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The following presentation is based and follows closely the presentation of the supporting material of Ref.1. Here, we present
the total Helmholtz free energy describing an end-tethered weak polyelectrolyte layer in multivalent ions solutions and provide some
numerical details. Further details can be found in Ref.1 and its supporting information.

1 Free Energy Functional
The total Helmholtz free energy contains the following contributions

F =−T Sconf−T Smix +Eelect +EvdW +Fchem. (S1)

The conformational entropy of the polymers per unit area of the nanoparticle is given by

−
Scon f

kBA(R)
= σp ∑

α

P(α) lnP(α). (S2)

Here, P(α) is the probability of finding a tethered polymer chain in conformation α. A polymer conformation is given by a set of the
positions of all monomers of the polymer chain. The probability distribution function or pdf is the central quantity in the molecular
theory, since any thermodynamic and structural properties of the polymers can be calculated from the probability distribution function.
For instance, the average number density of the polymers at position r is given by

〈ρp(r)〉=
σp

G(r) ∑
α

P(α)n(α;r). (S3)

Here n(α;r)dr is the number of polymer segments that a polymer chain in conformation α has within volume element [r,r + dr].
The variable n(α;r) is input and depends on the molecular architecture and chemistry of the polymer. The variable r is the radial
coordinate in either cylindrical or spherical coordinates. We employed cylindrical and spherical coordinates to reflect the symmetry
of the cylindrical and spherical nanoparticle, and assumed the system to be laterally homogeneous and only explicitly anisotropic in
the radial direction r Mathematically, the function G(r) = A(r)/A(R) corresponds to the Jacobian determinant divided by the area of
the cylindrical or spherical nanoparticle. Physically, G(r)dr describes the change in volume as function of the distance away from the
nanoparticle.2 In cylindrical coordinates it equals (r/R) while for spherical coordinates it equals (r/R)2, respectively.3

The second term in the free energy corresponds to the mixing or translational entropy of all mobile species

− Smix

kBA(R)
= ∑

k

∫
drG(r)ρk(r)(lnρk(r)vw−1). (S4)

The index k runs over all the different types of mobile species: the water molecule, the cations (Na+ and Ca2+), anion (Cl– ), proton
(H+), hydroxyl ion (OH– ), and the ion pair NaCl. The variable ρk(r) is the number density of mobile species k and vw is the volume of a
water molecule. Note that the polymer-tethered NP is in contact with an aqueous solution of given pH containing monovalent NaCl and
divalent CaCl2 salt. For physiological concentrations we can assume that NaCl and CaCl2 salt in the electrolyte solution are completely
dissociated. For higher NaCl concentrations, also to be considered, not all NaCl’s are completely dissociated in the aqueous solution
and the possibility to form ion pairs, Na+ +Cl– −−⇀↽−− NaCl, has to be taken into account.4 Hence, the ion pair is included as a separate
chemical moiety in the mixing entropy.

The third term in the free energy functional describes the electrostatic contribution to the free energy5 and is given by

βFelect

A(R)
= β

∫
drG(r)

[
〈ρq(r)〉ψ(r)+

1
2

ε0εw (∇rψ(r))2
]
+βσqψ(R). (S5)

Here ψ(r) is the electrostatic potential, 〈ρq(r)〉 corresponds to the total charge density, and total σq corresponds to the surface charge
density on the NP surface. In above functional ε0 and εw correspond to the dielectric permittivity of vacuum and the relative dielectric
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constant of the aqueous solution respectively, the latter one having a value of εw = 78.5. The total charge density is the sum of the
charge number density of all charged species:

〈ρq(r)〉=−e〈ρp(r)〉( fA−(r)− fACa+(r))+ ∑
i∈{Na+,Ca2+,
Cl−,H+,OH−}

eziρi(r). (S6)

Here, the summation runs over all charged mobile species, with zi corresponding to their valency. e is the unit of charge. The first
part of the charge density describes the charge arising from the deprotonated monomers and the monomers that are condensed with
one Ca2+ ion. Here fA−(r) corresponds to the fraction of deprotonated polyacid monomers at position r, and fACa+(r) is the fraction of
polyacid monomers that is bound with one calcium ion.

The fourth term in the free energy,Fchem, describes the free energy contribution arising from the acid-base equilibrium and conden-
sation reactions. it is convenient to introduce the following polymer state fractions that are related to the different chemical states
a monomer can be found in: namely, fA−(r), fAH(r), fANa(r), fACa+(r), and fA2Ca(r). They correspond respectively to the fraction of
monomers that are deprotonated, protonated, bound with one Na+, bound with one Ca2+, and the fraction of monomers found in an
A2Ca complex. With the definition of the monomer state fractions we can derive the chemical free energy associated with the chemical
equilibria of the polymer acid monomers as given by in the main text. This chemical free energy is given by

βFchem

A(R)
=

∫
drG(r)〈ρp(r)〉

[
fA−(r) ln fA−(r)+ fAH(r) ln fAH(r)+ fANa(r) ln fANa(r)+ fACa+(r) ln fACa+(r)+

fA2Ca(r)
2

ln
fA2Ca(r)

2

−1
2

fA2Ca(r)
(
ln〈ρp(r)〉vw−1

)
+ fA−(r)β µ



A− + fAH(r)β µ



AH + fANa(r)β µ



ANa + fACa(r)β µ



ACa +

1
2

fA2Ca(r)β µ


A2Ca

]
(S7)

+ ∑
k∈{Na+,Ca2+,Cl−,NaCl,H+,OH−}

β µ


k

∫
drG(r)ρk(r).

The first six terms are related to the mixing entropy associated with the formation of the five different monomer states. Here, the
first four terms correspond to the mixing entropy of the deprotonated, protonated, Na+ condensed, and Ca2+ condensed state of the
monomer. The fifth and sixth term correspond to entropic contribution associated with the A2Ca complex. Here, we would like to
draw attention to the factor 1/2 in the fifth term. The half occurs because one complex consists of two acidic monomers and one
calcium ion. Hence, the total number density of complexes is half of the density of complexed acidic monomers. The sixth term
corresponds to a loss of entropy that arises due to the reduction in the maximum number of possible states when two acidic monomers
get combined into one A2Ca complex. The term appears for two-to-one and higher order complexation reactions. I t does not occur for
one-to-one condensation. The next five terms of Eq. (reffechem) describe the enthalpic cost associated with the five states in which the
monomers are found. Here, µγ corresponds to the standard free energy of forming a monomer in state i. The derivation of these terms
is presented in further detail in the supporting material of Ref.1. The last contribution to Fchem describes the free energy associated with
the standard chemical potential of Na+, Ca2+, Cl– , NaCl, H+, and OH– . They are related to the dissociation reaction of NaCl and the
auto-dissociation of water. Also included are the self-ionization of water and the ion pairing of NaCl. This chemical free energy is given
by

In the main text we introduced above polymer state fractions, fA−(r) and fACa+(r), as well as the other polymer state fractions
associated with the different chemical states the monomer can be found in. Observe that the total number of monomers is conserved.
Thus, the sum over all polymer state fractions at every position adds up to one, i.e.,

fA−(r)+ fAH(r)+ fANa(r)+ fACa+(r)+ fA2Ca(r) = 1. (S8)

The repulsive interactions in the theory are modeled as excluded volume interactions. The intra chain interactions are considered
exactly during generation of the polymer conformation. The intermolecular excluded volume interactions are accounted for by assuming
that the system is incompressible at every position

〈φp(r)〉+φw(r)+ ∑
k∈{Na+,Ca2+,Cl−,

NaCl,H+,OH−}

φk(r) = 1. (S9)

These volume constraints are enforced through the introduction of the Lagrange multipliers π(r). The variable 〈φp(r)〉 denotes the
polymer volume fraction that is expressed as the polymer density times the sum over the different monomer states weighted with the
volume of those states

〈φp(r)〉= 〈ρp(r)〉
(

fA−(r)vA− + fAH(r)vAH + fANa(r)vANa + fACa+(r)vACa +
1
2

fA2Ca(r)vA2Ca

)
. (S10)

Here vA− , vAH , vANa, and vACa correspond to the volume of the deprotonated acid monomer (A– ), protonated monomer (AH), sodium
and calcium condensed monomer (ANa and ACa+) respectively. vA2Ca is the volume of the A2Ca complex. Because every complex
consists of two acid monomers and one calcium ion, the density of the complexes at location r is fA2Ca(r)〈ρp(r)〉/2. Hence, the factor
1/2 appears in the last term of the polymer volume fraction. The volume fraction of the small mobile species is given by φk(r) = ρk(r)vk,
where vk is the volume of species k.
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Finally, the EvdW represents the non-electrostatic van der Waals interactions and is defined by

βEvdW

A(R)
=−β

2

∫
dr
∫

dr′A(R)G(r)G(r′)〈ρp(r)〉χ(r,r′)〈ρp(r′)〉, (S11)

where χ(r,r′) is an attractive van der Waals potential between a segment located at r and segment at r′. This term describes the effects
of solvent quality. Here we assume good solvent conditions: χ(r,r′) = 0.

The free energy is minimized with respect to P(α), ρi(r), and fk(r), and varied with respect to the electrostatic potential, ψ(r), under
the constraints of incompressibility and the fact that the system is in contact with a bath of cations, anions, protons, and hydroxyl ions.
Therefore the proper thermodynamic potential is the semi-grand potential2,6,7, which is given by

βW
A(R)

=
βF

A(R)
− ∑

k∈{w,NaCl,Cl−,OH−}
β µk

∫
drG(r)ρk(r)−β µH+

∫
drG(r)

(
ρH+(r)+ fAH(r)〈ρp(r)〉

)
−β µNa+

∫
drG(r)

(
ρNa+(r)+ fANa(r)〈ρp(r)〉

)
−β µCa2+

∫
drG(r)

[
ρCa2+(r)+

(
fACa+(r)+

1
2

fA2Ca(r)
)
〈ρp(r)〉

]
+β

∫
drG(r)λ (r)〈ρp(r)〉

[
∑

i
fi(r)−1

]
+β

∫
drG(r)π(r)

[
〈φp(r)〉+∑

k
ρk(r)vk−1

]
. (S12)

Here, µγ is the chemical potential of molecules of type γ. The second integral accounts for the total number of protons in the system,
which is the sum of the free protons and those that are in the protonated state of the acidic monomers. The third and fourth integral
correspond to the total number of sodium and calcium ions. These terms also include contributions arising from the various condensed
states. In the free energy, λ (r) are the Lagrange multipliers that enforce the constraint that the sum of the fractions of the different
monomeric states adds up to one for all positions.

Minimization of the free energy yields the following expression for the local volume fraction of the solvent

φw(r) = ρw(r)vw = exp(−βπ(r)vw) , (S13)

while the density of the ions reads

ργ (r) =
1

vw
exp
(

β µγ −β µ


γ −βπ(r)vγ −βψ(r)zγ e

)
. (S14)

It is important to point out that the chemical potential of water needs not be specified explicitly, because the incompressibility con-
straint reduces the number of thermodynamical independent variables. Therefore, the chemical potentials, µγ , are in reality exchange
chemical potentials, which we define as the difference between the chemical potential of the species γ and that of water. Likewise the
charge neutrality, the water self-dissociation equilibrium and the ion-ion paring of sodium with chloride ions reduce the number of
thermodynamic independent variables further. The values of the exchange chemical potential of the remaining species can be expressed
by relating them to their bulk concentrations: ρbulk

γ vw = exp(β µ

γ −β µγ −βπbulkvγ −βψbulkzγ ), with ψbulk = 0, see below at Eq. S15.

Further discussions of this aspect of the theory can be found in, e.g., Refs2,7.
Functional variation of the free energy with respect to the electrostatic potential yields the Poisson equation and its boundary

conditions

− ε0εw∇
2
r ψ(r) = 〈ρq(r)〉; −ε0εw

dψ(r)
dr

∣∣∣∣
r=R

= σq; lim
r→∞

ψ(r) = 0. (S15)

Minimization with respect to the polymer state fractions and elimination of the Lagrange multiplier, λ (r), results in following set of
equations that govern the chemical equilibria

fA−(r)
fAH(r)

= K

AH

e−βπ(r)∆vAH

ρH+(r)vw
, (S16)

fA−(r)
fANa(r)

= K

ANa

e−βπ(r)∆vANa

ρNa+(r)vw
, (S17)

fA−(r)
fACa+(r)

= K

ACa

e−βπ(r)∆vACa

ρCa2+(r)vw
, (S18)

fA−(r)2〈ρp(r)〉vw
1
2 fA2Ca(r)

= K

A2Ca

e−βπ(r)∆vA2Ca

ρCa2+(r)vw
. (S19)

The variable K

i = exp(−β∆G


i ) corresponds to the chemical equilibrium and ∆G

i is the standard free energy change. The chemical

equilibrium constant K

AX is related to the experimental equilibrium constant KAX = C exp(−β∆G


AX ) of a single acidic monomer in
infinitely dilute solution. Here C is a constant required for consistency of units and equal to C = 1/NAvw, where NA is Avogadro’s number.
Here X corresponds to either AH, ANa, or ACa. For the reaction: A2Ca −−⇀↽−− 2A– +Ca2+, the standard free energy change is given as
∆G


A2Ca = 2µ


A−+µ



Ca2+−µ



A2Ca, while the change in volume is equal to ∆vA2Ca = 2vA−+vCa2+−vA2Ca. Similar to the chemical equilibrium

of AH, ANa, and ACa, the chemical constant K

A2Ca can be related to the experimental equilibrium constant KA2Ca = C′ exp(−β∆G


A2Ca)

of a single A2Ca complex group in dilute solution. The constant C′ is equal to C′ = 1/(NAvw)
2. The constant C and C′ can be obtained

by re-expressing Eq. (S16) and Eq. (S19) in terms of the concentrations of the products and reactants
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Table S1 Dissociation Constants and standard reaction binding free energy ∆G
 for acrylic acid (AA) monomers.

reaction pK(AA) ∆G

b (AA)

(kJ/mol)
AH−−⇀↽−− A– +H+ 5.0 -38.5
ANa−−⇀↽−− A– +Na+ -0.40 -7.5
ACa+ −−⇀↽−− A– +Ca2+ 1.0 -15.7
A2Ca−−⇀↽−− 2A– +Ca2+ 4.0 -42.7

The values for the acid-base equilibrium of the weak carboxylic acid acid is known experimentally.8,9 However, the chemical equi-
librium constants of the various ion condensation reactions are less well known. In particular the binding constant of the calcium
carboxylic complex (A2Ca) is difficult to obtain. Refs.10,11 reported a value of KA2Ca = 10−4.3 M2 and 10−5 M2 respectively. Refs.12,13

reported similar values for slightly different monomers and ions. Because not all binding constants are experimentally readily available.
We performed new molecular dynamics simulations to supplement the available data. Further details of the simulation methods can be
obtained in the arXiv.org link arXiv:1801.05888 [physics.chem-ph]. (Ref.14) and the supporting information of1. The values of the dis-
sociation equilibrium constants and the standard reaction free energies for the AH, ANa, ACa+, and A2Ca dissociable groups employed
are listed in table S1. We chose a value of KA2Ca = 10−4 based on the simulations result and available experimental data. Observe that
the corresponding binding free energy equals ∆G


b (A2Ca) =−∆G
(A2Ca) =−42.7kJ/mol which is close to the experimental values of
∆Gb =−44.4kJ/mol and −48.4kJ/mol of Refs.10,11.

Minimization with respect to P(α) leads to

P(α) =
1
q

exp
(
−
∫

dr n(α;r)(1+βλ (r))
)

(S20)

=
1
q

exp
(
−
∫

dr n(α;r)
(
βπ(r)vA− +βψ(r)zA−e+ ln fA−(r)+β µ



A−
))

. (S21)

Here q is a normalization constant that ensures that ∑α P(α) = 1. Here λ (r) is a Lagrange multiplier that ensures that equation (S8)
is satisfied: the fractions associated with the different chemical states for the monomers must add up to on one. In the second line we
used one of five equivalent expression for λ (r). Notice that the pdf explicitly depends on among the degree on deprotonation, which
via Eq. S8 is directly related to the fraction of acid monomers that form calcium bridges, and ion pairs with sodium and calcium ions.
For further details on is referred to the supporting material of Ref.1.

The unknowns in Eq. (S13), Eq. (S14), and Eq. (S16) through Eq. (S19) are the Lagrange multipliers or lateral pressures,
π(r), the electrostatic potential, ψ(r), and the degree of complexation, fA2Ca(r). The degree of protonation of the acidic groups and
the amount of condensation of sodium and calcium as well as the density of the ions, the solvent and polymers are known once
the lateral pressures, the electrostatic potential, and degree of calcium complexation are known. Solutions of these variables can be
obtained numerically. This is accomplished in the following way. Expressions of the volume fractions of all components are substituted
into the incompressibility constraint, the Poisson equation, and the reaction equation Eq. (S19). This results in a set of non-linear
integro differential equations whose solution will determine the lateral pressure, the electrostatic potential, and the degree of calcium
complexation. By discretizing space, the differential equations are converted into a set of coupled non-linear algebraic equations that can
be solved by standard numerical techniques.15 Details on the discretization procedure and numerical methods can be found in Refs.2

and the section "Numerical methodology". The inputs required to solve the non-linear equations are a set of polymer conformations,
the pH, the salt concentrations of NaCl and CaCl2, the volume of all species, the surface density of the polymers end-tethered to the
nanoparticle, the radius of the nanoparticle, the various dissociation equilibrium constants pK listed in table S1, and the dissociation
constant of the NaCl ion pair.4 Details on the chain model used to generate a set of conformations can be found in the section "Chain
model".

2 Numerical methodology
Substituting the equations for the polymer, solvent and ion densities Eqs. (S3), (S13), and (S14) into the packing constraint, Eq.(S9),
the generalized Poisson-Boltzmann equation, Eq. (S15), and the chemical reaction equations, Eqs. (S16), (S17), (S18), (S19), and
(S8) results in a set of coupled integro-differential equations. The unknown of these equations are the position dependent lateral
pressure, π(r), electrostatic potential, ψ(r), and fraction of calcium bridges, fA2Ca(r). A numerical solution for the lateral pressure,
π(r), electrostatic potential, ψ(r) and fraction of calcium bridges, fA2Ca(r), is obtained by discretization of the packing constraints, Eq.
(S9), and the generalized Poisson equation, Eq. (S15), and the reaction describing the formation of calcium bridges, Eq. (S19). The
equations are discretized by dividing the r-coordinate into cylindrical spherical or shells of thickness δ . Position dependent functions
are assumed to be constant within a cylindrical or spherical shell, hence integrations can be replaced by summations. The integral of a
general position dependent function f (r) then becomes:∫

V
drG(r) f (r) = ∑

i

∫ iδ+R

(i−1)δ+R
dr G(r) f (r)≈ δ ∑

i
f (i)∆G(i), (S22)

with

∆G(i) =
1
δ

∫ iδ+R

(i−1)δ+R
dr G(r). (S23)
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Here f (i) denotes the value which the function f (r) attains within the cylindrical or spherical region located between (i−1)δ +R≤ r <
iδ +R. Recall that G(r) = A(r)/A(R) corresponds to the Jacobian determinant divided by the area of the nanoparticle. Hence ∆G(i) is
the proportional to the volume of the discrete shell i.

The packing constraint, Eq. (S9), in discrete form for grid cell (i) reads

〈φp(i)〉+φw(i)+φNa+(i)+φCl−(i)+φNaCl(i)+φH+(i)+φOH−(i)+φCa2+(i) = 1. (S24)

The volume fraction of water, Eq. (S13), the polymer density, Eq. (S3), and the pdf, Eq. (S20), in discrete form become

φw(i) = exp(−βπ(i)vw), (S25)

〈ργ (i)〉 =
σ

δ∆G(i) ∑
α

P(α)n(α; i) (S26)

n(α; i) ≡
∫ iδ+R

(i−1)δ+R
dr n(α;r) (S27)

P(α) =
1
q ∏

i
exp [−n(α; i)(βπ(i)vA− + eβψ(i)+ ln( fA−(i))] . (S28)

The volume fraction of the counterion, coions, protons, and hydroxyl ions, (Eq.(S14)), in discretized space are:

φNa+(i) = φNa+,bulk exp(−β (π(i)−πbulk)vNa+ − eβψ(i)), (S29)

φCl−(i) = φCl−,bulk exp(−β (π(i)−πbulk)vCl− + eβψ(i)), (S30)

φH+(i) = φH+,bulk exp(−β (π(i)−πbulk)vH+ − eβψ(i)), (S31)

φOH−(i) = φOH−,bulk exp(−β (π(i)−πbulk)vOH− + eβψ(i)). (S32)

φCa2+(i) = φCa2+,bulk exp(−β (π(i)−πbulk)vCa2+ −2eβψ(i)). (S33)

φNaCl(i) = φNaCl,bulk exp(−β (π(i)−πbulk)vNaCl). (S34)

The above volume fractions depend on the lateral pressure, electrostatic potential, and on the bulk volume fractions. The chemical
potentials of the counter ions, co ions, protons, and hydroxyl ions are related to their bulk volume fractions.2 These bulk values are
input to the theory.

The chemical reaction Eqs. (S16), (S17), (S18), (S19) are in discrete form

fA−(i)
fAH(i)

= K

AH

e−βπ(i)∆vAH

ρH+(i)vw
, (S35)

fA−(i)
fANa(i)

= K

ANa

e−βπ(i)∆vANa

ρNa+(i)vw
, (S36)

fA−(i)
fACa+(i)

= K

ACa

e−βπ(r)∆vA2Ca

ρCa2+(r)vw
, (S37)

[ fA−(i)]
2 〈ρA(i)〉vw

1
2 fA2Ca(i)

= K

A2Ca

e−βπ(i)∆vA2Ca

ρCa2+(i)vw
, (S38)

1 = fA−(i)+ fAH(i)+ fANa(i)+ fACa+(i)+ fA2Ca(i). (S39)

The discretized Poisson equation, in cylindrical coordinates, is(
1+

δ

ri

)
ψ(i+1)−2ψ(i)+

(
1− δ

ri

)
ψ(i−1) =−εwε0δ

2
ρq(i), (S40)

here ri = (i−1/2)δ +R denotes the middle of the cylindrical grid cell (i) in the radial direction.
The discretized Poisson equation, in spherical coordinates, is(

1+
δ

2ri

)
ψ(i+1)−2ψ(i)+

(
1− δ

2ri

)
ψ(i−1) =−εwε0δ

2
ρq(i), (S41)

here ri = (i− 1/2)δ +R denotes the middle of the spherical grid cell (i) in the radial direction. The discretized electrostatic boundary
condition for the both the cylindrical as well as spherical surface (r = R) reads:

ψ(1)−ψ(r = R) =−δεwε0σq. (S42)

Here ψ(r = R) is the electrostatic potential at the nanoparticle surface.
Substituting Eqs. (S25), through (S34) into the constraint equation (S24), the Poisson Eq. (S40) for cylindrical surfaces or (S41) for

spherical surfce , the electrostatic boundary condition (Eq. S42) and the chemical reaction equations Eqs. (S35) through (S39) result
in a set of coupled nonlinear algebraic equations which can be solved by standard numerical methods.15
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3 Chain model

We use the three-state rotational isomeric state (RIS) model of Flory16 in order to generate a representative set of chain conformations.
These conformations are generated by a simple sampling procedure that takes into account the self-avoidance of the polymer chain.
Through appropriate translational and rotational adjustments, the generated chain conformations are end-tethered the surface of the
NP of given radius. Internal self-avoidance of the chain and the chain with the NP core are enforced. One set of chain conformations is
generated once for each sequence of copolymers and is used for all calculations reported in this paper. The number of conformations
is 1 ·106 . We used a discretization length δ = 0.5nm. Below in tables S2 and S3 we list the value of the volume of the monomers and
ions used throughout the calculations. We use ∆vAH = vw for the acid base equilibrium and set ∆vk = 0 for all other reactions.

Table S2 Volume and segment length of AA monomers.

AA
`(nm) 0.362
vp(nm3) 0.07448

Table S3 Volume and charge of ions.

w H+ OH− Na+ Cl− Ca2+

v(nm3) 0.03 0.03 0.03 0.0044 0.011 0.0050
q(e) 0 +1 -1 +1 -1 +2

4 Additional Results

In this section, we present additional results that support and supplement the discussion presented in the main text.
Fig. S1 shows the fraction of deprotonated monomers and the average total polymer charge per unit length in a end-tethered

poly(acrylic acid) layer end-tehered to a cylindrical nanoparticle of radius R = 4.0 nm, as a function of pH for different calcium
concentrations. The figure expands on the discussion of Fig. 3 in the main text. A detailed analysis of Fig. S1 goes beyond the scope of
this work. We refer the interested reader to the thorough discussion provided for a spherical system in Ref.1
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〉

cCa2 + = 0.0 mM

cCa2 + = 0.1 mM

cCa2 + = 1.0 mM

cCa2 + = 10.0 mM

2 4 6 8 10 12

pH

200

150

100

50

0

Q
p
 [

e
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m
]

Figure S1 The fraction of acid monomers (left panel) in the end-tethered poly(acrylic acid) layer and average total polymer charge per unit length
(right panel) as a function of the solution’s pH for different amounts of Ca2+, as indicated in the legend. The NaCl concentration is 150 mM. The
radius, surface coverage, and molecular weight are equal to R = 4nm, σ = 0.15nm−2, and n=50, respectively. The lower dashed line in the right panel
correspond the the maximum feasible total polymer charge per unit length.
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Fig. S2 shows the fraction of monomers forming a calcium bridge in an end-tethered poly(acrylic acid) layer as a function of the
Ca2+ concentration. The figure directly complements the height vs Ca2+ concentration as shown in Fig. 3 in the main text.
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Figure S2 The fraction of monomers forming a calcium bridge in the end-tethered poly(acrylic acid) layer as a function of the Ca2+ concentration. The
different lines correspond to increasing radii of the nanoparticle. The pH is equal to 7.4 and the NaCl concentration is 150 mM. The radius, surface
coverage, and molecular weight are equal to R = 4nm, σ = 0.15nm−2, and n=50, respectively.

Fig. S3 shows the polymer height of the end-tethered poly(acrylic acid) layer as a function of the surface density of the polymers
for spherical and cylindrical nanoparticles. The figure directly complements the discussion in the last section of the main text (Fig. 6).
At zero calcium concentration the height of polymer layer increases as functions of surface density. With increasing surface density,
the polymers experience more excluded volume repulsions and the polymers stretch in order to reduce those interactions and the layer
swells. For the low calcium concentration of 0.1mM the layer does not collapse upong increasing surface density. Instead we observe
non-monotonic change in the height of the layer as function calcium concentration. With increasing surface density of the polymer layer
first swells slightly before starting to contract slightly. First, due the increased excluded volume interaction the layer swells (similar
to what occurs to zero added calcium). With increased monomer density, more calcium bridges occur leading to a contraction of the
layer. However the calcium concentration is insufficient to form enough calcium bridges to effect a complete collapse and the layer
remains in a swollen state. At a calcium concentration of 1mM the height of polymer layer of cylinder as well as sphere transitions from
a swollen to a collapsed state. Increasing surface density leads to an increase in the polymer density. This facilitates the formation of
more calcium bridges, causing the layer to collapse. The observed trend and its explanation is similar to the explanation for the height
dependence on as function of curvature, as outlined in the main text. Finally, at a large calcium concentration of 10mM the excess
amount of calcium leads to a high number of calcium bridges and all layers collapse. Note, the height of the collapsed state increases
since the total amount of monomers increases.
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Figure S3 The height of a poly(acrylic acid) end-tethered layer as a function of polymer surface density for cylindrical (left panel) and spherical
nanoparticles (right panel) of radius R = 4nm. The different lines correspond to different Ca2+ concentrations, as indicated in the legend. The pH of
the solution and the amount of NaCl correspond to physiological conditions, 7.4 and 150 mM respectively. The number of segments is 50.
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