Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2018

Biomaterials Science

Degradable Redox-Responsive Disulfide-Based Nanogel Drug Carriers via Dithiol Oxidation Polymerization

Sussana A. Elkassih, Petra Kos, Hu Xiong, and Daniel J. Siegwart*

University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States

Electronic supplementary information (ESI)

Figure S1. (A) 2,2'-(ethylenedioxy)diethanethiol (EDDET) δ H(400 MHz; DMSO-d₆) 2.3 (2 H, m, CH₂), 2.6 (2 H, m, CH₂), 3.3 (2H, s, SH), and 3.5 (4 H, m, CH₂). (B) pentaerythritol tetramercaptoacetate (PETMA) δ H(400 MHz; DMSO-d₆) 3.3 (1 H, s, SH), 3.4 (2 H, s, CH₂), and 4.2 (2 H, 2, CH₂). (C) dithiothreitol (DTT) δ H(400 MHz; DMSO-d₆) 2.45 (2 H, m, CH), 2.55 (2 H, m, CH), 3.5 (2 H, s, SH), and 43.5 (2 H, 2, CH). (D) 1:50 monomer:cross-linker (mol/mol) bulk gel incubated with DTT reducing agent (2X free thiol molar equivalence) for 24 hr δ H(400 MHz; DMSO-d₆).

Figure S2. PETMA-based bulk hydrogels degraded in response to DTT to release Rhodamine B. All dye molecules were released within two minutes.

					1
Total Flow Rate (mL/min)	H ₂ O ₂ wt. %	DLS (nm)	Appearance	Ratio	Yield
12	3%	73	opaque blue sheen	1:10	22.41%
12	6%	69	opaque blue sheen	1:10	27.03%
12	12%	74	opaque blue sheen	1:10	40.39%
12	24%	70	opaque blue sheen	1:10	27.74%
12	30%		opaque blue sheen	1:10	N/A
nanoprecip.	3%	99	opaque blue sheen	1:10	28.63%

10

100 Size (d.nm)

Figure S3. Table listing different formulation conditions. Formulated nanogels were prepared using a microfluidic mixing instrument. An organic phase containing monomer, cross-linker, and base dissolved in water:acetone 1:1 (volume) solution was combined with an aqueous phase containing different weight percentages of H₂O₂. The ratio of organic:aqueous phase was 1:10 (volume) and the flow rate was 12 mL/min.

1000

Size (d.nm)

Α	Dynamic Light Scattering (DLS) of Different Mesh Size Nanogels (nm)								
	CL:M	Intensity	STDEV	Volume	STDEV	Number	STDEV		
	1 to 5	55.56	18.44	42.18	14.08	34.19	9.124		
	1 to 25	111.5	33.92	93.59	32.32	74.30	20.64		
	1 to 50	111.2	31.84	95.28	30.82	77.73	20.48		
	1 to 75	92.30	23.70	89.70	22.48	77.83	16.53		
	1 to 100	99.37	24.58	87.37	23.97	75.15	17.75		
_									

В

Figure S4. (A) Table of particle sizes of different PETMA nanogels of different cross-linking densities after dialysis purification. (B) Intensity-, number-, and volume-weighted DLS plots of corresponding nanogels. Formulated nanogels were prepared using a microfluidic mixing instrument. An organic phase containing monomer, cross-linker, and base dissolved in water: acetone 1:1 (volume) solution was combined with an aqueous phase containing 12 wt. % H₂O₂. The ratio of organic:aqueous phase was 1:10 (volume) and the flow rate was 12 mL/min. Particle sizes before after dialysis purification were measured by DLS.

Figure S5. Degradation of PETMA, Rhodamine B loaded nanogels after the addition of dithiothreitol (DTT) disulfide bond reducing agent. Degradation occurred in less than two minutes for this sample size (10 mg).

Figure S6. The optimum Rhodamine B dye concentration for analysis of cellular uptake was determined by incubating HeLa cells with increasing dye-loaded nanogel concentrations using the 1:25 nanogels for 24 hrs. HeLa cells were fixed using PFA and the nucleus stained with DAPI. Images taken on a confocal microscope at 40X magnification and images were analyzed using ImageJ.

Figure S7. HeLa cells were incubated with 5 wt. % Rhodamine B loaded nanogels with a final dye concentration of 23 ng/µL and incubated at different time points (0 min, 15 min, 1 hr, 3 hr, 6 hr, 15 hr, and 24 hr). HeLa cells were fixed using PFA and the nucleus stained with DAPI. Images taken on a confocal microscope at 40X magnification and images were analyzed using ImageJ.

Figure S8. HeLa cells were incubated with 5 wt. % Rhodamine B loaded nanogels with a final dye concentration of 23 ng/µL. HeLa cells were fixed using PFA and the nucleus stained with DAPI. Images taken at 40X magnification and scale bars represent 50 µm scale. Confocal images of (A) 1:25, (B) 1:50, (C) 1:75, and (D) 1:100, monomer:cross-linker (mol/mol) at the 24 hr time point. An overlay of bright field with Rhodamine B (red) and cell nuclei (blue) is shown.

Figure S9. Confocal images of HeLa cells were incubated with a free Rhodamine B dye at different time points (0 min, 15 min, 1 hr, 3 hr, 6 hr, and 24 hr) with a final dye concentration of 23 ng/ μ L. HeLa cells were fixed using PFA and the nucleus stained with DAPI. Images were taken at 20X magnification and scale bars represent 50 μ m scale.

Figure S10. (A) HeLa cells were incubated with 5 wt. % Rhodamine B loaded 1:75 monomer:cross-linker (mol/mol) nanogels for a 24 hr time period with a final dye concentration of 23 ng/ μ L. Images taken at 40X magnification and scale bars represent 50 μ m scale. (B) HeLa cells were incubated with free Rhodamine B dye for a 24 hr time period with a final dye concentration of 23 ng/ μ L. Images taken at 40X magnification and scale bars represent 50 μ m scale. (B) HeLa cells were incubated with free Rhodamine B dye for a 24 hr time period with a final dye concentration of 23 ng/ μ L. Images taken at 20X magnification and scale bars represent 50 μ m scale. HeLa cells were fixed using PFA and the nucleus stained with DAPI.