Supplementary Information

Application of a novel diol-based porous organic polymers on the determination of trace level tetracyclines in water

Changzheng Cui¹, Zan Cao¹, Shenping Zhang², Yaru Hu¹, Lei Jiang³, Shijie Yao¹, Hui

Ye³, Yanbo Zhou¹, Jun Hu²*, Kuangfei Lin¹, Tian-Yang Zhang¹*

- 1. State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China, 200237.
- 2. School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China, 200237.
- 3. National Engineering Research Center of Urban Water Resources, Shanghai, China, 200082.

Fig. S1 A total ion chromatogram reflecting the effect of organic mobile phase on chromatographic separation (A) acetonitrile-water; (B) methanol-water; (C) formic acid: acetonitrile (0.1:99.9, v/v)- formic acid: water (0.1:99.9,v/v).Other parameters: flow rate: 0.4 mL·min⁻¹; injection volume: 10 μL.

Fig. S2 A total ion chromatogram reflecting the effect of injection volume chromatographic separation (A) 2 μ L; (B) 5 μ L; (C) 10 μ L. Other parameters: mobile phase, formic acid: acetonitrile (0.1:99.9, v/v) - formic acid :water (0.1:99.9, v/v); flow rate: 0.2 mL·min⁻¹

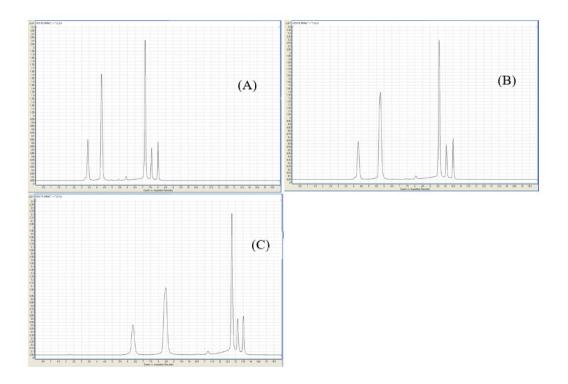


Fig. S3 A total ion chromatogram reflecting the effect of flow rate on chromatographic separation (a) 0.4 mL·min⁻¹; (b) 0.3 mL·min⁻¹; (c) 0.2 mL·min⁻¹.
Other parameters: mobile phase, formic acid: acetonitrile (0.1:99.9, v/v)- formic acid: water (0.1:99.9, v/v); injection volume: 10 μL.

Classification	antibiotics	time to market	Characterizations		
	chlortetracycline	1948	Natural broad-spectrum antibiotics containing		
First generation	oxytetracycline	1948	phenanthranes, widely used in infection caused		
			gram-positive and negative bacteria, intracellular		
	tetracycline	1953	mycoplasma, chlamydia and rickettsidia		
Second generation	demeclocycline	1965	modify the inactivated essential groups in natura tetracyclines to change their antimicrobial		
	metacycline	1965			
	doxycycline	1967	activity, chemical stability. These antibiotics are		
	minocycline	1972	more lipophilic and easier to absorb		
Third generation	tigecycline	2005	The d-ring of natural tetracyclines was replaced		
			by a variety of groups, such as glycyl,		
			dimethylamine and fluorine. This kind of structure		
			is very difficult to construct by the previous semi		
			synthetic method		

Table S1 Development of TCs and their properties

Compounds	pKa	Molecular form	MW (g/mol)	CAS number	Structure
TC	3.32/7.78/9.58	C22H24N2O8	480.90	64-75-5	$ \begin{array}{c} H \\ H $
СТС	3.33/7.55/9.33	C ₂₂ H ₂₃ ClN ₂ O ₈	478.88	57-62-5	CI HO CONH2
OTC	3.22/7.46/8.94	C22H24N2O9	460.44	2058-46-0	HIO OH
MTC	2.88/7.44	$C_{22}H_{22}N_2O_8$	442.42	914-00-1	$\begin{matrix} H \\ H $
DOC	3.52/7.75/9.57	$C_{22}H_{24}N_2O_8$	444.43	564-25-0	$ \begin{array}{c} H \\ H $

 Table S2 Target TCs and their properties