Bimetallic gold nanorods with enhanced biocorona formation for doxorubicin loading and sustained release

Debolina Chakraborty^{1a}, Lavanya Mohan^{1b}, Sruthi Ann Alex^b, Natarajan Chandrasekaran^b, Amitava Mukherjee^b*

^a School of Advanced Sciences, Vellore Institute of Technology, Vellore, India

^b Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India.

Supplementary Information

¹Both the authors have equal contribution

*Corresponding author

Dr. Amitava Mukherjee Senior Professor & Deputy Director Centre for Nanobiotechnology Vellore Institute of Technology, Vellore – 632014, India. Email: <u>amit.mookerjea@gmail.com</u>, <u>amitav@vit.ac.in</u> Phone: 91 416 2202620 Fax: 91-416-22430

Table S1 Mean hydrodynamic diameter (nm) of monometallic and bimetallic AuNRs with/without protein adsorption for drug loading at 24 h.

Samples	Mean hydrodynamic diameter (nm)	
	Control	With dox (120 µM)
AuNRs–HSA	128.55 ± 1.36	587.48 ± 2.18
AuNRs-Transferrin	125.23 ± 3.02	475.92 ± 2.22
AuNRs@Pd-HSA	187.31 ± 2.15	932.55 ± 3.58
AuNRs@Pd-Transferrin	174.56 ± 1.54	883.67 ± 4.49
AuNRs@Cu–HSA	160.11 ± 1.65	852.43 ± 3.48
AuNRs@Cu-Transferrin	162.56 ± 2.14	789.84 ± 5.27

Fig. S1 UV–visible graphs of monometallic AuNRs and bimetallic AuNRs.

Fig. S2 Doxorubicin payload % on coronated nanoparticles for different initial dox concentrations: (A) 10, (B) 20, (C) 50, and (D) 100 μ M. ***, **, and * are the statistical significance for encapsulation efficiency % assessed for bimetallic AuNRs in comparison to the respective monometallic form (i.e. p = 0.001, 0.01, 0.05, respectively).

Fig. S3 Cell viability % for different concentrations of free doxorubicin (0.25, 0.5, 1, 1.5, 2, and 2.5 μ M) for 24 and 48 h.