Supporting Information

Acid-Active Supramolecular Anticancer Nanoparticles Based on Cyclodextrin Polyrotaxanes Damaging both Mitochondria and Nuclei of Tumor Cells

Shuang Bai^{a,b}, Xiaoli Zhang^c, Xiaoqian Ma^{a,b}, Jiucun Chen^{a,b}, Qiubing Chen^{a,b},

Xiaoxiao Shi^{a,b}, Meili Hou^{a,b}, Peng Xue^{a,b}, Yuejun Kang^{a,b*}, Zhigang Xu^{a,b*}

^aInstitute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, P. R. China

^bChongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, P.R. China.

^cDepartment of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China

Z. Xu (<u>zgxu@swu.edu.cn</u>); Fax: +86-23-68253204; Tel: +86-23-68253792

Y. Kang (<u>yjkang@swu.edu.cn</u>); Fax: +86-23-68253204; Tel: +86-23-68254056

Figure S1. The synthetic route of MGMA

Figure S2. The synthetic route of PRMO@DOX and PRMO@DOX-Cy5.

Figure S3. ¹H NMR spectrum of MGMA monomer.

Figure S4. ¹H NMR spectrum of PRMO-1.

Figure S5. ¹H NMR spectrum of PRMO-1-hydrazide.

Figure S6. ¹H NMR spectrum of PRMO@DOX-1prodrug.

Figure S7. Zeta potential of PRMO@DOX-1, PRMO@DOX-2, PRMO@DOX-3 and PRMO@DOX-Cy5 in water medium. Data are presented as means \pm SD (n =3).

Figure S8. FT-IR spectra of DOX, PRMO-1, PRMO-1-hydrazide and PRMO@DOX-1.

Figure S9. PI-positive HeLa cells after treatment by PBS (control), PRMO@DOX-1, PRMO@DOX-2 and PRMO@DOX-3 for 24 h. Data are presented as means ± SD (n =3).

Figure S10. Flow cytometry analysis of HeLa cells after incubation with (A) PRMO@DOX-1, (B) PRMO@DOX-2, (C) PRMO@DOX-3 for 0.5h, 1h and 2h, respectively.

Sample	Size ^a (nm)	PDI ^b	D ^c (nm)	SD ^c (nm)	ζ-potential ^d
PRMO@DOX-1	63.56	0.352	41.1	6.2	4.78±0.65
PRMO@DOX-2	42.61	0.255	26.8	5.3	4.45±0.53
PRMO@DOX-3	21.1	0.25	13.2	4.2	4.8±0.35

Table S1. Size, polydispersity index (PDI) and ζ-potential of PRMO@DOX-1, PRMO@DOX-2 and PRMO@DOX-3 measured by DLS and TEM

^aSize and PDI^b of PRMO@DOX-1, PRMO@DOX-2 and PRMO@DOX-3 micelles in water were measured by DLS; ^cAverage diameter (D) and standard deviation (SD) were calculated by measuring 50 micelles in a TEM image.; ^dζ-potential were measured by DLS.