra of HQ-MeCl

Figure 10S: FT-IR spectra of L

Figure 11S: ¹H NMR spectra of L

Figure 12S: ³¹P NMR spectra of L

Figure 13S: ¹³C NMR spectra of L

Figure 16S. TDDFT based excitation spectra of L and L₂Th⁴⁺

Figure 17S: Potentiometric titration plot represented using Gran's method

Ligand and its complex	Exp	erimental	Theoretical					
	λ_{max} (nm)	ε (L M ⁻¹ cm ⁻¹)	Excitation energy (nm)	Oscillator strength	Excited state	Key transitions		
L	245	10850	242.15	0.6495	$S0 \rightarrow S5$	$\begin{array}{c} \text{H-1} \to \text{L} \ (37\%), \\ \text{H} \to \text{L+2} \ (19\%), \\ \text{H} \to \text{L+3} \ (10\%), \end{array}$		
	310	540	341.34	0.0298	$S0 \rightarrow S1$	$H \rightarrow L (96\%)$		
L ₂ Th ⁴⁺	260	5539	249.5 248.53	0.2493 0.2377	$\begin{array}{c} So \rightarrow S25\\ So \rightarrow S26 \end{array}$	$H-3 \rightarrow L (20\%), H \rightarrow L+11 (20\%)$		
	370	290	392.38	0.0699	$S0 \rightarrow S1$	$H \rightarrow L (43\%),$ $H \rightarrow L+1 (28\%)$ $H-1 \rightarrow L+1 (20\%)$		

Table 1S. Comparison of experimental and theoretical UV-Vis spectral characteristics

Samula	Thorium (IV) content (mg/L)					Deviation	Error	T-test	P value	95%CI
Sample	Added	R1	R2	R3	Mean	(SD)	(SE)		from t test	
Tap water	50	48.75	48.24	49.45	48.81	0.6074	0.3507	-3.3834	0.07735	[47.3042, 50.3224]
well water	50	47.65	48.57	46.57	47.60	1.0010	0.5779	-4.1583	0.05326	[45.1098, 50.0834]
DD water	50	49.52	49.14	49.57	49.41	0.23515	0.1357	-4.3456	0.04909	[48.8258, 49.9941]
Monazite sand	86.2	84.56	83.98	85.35	84.63	0.6876	0.3970	-3.9544	0.0584	[82.9217, 86.3382]
Gas mantle sample	24.1	21.58	23.45	23.89	22.97	1.2265	0.7081	-1.591	0.25626	[19.9264, 26.0202]

 Table 2S.Analytical performance of ISE-10

S.No	Ionophore	Range (Mol) To 1x10 ⁻¹ M	Slope (mV)	Response time (s)	Detection Limit (Mol)	Life time	pH Range
1	p-tert- butylthiacalix[4]arene derivative[20]	8.0 x 10 ⁻⁸	14.9 ±0.6	7	8.0 x10 ⁻⁸	6	2.0-9.0
2	Thorium 8- hydroxyquinolate[21]	5.0 ×10-6	15.5 ±0.5	30	1.6 x10 ⁻⁶	2	3.0 - 5.0
3	Tin(IV) tungstoselenate Pyridine[22]	8.0 x 10 ⁻⁶	14.2 ± 1.0	15	6.0 x10 ⁻⁶	***	2.5 - 9.0
4	5,11,17,23-Tetra-tert- butyl-25,26,27,28-tetrakis (diphenylphosphinoylmeth oxy) calix[4]arene[23]	1.0 x 10 ⁻⁵	15.5 ±0.1	15	7.9 x10 ⁻⁶	6	2.3 - 4.0
5	dithio-tetraaza macrocyclic compound [24]	1.0 x 10 ⁻⁶	14.2 ± 0.3	10	8.0 ×10 ⁻⁷	5	3.5 - 9.5
6	2- (diphenylphosphorothioyl) -N',N'- diphenyl acetamide[25]	1.0 x 10 ⁻⁶	15.2 ± 0.5	30	6.3 x10 ⁻⁷	1.5	3.0-9.0
7	Aliquat-336[41]	3.0 x 10 ⁻⁵	-29.5 ± 0.3	40	1 x10 ⁻⁵	***	***
8	trioctylphosphine oxide [26]	1.0 x 10 ⁻⁶	-32.3 ±0.3	10	3.2 x10 ⁻⁶	2.4	2.5 - 4.5
9	thorium toluate [27]	1.0 x 10 ⁻⁶	-27.2 ± 0.2	10	4.1 x10 ⁻⁶	2.4	2.7 - 3.5
10	diphosphoryl- dicarboxylicacid-p-tert- butylcalix[4]arene [28]	2.0 x 10 ⁻⁷	13.9	10	9.0 x10 ⁻⁸	1.9	3.1 - 6.5
11	Bibutyl (8- hydroxyquinolin-2-yl) methyl phosphonate (<i>Present work</i>)	1 x 10 ⁻⁷	31.18 ±0.4	<5	1 x10 ⁻⁸	3	3.5 - 6.5

Table 3S.Assessment of present Th⁴⁺-ISE with previously reported work.