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ESI Table 1. Forward and reverse primers for qRT-PCR

Gene Forward primer Reverse primer

Gapdh GGCCATCCACAGTCTTCTG TCATCAGCAATGCCTCCTG

Oct4 CTGAGGGCCAGGCAGGAGCACGAG | CTGTAGGGAGGGCTTCGGGCACTT
Pax6 TCCATCAGTTCCAACGGAGAA GTGGAATTGGTTGGTAGACAC
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ESI Figure S1. '"H NMR of PEG-8-Nb in DMSO indication 92% functionality. The
functionality is based on the number of protons corresponding to norbornene normalized
to the PEG backbone. Expected integration for norbornene protons (2H, 6.20 to 5.86
ppm, A) The PEG backbone is calibrated to have protons (454 H, 3.65 to 3.40 ppm. B)
The calculated norbornene functionality is 1.83 divided by 2 equals 92%.
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ESI Figure S2. Single Quadruple Detector 2 (SQD2) (Waters; Milford, MA) mass
spectrometry of RGDS. Successful synthesis of the bioactive peptide ligand, CGRGDS-
amide, was confirmed by SQD2 mass spectrometry. Expected molecular weight of
592.63 g/mol. [M + H]" =593 g/mol. [M + 2H]" = 297 g/mol
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ESI Figure S3. SQD2 mass spectrometry of KKQRFRHRNRKG.

Successful synthesis of the bioactive peptide ligand, CGKKQRFRHRNRKG-amide, was
confirmed by SQD2 mass spectrometry. Expected molecular weight of 1770.09 g/mol.
[M + 2H]" =591 g/mol. [M + 3H]" = 443 g/mol. [M + 4H]* = 355 g/mol.
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ESI Figure S4. SQD2 mass spectrometry of YIGSR. Successful synthesis of the
bioactive peptide ligand, CGKGYIGSR-amide, was confirmed by SQD2 mass
spectrometry. Expected molecular weight of 939 g/mol. [M + H]"= 940 g/mol. [M + 2H]"
=470 g/mol. [M + 3H]" = 314 g/mol.
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ESI Figure S5. Electrospray ionization mass spectrometry of IKVAV. Successful
synthesis of the bioactive peptide ligand, OOGCGIKVAVG-amide, was confirmed by
electrospray ionization mass spectrometry on a Shimadzu LCMS 2020. Expected
molecular weight of 1093 g/mol. [M + H]"= 1094 g/mol. [M + 2H]" = 548 g/mol.
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ESI Figure S6: Electrospray ionization mass spectrometry of PHSRN(G)0RGDS.
Successful synthesis of the bioactive peptide ligand, CGGPHSRN(G)10RGDS-amide, was
confirmed by electrospray ionization mass spectrometry on a Shimadzu LCMS 2020.
Expected molecular weight of 1811 g/mol. [M + H]" = 907 g/mol. [M + 2H]" = 605
g/mol.
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ESI Figure S7. SQD2 mass spectrometry of VPMS{MRGG. Successful synthesis of the
peptide crosslinker, CGRDVPMSJ{MRGGDRCG-amide, was confirmed by SQD2 mass
spectrometry. Expected molecular weight of 996 g/mol. [M + 3H]" =566 g/mol. [M +
4H]" = 425 g/mol.
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ESI Figure S8. Viability of iPSCs cultured in PEG-only hydrogels. iPSCs were
encapsulated and cultured in 3 wt% PEG-only hydrogels as a ‘blank slate’ control (no
integrin-binding peptide or ROCK inhibitor) and cultured for 3 days. Viability of iPSCs
was determined by a Live/Dead cytotoxicity assay for iPSCs cultured in hydrogels at A)
day 1 and B) day 3, where live cells were stained green and dead cells red. C) iPSC
viability was observed to be low both initially and over time (15 £ 2% at day 1 (D1) and
12 £ 2% at day 3 (D3)). iPSC viability in this ‘blank slate’ control was statistically lower
at both day 1 and day 3 in comparison to iPSCs in 3D culture with ROCK inhibitor alone
(p-value < 0.01) and at day 1 in comparison to iPSCs in 3D culture in hydrogels
presenting RGDS alone (p-value < 0.01).
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ESI Figure S9. Viability of encapsulated iPSCs at varying seeding densities. To test
the effect of initial iPSC seeding density for encapsulation on cell viability, iPSCs were
encapsulated at seeding densities of 10°, 5x10° and 10 cells per mL in RGDS presenting
hydrogels and cultured in mTeSR1 with ROCK inhibitor Y-27632. A Live/Dead
cytotoxicity assay was used to assess the percentage of live and dead cells at days 1 and

3. Viability at day 1 was statistically lower (** p < 0.01) for the lowest seeding density of
10° cells per mL, with 55 + 2% viable cells, relative to both seeding densities of 5x10°
and 107 cells per mL. Seeding densities of 5x10° and 10" iPSCs per mL resulted in the
similar viability at day 1 (66 = 2%). After 3 days in culture there was no statistical
difference in iPSC viability amongst the different seeding densities: encapsulated iPSC
viabilities of 51 + 3%, 60 + 5%, and 57 + 6% were measured at seeding densities of 10°,
5x10°, and 107 cells per mL, respectively. A seeding density of 5x10°iPSCs per mL was
chosen for all future experiments, as this seeding density provides a good compromise
between cell-cell contact and cell-matrix interactions.
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ESI Figure S10. Metabolic activity of iPSCs in cultured in 3D peptide-containing
PEG hydrogels. Metabolic activity was measured over 1 week (alamarBlue assay,
ExX/Em ~ 560/590 nm). Over 7 days, iPSCs cultured in the YIGSR or PHSRNG;,RGDS
(labeled as PHSRN) gels have increased metabolic activity, indicating the iPSCs are
surviving and growing in 3D culture. Of note, by day 7, iPSCs cultured in YIGSR-
presenting hydrogels have the highest metabolic activity. Cells in the RGDS-presenting
hydrogel exhibited an initial increase in metabolic activity from day 1 to day 3 and then a
plateau in activity by day 7. The iPSCs in the IKVAV-presenting hydrogel had the
highest metabolic activity at day 1 and that remained constant over 1 week; in the context
of the live/dead data for this composition and comparison of metabolic activity increases
observed in other compositions, these data may indicate limited cell proliferation or a
balance between proliferation and cell death. Cells in hydrogels presenting
KKQRFRHRNRKG had the lowest and minimal metabolic activity over the course of 1
week, indicating cell death in this composition and consistent with observations made
with the live/dead assay.
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ESI Figure S11. Confirmation of 1 blocking. iPSCs in 3D culture for 3 days in
YIGSR-presenting hydrogels were immunonstained for B1 integrin in conditions cultured
either A) without B1-blocking antibody or B) with B1-blocking antibody. At day 3,
samples were fixed and immunostained with a B1 antibody (green, AF488) and DAPI
(blue). Without the B1-blocking antibody in culture, consistent 1 integrin expression
was observed on iPSC in 3D culture. Importantly, with the B1-blocking antibody in
culture, little B1 integrin was observed as available for binding on iPSCs in 3D culture.
(representative confocal z-stack projections shown; scale bar, 200 um.)
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ESI Figure S12. iPSC expression of pluripotency (OCT4) and NPC (PAX6) markers
in PEG-peptide hydrogels. iPSCs were cultured in growth medium (mTeSR1 with
ROCK inhibitor) for 6 days in hydrogels presenting YIGSR and PHSRNG,,RGDS
(labeled as PHSRN in figure panel). iPSCs cultured in these hydrogels exhibited similar
OCT4 expression to iPSCs cultured in RGDS-presenting PEG hydrogels (Figure 6a). No
expression of the differentiation marker PAX6 was detectable. Overall, these data

support that iPSCs retain pluripotency over 6 days of culture in PEG-peptide hydrogels
when culture in growth medium.
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ESI Figure S13. Average number of NPC clusters per image after differentiation.
Multiple NPC clusters were observed in each hydrogel composition with confocal
microscopy. To quantify this, the average number of cell clusters per image was analyzed
and ranged from the most clusters to the least in RGDS, YIGSR, or PHSRN peptide-
presenting hydrogels. These correlate to values of 2.8 + 0.5, 1.5 £ 0.2, 1.1 £ 0.1 number
of clusters per image, respectively. The number of NPC clusters cultured in RGDS was
statistically different from the YIGSR and PHSRNG;,RGDS (labeled as PHSRN)
conditions at p-values of 0.029 and 0.007, respectively. There is no statistically difference
between the number of clusters per image between YIGSR and PHSRNG;,RGDS
conditions. (n = 3 replicates per condition; statistical differences determined by Student’s
t-test; *p-value < 0.05, ** p-value < 0.01.)



