Supplementary information

Increased extracellular matrix density disrupts E-cadherin/ßcatenin complex in gastric cancer cells

Minjeong Jang,^a Ilkyoo Koh,^a Jae Eun Lee,^b Ju Yeon Lim,^b Jae-Ho Cheong,^{*b} and Pilnam Kim^{*a}

^aDepartment of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.

^bDepartment of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea.

* Corresponding author. Email: a*pkim@kaist.ac.kr, b*JHCHEONG@yuhs.ac

* Corresponding Author: Pilnam Kim, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea. Phone: +82-42-350-4332; E-mail: <u>pkim@kaist.ac.kr</u>, and Jae-Ho Cheong, Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea. Phone: +82-2-2228-2094; Fax: +82-2-303-8289; E-mail: <u>JHCHEONG@yuhs.ac</u>

Supplementary Figure S1. Characterization of density-varied collagen matrix (4, 6, and 8 mg/ml). A. Storage modulus in 4, 6, and 8 mg/ml of collagen gels. B. COMSOL simulation of diffusion of FITC-dextran (70kDa) through density-varied collagen matrix. Scale bar = 200 μ m C. Permeability of fluorescein isothiocyanate (FITC)-dextran (70 kDa) in density-varied collagen matrix. With increased collagen density, the fluorescence intensity of FITC-dextran (70 kDa) diffused from the hydrogel increased (n = 3). D. Scanning electron microscopy (SEM) images of collagen fiber matrices with varying density. Scale bar = 1 μ m. E. Evaluation of porosity depending on the concentration of collagen by mercury intrusion porosimetry (MIP).

Supplementary Figure S2. Percentage of co-localized E-cadherin/ β -catenin complex of AGS and MKN74 in density-varied collagen matrix (4~8 mg/ml) (n=3-5, **:p<0.001, ***:p<0.001)

Supplementary Figure S3. Schematics of proposed integrin-mediated cell-ECM interaction and E-cadherin/ β -catenin-mediated cell-cell adhesion depending on matrix density.

Supplementary Figure S4. Effect of Y15 treatment on GC proliferation by collagen density. Expression of the proliferation-related gene, *MKI67*, of GC cell lines, AGS and MKN74, in density-varied ECM by treating Y15. *:p<0.05, **:p<0.01

Supplementary Figure S5. Percentage of co-localized E-cadherin/ β -catenin complex of GC cell lines, AGS and MKN74, in density-varied ECM by treating Y15. (n=3-5, *:p<0.05, ***:p<0.001)

Supplementary Figure S6. Dose-dependent survival rates were assessed in the presence of Y15. A. The survival rates of AGS represented 4 mg/ml (dotted line) and 8 mg/ml (straight line) in a dose-dependent manner of 5-FU, without (black), with Y15 (blue), and after Y15 treatment (red). B. The survival rates of MKN74 represented 4 mg/ml (dotted line) and 8 mg/ml (straight line) in a dose-dependent manner of 5-FU, without (black), with Y15 (blue), and after Y15 (blue), and after Y15 (blue), and after Y15 (blue) in a dose-dependent manner of 5-FU, without (black), with Y15 (blue), and after Y15 (blue), and after Y15 treatment (red).Y15 affected drug resistance in a dense matrix.

Gene		Sequence	Refs.
ITGB1	F	CAA GAG AGC TGA AGA CTA TCC CA	PrimerBank ID: 182507160c3
	R	TGA AGT CCG AAG TAA TCC TCC T	
PTK2	F	CCA GGA GAG AAT GAA GCA AA	
	R	CAA CAA ACT AAA GGG AGG GTA T]
MAPK1 (ERK2)	F	TCT GGA GCA GTA TTA CGA CCC	PrimerBank ID: 75709179c3
	R	CTG GCT GGA ATC TAG CAG TCT	
MAPK3(ERK1)	F	CTA CAC GCA GTT GCA GTA CAT	PrimerBank ID: 91718898c1
	R	CAG CAG GAT CTG GAT CTC CC	
CCND1	F	CAA TGA CCC CGC ACG ATT TC	PrimerBank ID: 77628152c3
	R	CAT GGA GGG CGG ATT GGA A	
МКІ67	F	GGT GCT TGA GGT CTG CTA	
	R	СТ С С Т Т С С С Т Т Т С С С Т Т Т С]
GAPDH	F	GTA TGA CAA CAG CCT CAA GAT	
	R	AGT CCT TCC ACG ATA CCA AA	1

Supplementary Table 1. Primer sequences. Forward (F) and Reverse (R) primer sequence summarized. Target genes are *ITGB1, PTK2, MAPK1/3, CCND1, MKI67* and *GAPDH*.