Low molecular weight heparin-based reduction-sensitive nanoparticles for antitumor and anti-metastasis of orthotopic breast cancer

Haifeng Sun, Dinglingge Cao, Yanhong Liu, Hui Wang, Xue Ke^{*}, Tianyuan Ci^{*} Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China

Fig. S1 ¹H NMR spectra of LA and LA-hydraizde.

The structure was characterized by ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) = 8.92 (s, 1H, -C(=O)N<u>H</u>NH₂), 4.17 (br, 2H, -C(=O)NHN<u>H</u>₂), 3.60-3.65 (m, 1H, -SSC<u>H</u>-), 3.12-3.24 (m, 2H, -SSC<u>H</u>₂CH₂-), 2.38-2.46 (m, 1H, -SSCH₂C<u>H</u>₂-), 2.03-2.06 (m, 2H, -C<u>H</u>₂C(=O)NH-), 1.86-1.98 (m, 1H, -SSCH₂C<u>H</u>₂-), 1.51-1.73 (m, 4H, -C<u>H</u>₂CH₂CH₂C<u>H</u>₂C(=O)NH-), 1.34-1.39 (m, 2H, -CH₂C<u>H</u>₂CH₂CH₂C(=O)NH-).

^{*} Corresponding authors. Tel: +86-25-8327-1035; Fax: +86-25-8327-1269;

E-mail address: citianyuan_cpu@163.com (T.Y. Ci); kexue1973@vip.sina.com(X. Ke)

Fig. S2 ¹H NMR spectra of Chol and Chol-eda.

The Chol-eda was confrmed by ¹H NMR in CDCl₃ (500 MHz, CDCl₃): δ (ppm) 2.85 (t, 2H, NH₂C<u>*H*</u>₂CH₂-), 3.24 (q, 2H, -NHC<u>*H*</u>₂CH₂-), 4.50 (s, 1H, -C<u>*H*</u>(CH₂-)₂), 5.05 (s, 1H, -C(=O)N<u>*H*</u>-), 5.36 (s, 1H, CH₂C<u>*H*</u>=).

Fig. S4 ¹H-¹H COSY spectrum of LLHC₂

The Cholesterol modified LMWH was confirmed by the characteristic peaks of the methyl protons in Chol-eda at 0.57-1.13 ppm. Additionally, ethylenediamine spacer also appeared at 2.73-2.89 ppm, indicating the successful conjugation of Chol-eda to LMWH (**Fig. S3**). For LLHC₂ polymer, the characteristic peaks of lipoyl moiety protons appeared at 1.30, 1.47, 1.69, 1.83, 2.03 and 1.83 ppm and the peaks at 0.59-1.17 ppm of Chol-eda protons also emerged (**Fig. S4**). These results indicate that LMWH has been successfully conjugated to cholesterol and lipoic acid.

Fig. S5 H&E analysis of heart, liver, spleen and kidney tissues from mice treated with

the different formulations. Scale bar reads 400 $\mu m.$

Fig. S6 (A) Images of the hemolysis of red blood cells treated with different polymers after centrifugation; (B) The hemolysis of different groups at different concentrations (n = 3).

Table S1 Summary of pharmacokinetic parameters for DOX, DOX/LHC₆ and DOX/cLLHC₂

Parameters	DOX	DOX/LHC ₆	DOX/cLLHC ₂
$AUC_{0-t}(\mu g/mL * h)$	2.35 ± 0.18	$61.42 \pm 8.93 **$	78.57 ± 15.77**
$t_{1/2\alpha}(h)$	0.28 ± 0.04	$0.58 \pm 0.05 **$	$0.57 \pm 0.08 **$
t1/2β (h)	3.60 ± 1.28	$7.43 \pm 0.68*$	$11.63 \pm 4.10*$
CL (L/h/kg)	1.70 ± 0.03	$0.08 \pm 0.01^{**}$	0.06 ± 0.01 **
K ₁₀ (1/h)	0.91 ± 0.17	$0.60 \pm 0.03*$	$0.57 \pm 0.10*$
$K_{12}(1/h)$	1.42 ± 0.84	0.39 ± 0.34	0.60 ± 0.24
$K_{21}(1/h)$	0.64 ± 0.21	$0.16 \pm 0.01*$	$0.13 \pm 0.002*$

*p < 0.05 vs free DOX, **p < 0.01 vs free DOX, n = 3.