Support Information

4'-aminobenzo-18-crown-6 functionalized magnetic nanoparticles as a

solid-phase extraction adsorbent for determination of Pb²⁺

Jing-yan Kang ^{a,b}, Wei Ha^a, Hai-xia Zhang ^c, Yan-ping Shi^{a,*}

- ^a CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
- ^b University of Chinese Academy of Sciences, Beijing 100039, PR China
- ^c College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
- *Corresponding Author
- * shiyp@licp.cas.cn (Y.-P. Shi); Fax: +86-931 4968094; Tel: +86-931-4968208.

Table of content

Synthesis of 4'-aminobenzo-18-crown-6

4'-aminobenzo-18-crown-6 was synthesized by a catalytic hydrogenation reaction. 4'-nitrodibenzo-18-crown-6 (500 mg, 1.23 mmol) was dissolved in 30 mL methyl alcohol with stirring for 30 min. Then Pd/C catalyst (50 mg) disposed by methyl alcohol was added into the solution under stirring, the mixture solution was transferred into a glass tube of high pressure reactor and hydrogen filled into the reactor (0.5 MPa). The solution was filtered for removing the Pd/C catalyst off after stirring for 24 h, the filter liquor was gathered and methyl alcohol evaporated, the claybank, thick solution (4'-aminobenzo-18-crown-6) was obtained. ¹H NMR (400MHz, CDCl₃) δ : 6.74 (d, *J*=8.0Hz, 1H), 6.31 (m, 1H), 6.32-6.25 (dd, *J_I*=2.8Hz, *J₂*=8.4Hz,1H), 4.07-4.11 (m, 4H), 3.86-3.93 (m, 4H), 3.69-3.76 (m, 12H); ¹³C NMR (CDCl3) δ 105.2, 141.9, 117.2, 107.6, 103.0, 70.8, 70.7, 70.6, 70.4, 70.0, 69.7, 68.8. HRMS calcd for C₂₄H₁₈N₂O₆Na: 35.1571 [M+Na]⁺; found, 350.1574 [M+Na]⁺.

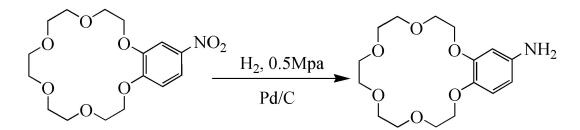
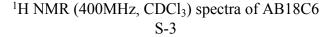
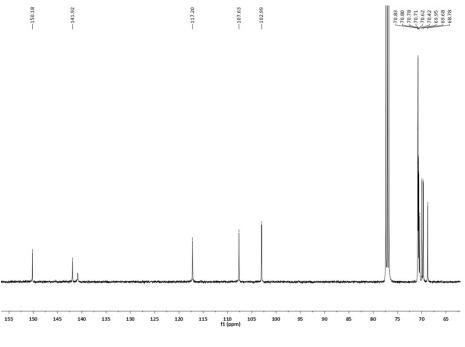
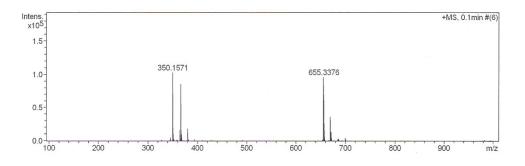




Fig. S1. Synthesis method of 4'-aminobenzo-18-crown-6


-7.270 6.731 6.731 6.6317 6.6317 6.6317 6.6317 6.6317 6.6317 6.6314 6.6314 6.6234 6.6234 6.6234 6.6233 6.6236 6.62

¹³C NMR (CDCl₃) spectra of AB18C6

High resolution mass spectrum on positive ion mode of AB18C6

Characterization of materials

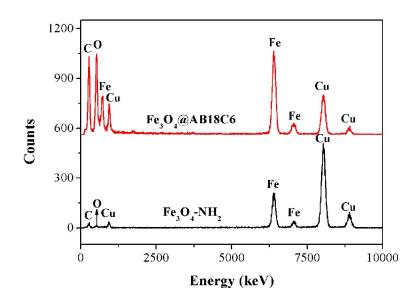


Fig.S2. EDS of Fe₃O₄-NH₂ and Fe₃O₄@AB18C6

Optimized of desorption conditions

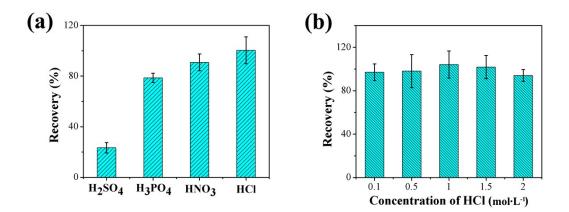


Fig.S3. Optimization of desorption condition (a) selection of desorption solvent (b) optimization of concentration of desorption solvent.

Reusing times detection

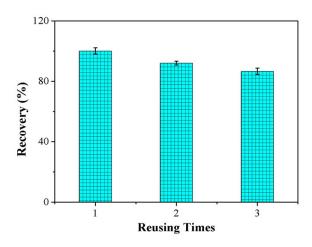


Fig.S4. Reusability of Fe₃O₄@AB18C6 in the MSPE extraction of Pb²⁺

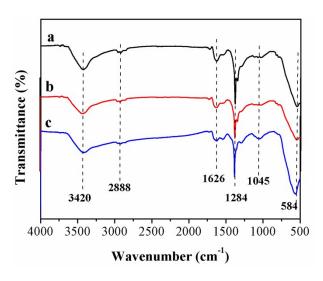


Fig.S5 FI-IR spectra of Fe $_3O_4$ @AB18C6 after reusing (a) one time (b) two times (c) three times

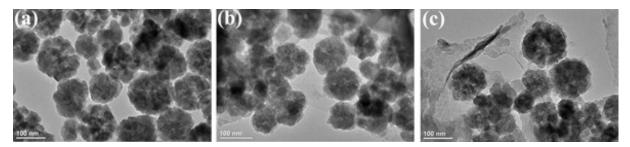


Fig.S6 TEM of Fe₃O₄@AB18C6 after reusing (a) one time (b) two times (c) three times

Method validation

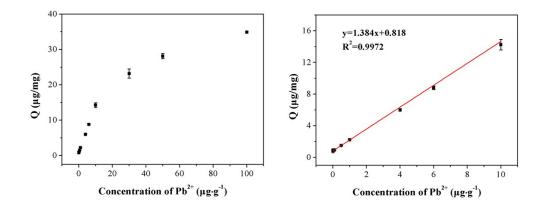


Fig.S7. Linear relation between concentration of Pb^{2+} and the absorption capacity of $Fe_3O_4@AB18C6$

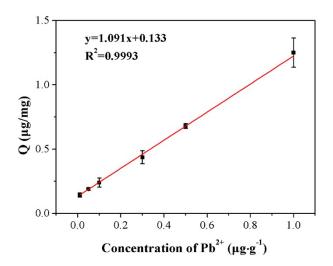


Fig.S8. Linear relation between concentration of Pb^{2+} and the absorption capacity of $Fe_3O_4@AB18C6$ in apple

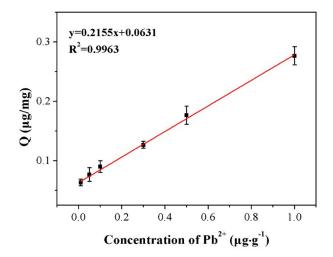


Fig.S9. Linear relation between concentration of Pb^{2+} and the absorption capacity of $Fe_3O_4@AB18C6$ in milk

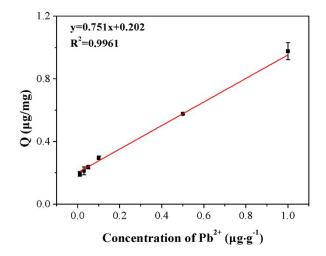


Fig.S10. Linear relation between concentration of Pb^{2+} and the absorption capacity of $Fe_3O_4@AB18C6$ in rice

Parameter	Apple	Milk	Rice
Linear equation	y= 1.091x+0.133	y=0.216x+0.063	y=0.751x+0.202
Linear rang (µg·g ⁻¹)	0.01-1	0.01-1	0.01-1
Correlation coefficients (R ²)	0.999	0.996	0.996
LOD $(ng \cdot g^{-1})$	5.29	80.1	13.3
$LOQ (ng \cdot g^{-1})$	15.8	240	39.9

Table S1 The relevant parameter of calibration curves by MSPE of Pb^{2+} in apple, milk and rice