Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2018

Supplementary Information:

Albumin as a "Trojan Horse" for Polymeric Nanoconjugates Transendothelial Transport across Tumor Vasculatures for Improved Cancer Targeting

Qian Yin,[†] Li Tang,[†] Kaimin Cai,[†] Xujuan Yang,[‡] Lichen Yin,[†] Yanfeng Zhang,[†] Lawrence W. Dobrucki, [§] William G. Helferich,[‡] Timothy M. Fan, ^{††} Jianjun Cheng^{†,*}

[†]Department of Material Sciences and Engineering, [‡]Department of Food Science and Human Nutrition, [§]Department of Bioengineering, ^{††}Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

^{*} Address correspondence to jianjunc@illinois.edu

Supplementary Figure Legends

- Fig. S1. DLS analysis of Doxo-PheLA NCs in water (0.5 mg/mL).
- **Fig. S2.** The ⁶⁴Cu labeling stability of ⁶⁴Cu-Alb-NCs and ⁶⁴Cu-PEG-NCs in human serum buffer (human serum:PBS=1:1, v/v).
- **Fig. S3.** *In vivo* tumor accumulation (A) and biodistribution (B) of 64 Cu-Alb-NCs and 64 Cu-PEG-NCs in MCF-7 breast cancer xenograft model assessed by γ -counter. All the data was presented as percentage of injected dose per gram of tissues (% I.D. g^{-1}).
- Fig. S4. Representative images of the tumor from each treatment group.
- **Fig. S5.** % Body weight over the *in vivo* tumor reduction study. No significant body weight drop (>20%) was observed.
- **Table S1.** Radius of Alb-NCs as a function of albumin concentration determined by FCS measurements.

Supplementary Figures

Fig. S1

Fig. S2

Fig. S3

Fig. S4

Fig. S5

Table S1

Concentration of albumin (µM)	Particle radius (nm)	error
0	40	5
1	54	7
10	57	10
50	79.4	15
100	96.5	18
500	150	25
1000	156	30