Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2018 ## **Supplementary Information:** Albumin as a "Trojan Horse" for Polymeric Nanoconjugates Transendothelial Transport across Tumor Vasculatures for Improved Cancer Targeting Qian Yin,[†] Li Tang,[†] Kaimin Cai,[†] Xujuan Yang,[‡] Lichen Yin,[†] Yanfeng Zhang,[†] Lawrence W. Dobrucki, [§] William G. Helferich,[‡] Timothy M. Fan, ^{††} Jianjun Cheng^{†,*} [†]Department of Material Sciences and Engineering, [‡]Department of Food Science and Human Nutrition, [§]Department of Bioengineering, ^{††}Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. ^{*} Address correspondence to jianjunc@illinois.edu ## **Supplementary Figure Legends** - Fig. S1. DLS analysis of Doxo-PheLA NCs in water (0.5 mg/mL). - **Fig. S2.** The ⁶⁴Cu labeling stability of ⁶⁴Cu-Alb-NCs and ⁶⁴Cu-PEG-NCs in human serum buffer (human serum:PBS=1:1, v/v). - **Fig. S3.** *In vivo* tumor accumulation (A) and biodistribution (B) of 64 Cu-Alb-NCs and 64 Cu-PEG-NCs in MCF-7 breast cancer xenograft model assessed by γ -counter. All the data was presented as percentage of injected dose per gram of tissues (% I.D. g^{-1}). - Fig. S4. Representative images of the tumor from each treatment group. - **Fig. S5.** % Body weight over the *in vivo* tumor reduction study. No significant body weight drop (>20%) was observed. - **Table S1.** Radius of Alb-NCs as a function of albumin concentration determined by FCS measurements. ## **Supplementary Figures** Fig. S1 Fig. S2 Fig. S3 Fig. S4 Fig. S5 Table S1 | Concentration of albumin (µM) | Particle radius (nm) | error | |-------------------------------|----------------------|-------| | 0 | 40 | 5 | | 1 | 54 | 7 | | 10 | 57 | 10 | | 50 | 79.4 | 15 | | 100 | 96.5 | 18 | | 500 | 150 | 25 | | 1000 | 156 | 30 |