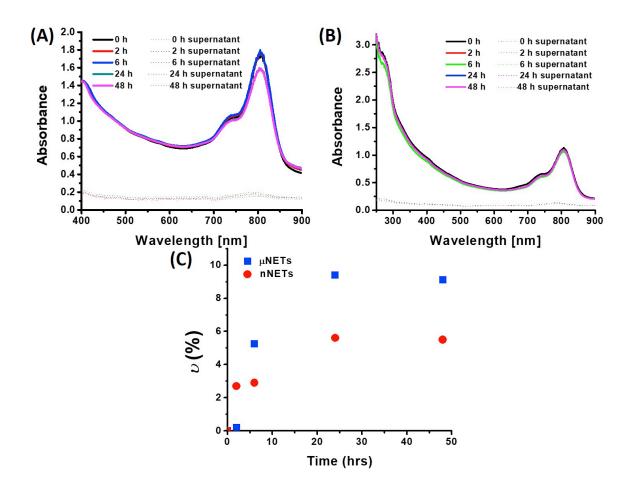
Appendix A. Electronic Supplementary Information

Biodistribution and toxicological evaluation of micron- and nano-sized erythrocyte-derived optical particles in healthy Swiss Webster mice

Raviraj Vankayala^a, Jenny T. Mac^b, Joshua M. Burns^a, Eugene Dunn^c, Stefanie Carroll^c, Edver M. Bahena^a, Dipti K. Patel^a, Stephen Griffey^c, Bahman Anvari^{a,b}*

(# equally contributed)

^aDepartment of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside CA 92521, USA


^bDepartment of Biochemistry, University of California, Riverside, 900 University Avenue, Riverside CA 92521, USA

^cComparative Pathology Laboratory, School of Veterinary Medicine, University of California, Davis, Sacramento, CA 95616, USA

*Email Address: <u>anvarib@ucr.edu</u>

Assessment of ICG leakage from µNETs and nNETs under physiological temperature

Absorption spectra of $\mu NETs$ and nNETs and their supernatants after centrifugation at physiological temperature in dark over a period of 48 hours are shown in Figs. S1(A) and (B), respectively. Using equation 2 (see manuscript text), the percentage leakage of ICG from $\mu NETs$ and nNETs were calculated as $\approx 9.1\%$ and 5.6%, respectively, at 48 hours post fabrication (Fig. S1(C)).

Fig. S1. Time-dependent absorption spectra of (A) μ NETs, and (B) nNETs and the corresponding supernatant solutions at 37 °C. (C) % ICG leakage (ν) from μ NETs and nNETs as a function of time.