Supporting Information (experimental procedures and spectra data) for

# Stereoselective Synthesis of *Podophyllum* Lignans Core by Intramolecular Reductive Nickel-catalysis

Jian Xiao, Xiao-Wei Cong, Gui-Zhen Yang, Ya-Wen Wang and Yu Peng\*

State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and

Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China

# pengyu@lzu.edu.cn

# **Table of Contents**

| • | General Procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S2    |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| • | Preparation of β-Bromo Acetals 2 (General Procedure A-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S3    |
| • | Preparation of β-Bromo Acetals <b>2</b> ( <i>General Procedure A-2</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S5    |
| • | Optimization of Tandem Cyclization (Tables S1-S4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S8    |
| • | Stereoselective Synthesis of Tetrahydronaphtho [2,3-c] furans 3 (General Production of Tetrahydronaphtho India Production of India P | edure |
|   | B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S10   |
| • | X-ray Crystal Data of <b>3a</b> ( <i>Table S5</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S12   |
| • | X-ray Crystal Data of <b>3a'</b> ( <i>Table S6</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S13   |
| • | X-ray Crystal Data of <b>3l'</b> ( <i>Table S7</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S31   |
| • | Preparation of β-Bromo Acetal <b>2p</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S36   |
| • | Preparation of β-Bromo Acetal <b>2q</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S40   |
| • | X-ray Crystal Data of <b>3s'</b> ( <i>Table S8</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S46   |

#### **General Procedure**

For product purification by flash column chromatography, SiliaFlash P60 (particle size: 40~63 μm, pore size 60A) and petroleum ether (bp. 60~90 °C) were used. All solvents were purified and dried by standard techniques and distilled prior to use. All of experiments were conducted under an argon or nitrogen atmosphere in oven-dried or flame-dried glassware with magnetic stirring, unless otherwise specified. Organic extracts were dried over Na<sub>2</sub>SO<sub>4</sub> or MgSO<sub>4</sub>, unless otherwise noted. IR spectra were recorded on a *Nicolet* FT-170SX spectrometer. <sup>1</sup>H and <sup>13</sup>C NMR spectra were taken on a *Bruker* AM-400, AM-600 and Varian mercury 300 MHz spectrometer with TMS as an internal standard and CDCl<sub>3</sub> as solvent unless otherwise noted. ESI–MS was obtained on *Bruker* esquire 6000 spectrometer. HRMS were determined on a *Bruker Daltonics* APEXII 47e FT-ICR spectrometer with ESI positive ion mode. EI–MS was obtained on GC/MS QP-2010 SE. The X-ray diffraction studies were carried out on a Bruker SMART Apex CCD area detector diffractometer equipped with graphite-monochromated Cu or Mo-Kα radiation source. Melting points were measured on *Kofler* hot stage and are uncorrected.

The following chemicals were purchased and used as received: Zn (99.9%, dust), NiCl<sub>2</sub> (99%), NiCl<sub>2</sub>•DME (97%), crotonic acid (98%), pyridine (99.5%, SuperDry, with molecular sieves), DMA (99.5%, Extra Dry, with molecular sieves), DMF (99.8%, Extra Dry, with molecular sieves), triethyl phosphonoacetate (98%), (S)-4-phenyl-2-oxazolidinone (99%), CuBr•SMe<sub>2</sub> (99%), TMSOTf (99%), 2,4,4,6-tetrabromo-2,5-cyclohexadienone (97%).

### Preparation of β-Bromo Acetals 2 (General Procedure A-1)

To a stirred solution of commercially available or known *o*-iodophenylacetic acids<sup>1</sup> (10 mmol) in MeOH (20 mL) was added conc. H<sub>2</sub>SO<sub>4</sub> (5 mL) at 0 °C. The mixture was gradually warmed to room temperature, stirred for 10 min, and then was refluxed for 3 h. Finally, the reaction mixture was cooled to room temperature, and the solvent was evaporated in vacuo. The residue was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 50 mL). The combined organic layers were washed with saturated aqueous NaHCO<sub>3</sub> (2 × 20 mL), water (1 × 20 mL) and brine (20 mL) respectively, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The resulting esters could be used directly for the next reaction without further purification.

To a stirred solution of the corresponding ester (10 mmol) in anhydrous THF (30 mL) was added DIBAL-H (1.0 M in hexanes, 21 mL, 21 mmol, 2.1 equiv) dropwise at -78 °C. The mixture was gradually warmed to room temperature, and stirred further for 6 h. The reaction was quenched with H<sub>2</sub>O (20 mL) at 0 °C. The mixture was acidified to pH = 1 with conc. HCl, and extracted EtOAc (3 × 40 mL). The combined organic layers were washed with water (20 mL) and brine (20 mL) respectively, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The resulting alcohol (ca. 10 mmol) was dissolved in anhydrous EtOAc (40 mL) followed by the addition of IBX (4.200 g, 15 mmol, 1.5 equiv). The mixture was heated to 80 °C and stirred for 2 h and then cooled to room temperature. The reaction mixture was then filtered through Celite and the filtrate was evaporated to give the expected aldehyde, which could be used directly for the next reaction without further purification.

 <sup>(1) (</sup>a) Mei, T.-S.; Wang, D.-H.; Yu, J.-Q. Org. Lett. 2010, 12, 3140.
 (b) Qandil, A. M.; Miller, D. W.; Nichols, D. E. Synthesis 1999, 2033.

This step is adapted from a known procedure.<sup>2</sup> t-BuOK (98%, 1.257 g, 11 mmol, 1.1 added portions equiv) was in a suspension to (methoxymethyl)triphenylphosphonium chloride (4.116 g, 12.0 mmol, 1.2 equiv) in THF (30 mL) at 0 °C. After stirring for 40 min at 0 °C, a solution of the above 2-(2-iodophenyl)acetaldehyde (ca. 10 mmol) in THF (10 mL) was added dropwise. The resulting mixture was gradually warmed to room temperature, and stirred further for 4 h. The reaction was then quenched by the addition of saturated aqueous NH<sub>4</sub>Cl solution (3 mL). The resulting mixture was extracted with EtOAc (3  $\times$  50 mL), and the combined organic layers were washed with water (2 × 20 mL) and brine (20 mL) respectively, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether/EtOAc =  $60: 1 \rightarrow \text{petroleum ether/EtOAc} = 10: 1)$  on silica gel to afford the corresponding enol methylether as a colorless oil.

This step is adapted from a known procedure.<sup>3</sup> In a 50 mL round-bottom flask, Br<sub>2</sub> (0.09 mL, 1.8 mmol, 1.0 equiv) was dissolved in anhydrous CH<sub>2</sub>Cl<sub>2</sub> (5 mL) and cooled to -78 °C. To the resulting solution was added the above enol methylether (1.8 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5 mL) dropwise over a 2 min period. The mixture was then stirred for 40 min at -78 °C followed by the addition of a solution of allyl alcohol (36 mmol, 20.0 equiv) and *N*,*N*-dimethylaniline (0.5 mL, 3.6 mmol, 2.0 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (5 mL) dropwise. The resulting mixture was gradually warmed to room temperature, stirred for 9 h, and quenched with saturated aqueous NaHCO<sub>3</sub> (2 mL). The reaction mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 40 mL), and the combined organic layers were washed with HCl (3*N*, 15 mL), water (2 × 15 mL) and brine (15 mL) respectively, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether/EtOAc = 30 : 1  $\rightarrow$  petroleum ether/EtOAc = 10 : 1) on silica gel to afford the corresponding  $\beta$ -bromo acetal 2 as a colorless oil.

<sup>(2)</sup> Jiménez-Núñez, E.; Raducan, M.; Lauterbach, T.; Molawi, K.; Solorio, C. R.; Echavarren, A. M. *Angew. Chem., Int. Ed.* **2009**, *48*, 6152.

<sup>(3)</sup> Zhang, J.-J.; Yan, C.-S.; Peng, Y.; Luo, Z.-B.; Xu, X.-B.; Wang, Y.-W. *Org. Biomol. Chem.* **2013**, *11*, 2498, and references cited therein.

### Preparation of β-Bromo Acetals 2 (General Procedure A-2)

FG 
$$\xrightarrow{\text{CO}_2\text{H}}$$
  $\xrightarrow{\text{H}_2\text{SO}_4, \text{MeOH};}$   $\xrightarrow{\text{DIBAL-H then IBX}}$  FG  $\xrightarrow{\text{CHO}}$   $\xrightarrow{\text{CHO}}$ 

*o*-Iodo( or Bromo)benzaldehydes were prepared according to the corresponding protocol in *General Procedure A-1*.

t-BuOK (98%, 2.286 g, 20 mmol, 2.0 equiv) was added in portions to a suspension of (methoxymethyl)triphenylphosphonium chloride (7.203 g, 21 mmol, 2.1 equiv) in THF (30 mL) at 0 °C. After stirring for 40 min at 0 °C, a solution of the above o-iodo( or bromo)benzaldehyde (10 mmol) in THF (15 mL) was added dropwise and the resulting mixture was gradually warmed to room temperature, and stirred for 4 h. The reaction was guenched by addition of saturated aqueous NH<sub>4</sub>Cl solution (5 mL). The mixture was extracted with EtOAc (3  $\times$  50 mL), and the combined organic layers were washed with water (2 × 20 mL) and brine (20 mL) respectively, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether/EtOAc = 60 : 1 → petroleum ether/EtOAc = 10:1) on silica gel. The resulting enol ether was dissolved in acetone (25 mL) followed by the addition of 2N HCl (4 mL) at room temperature. The mixture was heated to 60 °C and stirred for 2 h, and then cooled to room temperature. The solvent was evaporated in vacuo, and the residue was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 40 mL), and the combined organic layers were washed with saturated aqueous NaHCO<sub>3</sub> (2 × 20 mL), water (20 mL) and brine (20 mL) respectively, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The resulting phenylacetaldehyde could be used directly for the next reaction without further purification.

*t*-BuOK (98%, 1.143 g, 10 mmol, 1.0 equiv) was added in portions to a suspension of (methoxymethyl)triphenylphosphonium chloride (4.116 g, 12 mmol, 1.2 equiv) in

THF (25 mL) at 0 °C. After stirring for 40 min at 0 °C, a solution of the above 2-(2-iodophenyl)acetaldehyde (10 mmol) in THF (10 mL) was added dropwise and the resulting mixture was gradually warmed to room temperature, and stirred for 4 h. The reaction was quenched by the addition of saturated aqueous NH<sub>4</sub>Cl solution (3 mL). The mixture was extracted with EtOAc (3 × 40 mL), and the combined organic layers were washed with water (2 × 20 mL) and brine (20 mL) respectively, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether/EtOAc = 80 : 1  $\rightarrow$  petroleum ether/EtOAc = 10 : 1) on silica gel to afford the corresponding enol methylether as a colorless oil.

The following synthesis of  $\beta$ -bromo acetal **2** was completed according to the corresponding protocol in *General Procedure A-1*.

In a 25 mL round-bottom flask, allyl alcohol (2.4 mL, 35 mmol, 50 equiv) was dissolved in anhydrous  $CH_2Cl_2$  (5 mL) and cooled to -45 °C. To the stirred solution were added the above enol methylether (0.7 mmol) and  $Et_3N$  (0.1 mL, 0.7 mmol, 1.0 equiv), followed by the addition of NIS (99%, 159 mg, 0.7 mmol, 1.0 equiv). The resulting mixture was gradually warmed to room temperature, and stirred for 36 h. The mixture was then extracted with  $CH_2Cl_2$  (3 × 20 mL), and the combined organic layers were washed with water (2 × 10 mL) and brine (10 mL) respectively, dried over  $Na_2SO_4$ , filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether/EtOAc = 25 : 1  $\rightarrow$  petroleum ether/EtOAc = 5 : 1) on silica gel to afford 2ab or 2ac.

**2a** was prepared as a colorless oil (2.800 g, 59% overall yield, dr = 2 : 1) according to *General Procedure A-2*.  $R_f$  = 0.59 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 3078, 2898, 2837, 1647, 1619, 1545, 1502, 1477, 1347, 1256, 1228, 1117, 1042, 933, 861, 648 cm<sup>-1</sup>; (*major isomer*) <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.24 (s, 1H),

6.82 (s, 1H), 6.05–5.90 (m, 1H), 5.97 (s, 2H), 5.36 (dd, J = 17.1, 1.5 Hz, 1H), 5.24 (dd, J = 10.5, 1.2 Hz, 1H), 4.56 (d, J = 3.9 Hz, 1H), 4.31–4.23 (m, 2H), 4.17 (dd, J = 12.9, 6.0 Hz, 1H), 3.50 (s, 3H), 3.44 (dd, J = 14.7, 3.6 Hz, 1H), 3.03 (dd, J = 14.7, 10.5 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): $\delta = 148.1$ , 147.4, 133.9, 133.8, 118.6, 117.7, 111.5, 104.4, 101.6, 87.9, 69.2, 56.0, 53.7, 42.9 ppm; HRMS (ESI): m/z calcd for  $C_{14}H_{16}O_4^{79}BrINa^+$  [M+Na]<sup>+</sup>: 476.9169, found: 476.9171.

**2aa** was prepared as a yellow oil (1.300 g, 68% overall yield, dr = 2 : 1) according to *General Procedure A-2*.  $R_f$  = 0.63 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 3078, 2898, 2836, 1647, 1624, 1503, 1479, 1410, 1352, 1231, 1119, 1041, 933, 860, 833, 656 cm<sup>-1</sup>; (*major isomer*) <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.00 (s, 1H), 6.79 (s, 1H), 6.01–5.91 (m, 1H), 5.97 (s, 2H), 5.35 (dd, J = 17.1, 1.5 Hz, 1H), 5.23 (dd, J = 10.5, 0.9 Hz, 1H), 4.56 (d, J = 4.2 Hz, 1H), 4.34–4.22 (m, 2H), 4.15 (ddd, J = 12.3, 5.7, 0.9 Hz, 1H), 3.51 (dd, J = 14.7, 3.6 Hz, 1H), 3.49 (s, 3H), 2.96 (dd, J = 14.7, 10.8 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 147.3, 146.9, 133.8, 130.4, 117.6, 114.5, 112.6, 111.9, 104.3, 101.6, 69.1, 55.7, 53.4, 38.8 ppm; HRMS (ESI): m/z calcd for  $C_{14}H_{16}O_4^{79}Br_2Na^+$  [M+Na]<sup>+</sup>: 428.9308, found: 428.9306.

**2ab** was prepared as a yellow oil (275 mg, 61% overall yield, dr = 2 : 1) according to *General Procedure A-2*.  $R_f$  = 0.58 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 3079, 2922, 1503, 1648, 1624, 1503, 1478, 1410, 1353, 1248, 1231, 1117, 1040, 933, 860, 654 cm<sup>-1</sup>; (*major isomer*) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 6.98 (s, 1H), 6.76 (s, 1H), 6.08–5.89 (m, 1H), 5.97 (s, 2H), 5.35 (dd, J = 17.2, 1.2 Hz, 1H), 5.23 (d, J = 9.2 Hz, 1H), 4.42 (t, J = 4.8 Hz, 1H), 4.27 (d, J = 4.0 Hz, 1H), 4.17 (dd, J = 16.0,

5.2 Hz, 1H), 4.10 (dd, J = 12.4, 5.6 Hz, 1H), 3.44 (s, 3H), 3.38 (dd, J = 14.4, 4.0 Hz, 1H), 3.05 (dd, J = 14.8, 10.4 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 147.4$ , 147.0, 133.9, 131.7, 117.6, 114.6, 112.7, 111.6, 104.7, 101.7, 69.1, 55.4, 40.5, 34.2 ppm; HRMS (ESI): m/z calcd for  $C_{14}H_{16}O_4^{79}BrINa^+$  [M+Na]<sup>+</sup>: 476.9169, found: 476.9164.

**2ac** was prepared as a yellow oil (281 mg, 60% overall yield, dr = 1 : 1) according to *General Procedure A-2*.  $R_f$  = 0.59 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{max}$  = 3077, 2900, 1646, 1600, 1502, 1476, 1406, 1385, 1346, 1229, 1115, 1040, 933, 860, 737, 644 cm<sup>-1</sup>; (*major isomer*) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.23 (s, 1H), 6.79 (s, 1H), 6.00–5.90 (m, 1H), 5.98 (s, 2H), 5.33 (dd, J = 17.2, 1.6 Hz, 1H), 5.22 (d, J = 10.0 Hz, 1H), 4.40 (t, J = 4.4 Hz, 1H), 4.29–4.22 (m, 1H), 4.19 (d, J = 4.0 Hz, 1H), 4.11 (dd, J = 12.8, 6.0 Hz, 1H), 3.49 (s, 3H), 3.33 (dd, J = 14.8, 5.6 Hz, 1H), 3.11 (dd, J = 14.8, 10.0 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 148.1, 147.4, 135.2, 133.9, 118.7, 117.6, 111.1, 104.4, 101.6, 87.9, 69.2, 55.4, 44.8, 34.7 ppm; HRMS (ESI): m/z calcd for C<sub>14</sub>H<sub>16</sub>O<sub>4</sub>I<sub>2</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 524.9030, found: 524.9029.

#### **Optimization of Tandem Cyclization**

**Table S1. Screening of Solvents** 

| Entry <sup>a</sup> | Solvent            | $3a$ , Yield $^b$ (%) | <b>3a'</b> , Yield <sup>b</sup> (%) | Recovered 2a (%) |
|--------------------|--------------------|-----------------------|-------------------------------------|------------------|
| 1                  | DMPU               | 38                    | 15                                  | 29               |
| 2                  | МеОН               | 24                    | 9                                   | 47               |
| 3                  | DMF                | 38                    | 13                                  | 37               |
| 4                  | CH <sub>3</sub> CN | 50                    | 24                                  | 7                |

| 5 | <b>DMA</b> | 56 | 28 | 3  |
|---|------------|----|----|----|
| 6 | Toluene    | 42 | 20 | 21 |

<sup>&</sup>lt;sup>a</sup> Reaction conducted on 0.6 mmol scale: A mixture of Zn (0.72 mmol), NiCl<sub>2</sub>•DME (0.12 mmol), ethyl crotonate (0.72 mmol), and pyridine (1.0 mL) were employed for the generation of active Ni<sup>0</sup> catalyst at 55 °C; then a solution of **2a** (0.6 mmol) in the indicated solvent (6 mL) was added to the above Ni<sup>0</sup> complex dropwise at 24 °C. The resulting mixture was stirred for 3 h and then work up. <sup>b</sup> The isolated yield was shown.

Table S2. Screening of Ligands

| Entry <sup>a</sup> | Ligand                         | <b>3a</b> , Yield <sup>b</sup> (%) | $3a'$ , Yield $^b$ (%) | Recovered 2a (%) |
|--------------------|--------------------------------|------------------------------------|------------------------|------------------|
| 1 <sup>c</sup>     | 2,2'-bipy                      | 35                                 | 18                     | 25               |
| $2^c$              | 4,4'-di- <i>tBu</i> -2,2'-bipy | 29                                 | 14                     | 47               |
| 3 <sup>c</sup>     | 4,4'-di-OMe-2,2'-bipy          | 27                                 | 13                     | 51               |
| 4 <sup>c</sup>     | 1,10-phen                      | N.D.                               | N.D.                   | 92               |
| 5 <sup>c</sup>     | 4,7-di-Ph-1,10-phen            | N.D.                               | N.D.                   | 92               |
| $6^d$              | EC                             | 56                                 | 28                     | 3                |

<sup>&</sup>lt;sup>a</sup> Reaction conducted on 0.6 mmol scale: A mixture of Zn, NiCl<sub>2</sub>•DME (0.12 mmol), ligand, and pyridine (1.0 mL) were employed for the generation of active Ni<sup>0</sup> catalyst at 55 °C; then a solution of **2a** (0.6 mmol) in DMA (6 mL) was added to the above Ni<sup>0</sup> complex dropwise at 24 °C. The resulting mixture was stirred for 3 h and then work up. <sup>b</sup> The isolated yield was shown. <sup>c</sup> Zn was used with 3 equiv to Ni and *N*-ligand was used with 1.2 equiv to Ni. <sup>d</sup> Zn and ethyl crotonate were used with 6 equiv to Ni.

Table S3. Optimization of Tandem Cyclization: Screening of Ni Salts

| Entry <sup>a</sup> | $NiX_2$               | <b>3a</b> , Yield <sup>b</sup> (%) | <b>3a'</b> , Yield <sup>b</sup> (%) | Recovered 2a (%) |
|--------------------|-----------------------|------------------------------------|-------------------------------------|------------------|
| 1                  | NiCO <sub>3</sub>     | N.D.                               | N.D.                                | 98               |
| 2                  | Ni(OTf) <sub>2</sub>  | N.D.                               | N.D.                                | 100              |
| 3                  | Ni(acac) <sub>2</sub> | N.D.                               | N.D.                                | 98               |
| 4                  | $NiI_2$               | 25                                 | 9                                   | 50               |

| 5 | NiCl <sub>2</sub> | 54 | 26 | 4 |
|---|-------------------|----|----|---|
| 6 | $NiCl_2$ • $DME$  | 56 | 28 | 3 |

<sup>&</sup>lt;sup>a</sup> Reaction conducted on 0.6 mmol scale: A mixture of Zn (0.72 mmol), NiX<sub>2</sub> (0.12 mmol), ethyl crotonate (0.72 mmol), and pyridine (1.0 mL) were employed for the generation of active Ni<sup>0</sup> catalyst at 55 °C; then a solution of **2a** (0.6 mmol) in DMA (6 mL) was added to the above Ni<sup>0</sup> complex dropwise at 24 °C. The resulting mixture was stirred for 3 h and then work up. <sup>b</sup> The isolated yield was shown. N.D. = No detection.

Table S4. Investigation of Ni Loading

| Entry <sup>a</sup> | x mol% | Time (h) | <b>3a</b> , Yield <sup>b</sup> (%) | <b>3a'</b> , Yield <sup>b</sup> (%) | Recovered 2a (%) |
|--------------------|--------|----------|------------------------------------|-------------------------------------|------------------|
| 1                  | 100    | 2        | 57                                 | 28                                  | N.D.             |
| 2                  | 50     | 3        | 56                                 | 28                                  | N.D.             |
| 3                  | 30     | 3        | 56                                 | 28                                  | 2                |
| 4                  | 20     | 3        | 56                                 | 28                                  | 3                |
| 5                  | 20     | 24       | 56                                 | 28                                  | 3                |
| 6                  | 15     | 24       | 26                                 | 12                                  | 55               |
| 7                  | 15     | 36       | 26                                 | 12                                  | 55               |
| 8                  | 15     | 36       | 27                                 | 12                                  | 54               |
| 9                  | 10     | 36       | 7                                  | 2                                   | 74               |

<sup>&</sup>lt;sup>a</sup> Reaction conducted on 0.6 mmol scale: A mixture of Zn (0.72 mmol), NiCl<sub>2</sub>•DME (X mmol), ethyl crotonate (0.72 mmol), and pyridine (1.0 mL) were employed for the generation of active Ni<sup>0</sup> catalyst at 55 °C; then a solution of **2a** (0.6 mmol) in DMA (6 mL) was added to the above Ni<sup>0</sup> complex dropwise at 24 °C. The resulting mixture was stirred for the indicated time and then work up. <sup>b</sup> The isolated yield was shown.

## Stereoselective Synthesis of Tetrahydronaphtho [2, 3-c] furans

(General Procedure B)

To a stirred slurry of Zn (47 mg, 0.72 mmol, 1.2 equiv) and NiCl<sub>2</sub>•DME<sup>4</sup> (26.4 mg, 0.12 mmol, 0.2 equiv) in pyridine (1 mL) was added ethyl crotonate (89  $\mu$ L, 0.72 mmol, 1.2 equiv) at room temperature. The temperature then rose to 55 °C, and stirring (300 r/min) was continued for 15 min. The resulting red-brown complex was cooled to 24 °C, and a solution of  $\beta$ -bromo acetal **2** (0.6 mmol) in DMA (6 mL) was added dropwise. After stirring for 3 h, the reaction mixture was filtered with a short plug of silica (elution with 20 mL of EtOAc). The filtrate was extracted with EtOAc (2 × 40 mL), and the combined organic layers were washed with water (2 × 10 mL) and brine (10 mL) respectively, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated. The crude product was purified by flash column chromatography on silica gel to afford desired **3** and **3**′.

3a was prepared as a white solid (84 mg, 56% yield) according to *General Procedure B*.  $R_f$  = 0.57 (petroleum ether/EtOAc = 4 : 1); Mp. 117–119 °C; IR (film):  $v_{\text{max}}$  = 2954, 2937, 2869, 1501, 1485, 1469, 1452, 1374, 1358, 1304, 1244, 1186, 1159, 1111, 1064, 1045, 1008, 928, 855, 766, 731, 535 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): δ = 6.66 (s, 1H), 6.61 (s, 1H), 5.89 (s, 2H), 4.96 (d, J = 4.8 Hz, 1H), 4.07 (t, J = 7.5 Hz, 1H), 3.56 (t, J = 7.2 Hz, 1H), 3.36 (s, 3H), 2.78 (dd, J = 13.8, 8.1 Hz, 1H), 2.65 (dd, J = 12.3, 8.4 Hz, 1H), 2.58–2.38 (m, 4H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ = 145.6, 145.3, 132.3, 131.2, 108.3, 108.0, 105.5, 100.5, 70.6, 54.9, 43.2, 38.6, 32.5, 27.2 ppm; HRMS (ESI): m/z calcd for  $C_{14}H_{20}O_4N^+$  [M+NH<sub>4</sub>]<sup>+</sup>: 266.1387, found: 266.1390. This product (5 mg) was dissolved in EtOAc (0.6 mL), petroleum ether (1 mL) and hexane (1 mL). After 4 days, colorless single crystals were obtained by slow evaporation of solvent at room temperature.

<sup>(4)</sup> It could be prepared according to a known procedure, see: Boudier, A.; Breuil, P.-A. R.; Magna, L.; Olivier-Bourbigou, H.; Braunstein, P. *J. Organomet. Chem.* **2012**, *718*, 31. This nickel salt is also available from Strem (No. 93-2801).

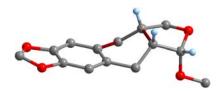



Table S5: X-ray crystal data of 3a (selected H atoms have been omitted for clarity)

| , ,                                       | • /                                                 |
|-------------------------------------------|-----------------------------------------------------|
| Empirical formula                         | $C_{14}H_{16}O_4$                                   |
| Temperature (K)                           | 292.9(5)                                            |
| Crystal color                             | colorless                                           |
| Formula weight                            | 248.27                                              |
| Crystal system                            | Monoclinic                                          |
| Space group                               | $P2_1/n$                                            |
| a (Å)                                     | 13.2065(13)                                         |
| b (Å)                                     | 6.4912(5)                                           |
| c (Å)                                     | 14.9358(16)                                         |
| α (°)                                     | 90.00                                               |
| β (°)                                     | 110.261(11)                                         |
| γ (°)                                     | 90.00                                               |
| $V(\text{Å}^3)$                           | 1201.16(19)                                         |
| Z                                         | 4                                                   |
| Density (calculated) (g/cm <sup>3</sup> ) | 1.373                                               |
| F (000)                                   | 528                                                 |
| λ (Å)                                     | 0.71073                                             |
| Reflections collected                     | 5484                                                |
| Independent reflections                   | 2726                                                |
| $\theta$ Range for data collection (°)    | 3.29—28.56                                          |
|                                           | $-10 \le h \le 17$                                  |
| Index range                               | $-8 \le k \le 4$                                    |
| Final <i>R</i> indices $[I>2\sigma(I)]$   | $-18 \le l \le 18$<br>$R_1 = 0.0690, wR_2 = 0.1882$ |
| Largest difference peak and hole [e Å -3] | 0.410, -0.232                                       |
| 9-2                                       | ,                                                   |

**3a'** was prepared as a white solid (42 mg, 28% yield) according to *General Procedure B. R<sub>f</sub>* = 0.40 (petroleum ether/EtOAc = 4 : 1); Mp. 120–122 °C; IR (film):  $v_{\text{max}}$  = 2921, 2846, 1503, 1483, 1440, 1388, 1226, 1095, 1038, 991, 933, 856, 760, 660 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 6.59 (s, 1H), 6.56 (s, 1H), 5.90 (s, 2H), 4.85 (d, J = 6.4 Hz, 1H), 4.11 (t, J = 7.6 Hz, 1H), 3.68 (dd, J = 10.4, 7.6 Hz, 1H), 3.49 (s, 3H), 2.98 (dd, J = 15.6, 5.2 Hz, 1H), 2.82 (dd, J = 15.6, 5.2 Hz, 1H), 2.67 (dd, J = 13.2, 12.8 Hz, 1H), 2.60 (dd, J = 13.6, 12.8 Hz, 1H), 2.16–2.05 (m, 1H), 1.92 (ddd, J = 18.0, 12.4, 5.6 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 146.0 (2C), 128.7, 128.4, 109.8, 109.3, 109.1, 100.8, 71.6, 56.5, 48.2, 41.7, 31.9, 31.4 ppm; HRMS (ESI): m/z calcd for C<sub>14</sub>H<sub>16</sub>O<sub>4</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 271.0941, found: 271.0939. This product was dissolved in EtOAc (0.5 mL), DCM (0.5 mL) and hexane (2 mL). After 5 days, colorless single crystals were obtained by slow evaporation of solvent at room temperature.

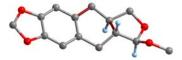



Table S6: X-ray crystal data of 3a' (selected H atoms have been omitted for clarity)

| Empirical formula                         | $C_{14}H_{16}O_4$ |
|-------------------------------------------|-------------------|
| Temperature (K)                           | 293(2)            |
| Crystal color                             | colorless         |
| Formula weight                            | 248.27            |
| Crystal system                            | Monoclinic        |
| Space group                               | $P2_1/n$          |
| a (Å)                                     | 5.0801(7)         |
| b (Å)                                     | 17.337(3)         |
| c (Å)                                     | 13.987(2)         |
| α (°)                                     | 90.00             |
| β (°)                                     | 95.513(14)        |
| γ (°)                                     | 90.00             |
| $V(\text{Å}^3)$                           | 1226.2(3)         |
| Z                                         | 4                 |
| Density (calculated) (g/cm <sup>3</sup> ) | 1.345             |
|                                           |                   |

| F (000)                                   | 528                                                          |
|-------------------------------------------|--------------------------------------------------------------|
| λ (Å)                                     | 1.54184                                                      |
| Reflections collected                     | 4114                                                         |
| Independent reflections                   | 2298                                                         |
| $\theta$ Range for data collection (°)    | 4.072—70.780                                                 |
| Index range                               | $-6 \le h \le 5$<br>$-15 \le k \le 20$<br>$-16 \le l \le 15$ |
| Final $R$ indices $[I > 2\sigma(I)]$      | $R_1 = 0.0671, wR_2 = 0.1855$                                |
| Largest difference peak and hole [e Å -3] | 0.261, -0.252                                                |
|                                           |                                                              |

**2b** was prepared as a colorless oil (700 mg, 71% overall yield, dr = 1 : 1) according to *General Procedure A-1*.  $R_f$  = 0.67 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 3061, 2926, 2854, 1648, 1587, 1563, 1466, 1437, 1348, 1261, 1197, 1126, 1054, 1012, 919, 751, 647 cm<sup>-1</sup>; (*major isomer*) <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.83 (d, J = 7.8 Hz, 1H), 7.30 (d, J = 4.5 Hz, 2H), 6.96 (dd, J = 8.1, 4.2 Hz, 1H), 5.98 (ddd, J = 17.1, 10.5, 5.4 Hz, 1H), 5.35 (dd, J = 17.1, 1.5 Hz, 1H), 5.24 (dd, J = 10.5, 1.2 Hz, 1H), 4.59 (d, J = 3.9 Hz, 1H), 4.39–4.35 (m, 1H), 4.31–4.23 (m, 1H), 4.22–4.12 (m, 1H), 3.54 (dd, J = 14.7, 3.3, Hz, 1H), 3.51 (s, 3H), 3.13 (dd, J = 14.7, 10.5 Hz, 1H) ppm; <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  = 140.6, 139.5, 133.8, 131.7, 128.6, 128.0, 117.6, 104.4, 100.4, 69.2, 55.9, 53.3, 43.1 ppm; HRMS (ESI): m/z calcd for  $C_{13}H_{16}O_2^{79}BrINa^+$  [M+Na]<sup>+</sup>: 432.9271, found: 432.9277.

**3b** was prepared as a colorless oil (65 mg, 53% yield) according to *General Procedure B*.  $R_f = 0.62$  (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}} = 3067$ , 3019, 2933, 2874, 2830, 1583, 1546, 1488, 1457, 1369, 1225, 1183, 1108, 1070, 1020, 939,

897, 749 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.14–7.08 (m, 4H), 4.98 (d, J = 5.2 Hz, 1H), 4.10 (t, J = 8.0 Hz, 1H), 3.60 (t, J = 8.0 Hz, 1H), 3.37 (s, 3H), 2.88 (dd, J = 14.4, 9.6 Hz, 1H), 2.75 (dd, J = 13.2, 4.8 Hz, 1H), 2.67 (dd, J = 14.4, 6.8 Hz, 1H), 2.57–2.50 (m, 1H), 2.52 (dd, J = 12.8, 10.0 Hz, 1H), 2.47–2.40 (m, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 139.4, 138.5, 127.5, 127.1, 126.1, 125.8, 105.5, 70.8, 54.8, 43.1, 38.4, 32.7, 27.2 ppm; HRMS (ESI): m/z calcd for C<sub>13</sub>H<sub>16</sub>O<sub>2</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 227.1043, found: 227.1046.

**3b'** was prepared as a white solid (38 mg, 31% yield) according to *General Procedure B*.  $R_f = 0.50$  (petroleum ether/EtOAc = 4 : 1); Mp. 93–94 °C; IR (film):  $v_{\text{max}} = 3063$ , 2923, 2847, 1598, 1491, 1450, 1437, 1398, 1236, 1116, 994, 923, 850, 747, 659 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.14-7.10$  (m, 4H), 4.87 (d, J = 6.4 Hz, 1H), 4.13 (dd, J = 7.6, 6.4 Hz, 1H), 3.70 (dd, J = 10.4, 7.6 Hz, 1H), 3.49 (s, 3H), 3.11 (dd, J = 15.6, 4.8 Hz, 1H), 2.94 (dd, J = 15.6, 4.8 Hz, 1H), 2.75 (dd, J = 16.0, 12.8 Hz, 1H), 2.69 (dd, J = 16.0, 10.4 Hz, 1H), 2.20–2.08 (m, 1H), 1.95 (ddd, J = 17.6, 12.0, 5.6 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 135.9$ , 135.5, 129.9, 129.7, 126.07, 126.05, 109.9, 71.7, 56.5, 48.0, 41.6, 31.8, 31.4 ppm; HRMS (ESI): m/z calcd for  $C_{13}H_{16}O_2Na^+$  [M+Na]<sup>+</sup>: 227.1043, found: 227.1045.

**2c** was prepared as a colorless oil (540 mg, 40% overall yield, dr = 1 : 1) according to *General Procedure A-2*.  $R_f$  = 0.74 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 3053, 2956, 2928, 2867, 1647, 1587, 1557, 1448, 1349, 1268, 1196, 1129, 1057, 920, 769, 736, 644, 561 cm<sup>-1</sup>; (*major isomer*) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.70 (d, J = 8.0 Hz, 1H), 7.14 (d, J = 7.2 Hz, 1H), 6.82 (t, J = 8.0 Hz, 1H), 6.00–5.90 (m,

1H), 5.33 (dd, J = 17.2, 1.6 Hz, 1H), 5.21 (dd, J = 10.8, 1.6 Hz, 1H), 4.62–4.55 (m, 2H), 4.25 (dd, J = 12.8, 5.6 Hz, 1H), 4.15 (dd, J = 12.8, 5.6 Hz, 1H), 3.48 (s, 3H), 3.42 (d, J = 4.8 Hz, 1H), 3.41 (d, J = 7.2 Hz, 1H), 2.46 (s, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 139.2$ , 139.1, 138.0, 133.9, 130.8, 128.5, 117.4, 104.4, 101.9, 69.3, 55.2, 52.9, 39.3, 21.7 ppm; HRMS (ESI): m/z calcd for  $C_{14}H_{18}O_{2}^{79}BrINa^{+}$  [M+Na]<sup>+</sup>: 446.9427, found: 446.9426.

**3c** was prepared as a white solid (65 mg, 50% yield) according to *General Procedure B*.  $R_f$  = 0.68 (petroleum ether/EtOAc = 4 : 1); Mp. 103–105 °C; IR (film):  $v_{\text{max}}$  = 3019, 2927, 1591, 1470, 1444, 1371, 1266, 1183, 1116, 1070, 1038, 1012, 939, 773, 736 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.02 (d, J = 7.6 Hz, 1H), 7.01 (d, J = 5.2 Hz, 1H), 6.94 (dd, J = 8.8, 5.2 Hz, 1H), 4.99 (d, J = 5.2 Hz, 1H), 4.08 (t, J = 8.0 Hz, 1H), 3.57 (t, J = 8.0 Hz, 1H), 3.37 (s, 3H), 2.81 (dd, J = 15.2, 8.0 Hz, 1H), 2.75 (dd, J = 13.6, 5.2 Hz, 1H), 2.69 (dd, J = 15.2, 8.4 Hz, 1H), 2.56–2.48 (m, 1H), 2.52 (dd, J = 13.2, 10.4 Hz, 1H), 2.47–2.41 (m, 1H), 2.31 (s, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 138.5, 137.7, 135.2, 128.2, 125.5, 125.4, 106.1, 71.2, 55.2, 43.2, 38.3, 33.2, 23.1, 19.7 ppm; HRMS (ESI): m/z calcd for  $C_{14}H_{18}O_2Na^+$  [M+Na]<sup>+</sup>: 241.1199, found: 241.1195.

**3c'** was prepared as a white solid (30 mg, 23% yield) according to *General Procedure B*.  $R_f = 0.59$  (petroleum ether/EtOAc = 4 : 1); Mp. 91–93 °C; IR (film):  $v_{\text{max}} = 3065$ , 2923, 2857, 1582, 1465, 1379, 1238, 1186, 1127, 993, 928, 765, 710 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.07$  (d, J = 7.2 Hz, 1H), 7.03 (t, J = 6.8 Hz,

1H), 6.97 (d, J = 7.2 Hz, 1H), 4.91 (d, J = 6.4 Hz, 1H), 4.14 (dd, J = 7.6, 6.4 Hz, 1H), 3.70 (dd, J = 10.4, 7.6 Hz, 1H), 3.51 (s, 3H), 3.06 (dd, J = 16.0, 5.2 Hz, 1H), 2.93 (dd, J = 16.0, 4.8 Hz, 1H), 2.71 (dd, J = 14.8, 12.8 Hz, 1H), 2.48 (dd, J = 16.0, 12.4 Hz, 1H), 2.25 (s, 3H), 2.18–2.06 (m, 1H), 1.95 (ddd, J = 18.4, 12.0, 6.0 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 137.2$ , 135.5, 134.6, 127.7, 127.4, 125.8, 110.2, 71.8, 56.5, 48.2, 41.1, 32.4, 28.8, 19.7 ppm; HRMS (ESI): m/z calcd for  $C_{14}H_{18}O_{2}Na^{+}$  [M+Na]<sup>+</sup>: 241.1199, found: 241.1195.

**2d** was prepared as a colorless oil (960 mg, 42% overall yield, dr = 1 : 1) according to *General Procedure A-2*.  $R_f$  = 0.76 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{max}$  = 3079, 2924, 2867, 2838, 1647, 1595, 1468, 1435, 1348, 1266, 1231, 1196, 1120, 1058, 1011, 925, 808, 738, 705, 645, 558, 451 cm<sup>-1</sup>; (*major isomer*) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.68 (d, J = 8.0 Hz, 1H), 7.11 (d, J = 1.6 Hz, 1H), 6.77 (dd, J = 8.0, 1.6 Hz, 1H), 6.03–5.91 (m, 1H), 5.36 (dd, J = 17.2, 1.6 Hz, 1H), 5.23 (dd, J = 10.4, 1.6 Hz, 1H), 4.56 (d, J = 3.6 Hz, 1H), 4.34 (t, J = 4.0 Hz, 1H), 4.26 (dd, J = 12.8, 5.6 Hz, 1H), 4.17 (dd, J = 12.4, 5.6 Hz, 1H), 3.50 (s, 3H), 3.46 (t, J = 4.0 Hz, 1H), 3.08 (dd, J = 14.4, 10.4 Hz, 1H), 2.29 (s, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 140.3, 139.2, 137.9, 133.9, 132.6, 129.6, 117.6, 104.4, 96.2, 69.2, 55.9, 53.4, 42.9, 20.9 ppm; HRMS (ESI): m/z calcd for C<sub>14</sub>H<sub>18</sub>O<sub>2</sub><sup>79</sup>BrINa<sup>+</sup> [M+Na]<sup>+</sup>: 446.9427, found: 446.9433.

**3d** was prepared as a colorless oil (72 mg, 55% yield) according to *General Procedure B*.  $R_f$  = 0.68 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 3046, 2928, 2870, 2831, 1618, 1580, 1499, 1448, 1369, 1267, 1183, 1111, 1069, 1020, 940, 902,

815, 738, 704, 666, 563, 442 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 6.98 (d, J = 8.0 Hz, 1H), 6.97 (s, 1H), 6.93 (d, J = 8.0 Hz, 1H), 4.97 (d, J = 5.2 Hz, 1H), 4.09 (dd, J = 8.0, 7.6 Hz, 1H), 3.60 (dd, J = 8.0, 7.6 Hz, 1H), 3.37 (s, 3H), 2.85 (dd, J = 14.8, 10.0 Hz, 1H), 2.72 (dd, J = 13.2, 4.8 Hz, 1H), 2.62 (dd, J = 14.8, 7.2 Hz, 1H), 2.54–2.46 (m, 1H), 2.47 (dd, J = 13.2, 7.6 Hz, 1H), 2.45–2.38 (m, 1H), 2.31 (s, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 139.2, 135.6, 135.4, 128.3, 126.9, 126.3, 105.4, 70.8, 54.8, 43.2, 38.6, 32.3, 27.1, 21.1 ppm; HRMS (ESI): m/z calcd for  $C_{14}H_{18}O_{2}Na^{+}$  [M+Na]<sup>+</sup>: 241.1199, found: 241.1203.

**3d'** was prepared as a white solid (41 mg, 31% yield) according to *General Procedure B*.  $R_f = 0.56$  (petroleum ether/EtOAc = 4 : 1); Mp. 91–93 °C; IR (film):  $v_{\text{max}} = 3053$ , 2957, 2925, 2869, 2854, 1561, 1503, 1462, 1378, 1265, 1159, 1109, 1041, 895, 741, 706 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.00$  (d, J = 8.4 Hz, 1H), 6.95 (s, 1H), 6.95 (d, J = 6.4, Hz, 1H), 4.86 (d, J = 6.4 Hz, 1H), 4.12 (dd, J = 7.6, 6.4 Hz, 1H), 3.69 (dd, J = 10.8, 8.0 Hz, 1H), 3.49 (s, 3H), 3.05 (dd, J = 15.6, 5.2 Hz, 1H), 2.89 (dd, J = 15.6, 5.2 Hz, 1H), 2.71 (dd, J = 16.4, 12.8 Hz, 1H), 2.63 (dd, J = 14.8, 14.4 Hz, 1H), 2.29 (s, 3H), 2.17–2.06 (m, 1H), 1.94 (ddd, J = 17.6, 12.4, 5.6 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 135.7$ , 135.6, 132.4, 130.4, 129.5, 126.9, 109.9, 71.7, 56.4, 48.1, 41.7, 31.4, 31.3, 20.9 ppm; HRMS (ESI): m/z calcd for  $C_{14}H_{18}O_{2}Na^{+}$  [M+Na]<sup>+</sup>: 241.1199, found: 241.1205.

**2e** was prepared as a colorless oil (2.092 g, 51% overall yield, dr = 2 : 1) according to *General Procedure A-2*.  $R_f$  = 0.67 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 3066, 2924, 2868, 2837, 1647, 1607, 1562, 1492, 1436, 1349, 1266, 1196, 1121,

1056, 1042, 918, 820, 738, 674 cm<sup>-1</sup>; (major isomer) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.37 (s, 1H), 7.18 (d, J = 8.0 Hz, 1H), 7.06 (d, J = 8.0 Hz, 1H), 6.01–5.90 (m, 1H), 5.35 (dd, J = 17.2, 1.6 Hz, 1H), 5.23 (dd, J = 10.8, 1.6 Hz, 1H), 4.56 (d, J = 4.4 Hz, 1H), 4.37 (dt, J = 10.8, 4.4 Hz, 1H), 4.27–4.22 (m, 1H), 4.18–4.12 (m, 1H), 3.55 (dd, J = 14.4, 3.2 Hz, 1H), 3.49 (s, 3H), 3.05 (dd, J = 10.8, 3.2 Hz, 1H), 2.30 (s, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 138.6, 134.3, 133.9, 133.2, 132.1, 128.0, 124.1, 117.5, 104.5, 69.1, 55.6, 53.3, 38.7, 20.6 ppm; HRMS (ESI): m/z calcd for  $C_{14}H_{18}O_{2}^{79}Br_{2}Na^{+}$  [M+Na]<sup>+</sup>: 398.9566, found: 398.9575.

**3e** was prepared as a colorless oil (61 mg, 47% yield) according to *General Procedure B*.  $R_f$  = 0.61 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 3003, 2927, 2869, 2833, 1618, 1499, 1449, 1369, 1305, 1183, 1111, 1069, 1020, 939, 895, 807, 767, 621, 558 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.03 (d, J = 7.6 Hz, 1H), 6.95 (d, J = 8.0 Hz, 1H), 6.92 (s, 1H), 4.97 (d, J = 5.2 Hz, 1H), 4.09 (dd, J = 8.4, 7.6 Hz, 1H), 3.59 (dd, J = 8.4, 7.6 Hz, 1H), 3.37 (s, 3H), 2.83 (dd, J = 14.8, 10.0 Hz, 1H), 2.70 (dd, J = 13.2, 4.8 Hz, 1H), 2.63 (dd, J = 14.8, 6.8 Hz, 1H), 2.54–2.47 (m, 1H), 2.48 (dd, J = 13.2, 10.8 Hz, 1H), 2.46–2.36 (m, 1H), 2.30 (s, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 138.3, 136.2, 135.2, 127.9, 127.3, 126.7, 105.5, 70.8, 54.8, 43.3, 38.4, 32.6, 26.7, 21.0 ppm; HRMS (ESI): m/z calcd for  $C_{14}H_{18}O_{2}Na^{+}$  [M+Na]<sup>+</sup>: 241.1199, found: 241.1207.

**3e'** was prepared as a white solid (41 mg, 31% yield) according to *General Procedure B*.  $R_f = 0.51$  (petroleum ether/EtOAc = 4 : 1); Mp. 102–103 °C; IR (film):  $v_{\text{max}} = 2924, 2855, 1612, 1501, 1441, 1399, 1237, 1184, 1122, 989, 918, 809, 739, 650,$ 

546 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.03 (d, J = 7.6 Hz, 1H), 6.95 (d, J = 8.0 Hz, 1H), 6.93 (s, 1H), 4.85 (d, J = 6.4 Hz, 1H), 4.12 (dd, J = 7.6, 6.8 Hz, 1H), 3.68 (dd, J = 10.8, 8.0 Hz, 1H), 3.49 (s, 3H), 3.06 (dd, J = 15.6, 5.2 Hz, 1H), 2.88 (dd, J = 15.6, 4.8 Hz, 1H), 2.70 (dd, J = 15.2, 13.6 Hz, 1H), 2.65 (dd, J = 16.0, 12.0 Hz, 1H), 2.29 (s, 3H), 2.18–2.06 (m, 1H), 1.94 (ddd, J = 17.6, 12.0, 5.6 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 135.6, 135.3, 132.8, 130.2, 129.7, 126.9, 109.9, 71.7, 56.5, 48.2, 41.6, 31.7, 31.0, 20.9 ppm; HRMS (ESI): m/z calcd for C<sub>14</sub>H<sub>18</sub>O<sub>2</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 241.1199, found: 241.1205.

**2f** was prepared as a colorless oil (1.900 g, 45% overall yield, dr = 1 : 1) according to *General Procedure A-2*.  $R_f$  = 0.67 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 3052, 2976, 2925, 2866, 2835, 1647, 1575, 1460, 1445, 1379, 1349, 1271, 1196, 1126, 1058, 1007, 926, 788, 765, 734, 645 cm<sup>-1</sup>; (*slightly major isomer*) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.18 (d, J = 7.2 Hz, 1H), 7.14 (d, J = 6.0 Hz, 1H), 7.11 (t, J = 6.8 Hz, 1H), 5.97–5.91 (m, 1H), 5.34 (dd, J = 17.2, 1.6 Hz, 1H), 5.22 (dd, J = 12.0, 1.6 Hz, 1H), 4.55 (d, J = 4.4 Hz, 1H), 4.41 (td, J = 4.0, 1.2 Hz, 1H), 4.25 (dd, J = 12.8, 1.6 Hz, 1H), 4.18 (dd, J = 12.8, 6.0 Hz, 1H), 3.58 (t, J = 4.0 Hz, 1H), 3.50 (s, 3H), 3.18 (dd, J = 14.8, 10.4 Hz, 1H), 2.48 (s, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 142.3, 141.3, 133.9, 129.0, 128.3, 127.4, 117.5, 107.7, 104.5, 69.2, 55.9, 53.4, 44.3, 30.0 ppm; HRMS (ESI): m/z calcd for  $C_{14}H_{18}O_{2}^{79}BrINa^{+}$  [M+Na]<sup>+</sup>: 446.9427, found: 446.9424.

3f was prepared as a colorless oil (61 mg, 47% yield) according to General

*Procedure B. R<sub>f</sub>* = 0.57 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 3019, 2934, 2869, 2833, 1592, 1471, 1442, 1370, 1288, 1183, 1115, 1069, 1038, 1012, 969, 942, 773, 740 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.05–6.98 (m, 3H), 4.98 (d, J = 5.2 Hz, 1H), 4.11 (t, J = 8.0 Hz, 1H), 3.62 (t, J = 8.0 Hz, 1H), 3.38 (s, 3H), 2.95 (dd, J = 14.4, 5.2 Hz, 1H), 2.85 (dd, J = 14.8, 10.0 Hz, 1H), 2.66 (dd, J = 14.8, 6.8 Hz, 1H), 2.54–2.45 (m, 1H), 2.44–2.35 (m, 1H), 2.29 (dd, J = 12.8, 12.0 Hz, 1H), 2.29 (s, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 139.3, 136.6, 134.3, 127.5, 125.5, 125.4, 105.7, 70.9, 54.9, 42.9, 38.2, 27.9, 27.5, 19.4 ppm; HRMS (ESI): m/z calcd for  $C_{14}H_{18}O_{2}Na^{+}$  [M+Na]<sup>+</sup>: 241.1199, found: 241.1196.

**3f'** was prepared as a colorless oil (41 mg, 31% yield) according to *General Procedure B*.  $R_f$  = 0.40 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 3061, 2926, 2849, 1582, 1463, 1442, 1399, 1268, 1117, 995, 919, 770, 737, 709, 660 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.08 (d, J = 7.2 Hz, 1H), 7.05 (dd, J = 9.6, 7.6 Hz, 1H), 7.00 (d, J = 7.6 Hz, 1H), 4.87 (d, J = 6.4 Hz, 1H), 4.16 (dd, J = 7.6, 6.8 Hz, 1H), 3.73 (dd, J = 10.4, 7.6 Hz, 1H), 3.50 (s, 3H), 3.10 (dd, J = 16.0, 5.2 Hz, 1H), 2.91 (dd, J = 16.0, 5.2 Hz, 1H), 2.78 (dd, J = 14.8, 13.2 Hz, 1H), 2.41 (dd, J = 16.0, 12.0 Hz, 1H), 2.23 (s, 3H), 2.19–2.07 (m, 1H), 1.93 (ddd, J = 18.4, 12.0, 6.0 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 137.0, 135.9, 134.3, 127.7 (2C), 125.8, 110.0, 71.9, 56.5, 47.5, 41.7, 31.9, 29.1, 19.8 ppm; HRMS (ESI): m/z calcd for C<sub>14</sub>H<sub>18</sub>O<sub>2</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 241.1199, found: 241.1190.

**2g** was prepared as a colorless oil (1.100 g, 67% overall yield, dr = 2 : 1) according to *General Procedure A-2*.  $R_f$  = 0.27 (petroleum ether/EtOAc = 2 : 1); IR (film):  $v_{\text{max}}$ 

= 3078, 2933, 2835, 1646, 1591, 1568, 1468, 1413, 1347, 1238, 1125, 1053, 927, 804, 702, 589 cm<sup>-1</sup>; (*major isomer*) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.67 (d, J = 8.8 Hz, 1H), 6.88 (d, J = 3.2 Hz, 1H), 6.56 (dd, J = 8.8, 2.8 Hz, 1H), 6.02–5.91 (m, 1H), 5.36 (dd, J = 17.2, 1.6 Hz, 1H), 5.23 (dd, J = 10.4, 1.6 Hz, 1H), 4.57 (d, J = 4.0 Hz, 1H), 4.37–4.32 (m, 1H), 4.29–4.23 (m, 1H), 4.18 (dd, J = 11.2, 5.6 Hz, 1H), 3.78 (s, 3H), 3.50 (s, 3H), 3.47 (dt, J = 11.2, 4.0 Hz, 1H), 3.07 (dd, J = 14.8, 10.8 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 159.6, 141.7, 139.9, 133.9, 117.7, 117.6, 114.8, 104.5, 88.7, 69.2, 56.0, 55.3, 53.3, 43.1 ppm; HRMS (ESI): m/z calcd for C<sub>14</sub>H<sub>19</sub>O<sub>3</sub><sup>79</sup>BrI<sup>+</sup> [M+H]<sup>+</sup>: 440.9557, found: 440.9559.

**3g** was prepared as a white solid (72 mg, 51% yield) according to *General Procedure B*.  $R_f = 0.66$  (petroleum ether/EtOAc = 2 : 1); Mp. 81–82 °C; IR (film):  $v_{\text{max}} = 2928$ , 2372, 1584, 1498, 1461, 1365, 1297, 1257, 1114, 1070, 936, 787, 707 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.00$  (d, J = 8.0 Hz, 1H), 6.73 (d, J = 2.0 Hz, 1H), 6.66 (dd, J = 8.0, 2.4 Hz, 1H), 4.97 (d, J = 5.2 Hz, 1H), 4.08 (dd, J = 8.4, 7.6 Hz, 1H), 3.78 (s, 3H), 3.59 (dd, J = 8.0, 7.6 Hz, 1H), 3.37 (s, 3H), 2.87 (dd, J = 14.8, 9.6 Hz, 1H), 2.71 (d, J = 8.0 Hz, 1H), 2.63 (dd, J = 14.8, 6.8 Hz, 1H), 2.55–2.47 (m, 1H), 2.45 (dd, J = 9.2, 8.4 Hz, 1H), 2.46–2.38 (m, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 158.1$ , 140.6, 130.6, 127.7, 113.5, 110.6, 105.4, 70.7, 55.3, 54.8, 43.0, 38.6, 31.8, 27.5 ppm; HRMS (ESI): m/z calcd for  $C_{14}H_{22}NO_3^+$  [M+NH<sub>4</sub>]<sup>+</sup>: 252.1594, found: 252.1593.

**3g'** was prepared as a white solid (38 mg, 27% yield) according to *General Procedure B*.  $R_f = 0.51$  (petroleum ether/EtOAc = 2 : 1); Mp. 80–81 °C; IR (film):

 $v_{\text{max}} = 2923, 2842, 1611, 1501, 1465, 1442, 1302, 1234, 1152, 1117, 1038, 995, 939, 807, 735, 668 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): <math>\delta = 7.02$  (d, J = 8.4 Hz, 1H), 6.71 (dd, J = 8.4, 2.4 Hz, 1H), 6.67 (d, J = 2.4 Hz, 1H), 4.86 (d, J = 6.4 Hz, 1H), 4.12 (dd, J = 7.6, 6.8 Hz, 1H), 3.78 (s, 3H), 3.69 (dd, J = 10.4, 8.0 Hz, 1H), 3.49 (s, 3H), 3.07 (dd, J = 16.0, 5.2 Hz, 1H), 2.88 (dd, J = 15.6, 5.2 Hz, 1H), 2.73 (dd, J = 15.2, 13.2 Hz, 1H), 2.61 (dd, J = 14.4, 12.8 Hz, 1H), 2.18–2.06 (m, 1H), 1.94 (ddd, J = 18.4, 12.8, 6.0 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 157.8, 137.0, 130.4, 127.6, 114.5, 112.3, 109.9, 71.7, 56.5, 55.3, 48.0, 41.9, 31.6, 31.0 ppm; HRMS (ESI): <math>m/z$  calcd for  $C_{14}H_{22}NO_3^+$  [M+NH<sub>4</sub>]<sup>+</sup>: 252.1594, found: 252.1591.

**2h** was prepared as a colorless oil (904 mg, 52% overall yield, dr = 2 : 1) according to *General Procedure A-2*.  $R_f$  = 0.50 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 3079, 2984, 2925, 2808, 1647, 1601, 1542, 1506, 1443, 1350, 1270, 1222, 1122, 1055, 954, 916, 833, 804, 738, 664 cm<sup>-1</sup>; (*major isomer*) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.15 (d, J = 2.8 Hz, 1H), 7.11 (d, J = 8.8 Hz, 1H), 6.66 (dd, J = 8.8, 2.8 Hz, 1H), 6.04–5.91 (m, 1H), 5.37 (dd, J = 17.2, 1.6 Hz, 1H), 5.23 (dd, J = 10.4, 1.2 Hz, 1H), 4.54 (d, J = 4.0 Hz, 1H), 4.34 (dt, J = 10.4, 4.0 Hz, 1H), 4.26 (dd, J = 11.2, 4.0 Hz, 1H), 4.18 (dd, J = 12.8, 6.0 Hz, 1H), 3.49 (s, 3H), 3.42 (dt, J = 14.8, 4.0 Hz, 1H), 3.03 (dd, J = 14.8, 10.4 Hz, 1H), 2.91 (s, 6H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 150.2, 134.0, 131.4, 127.9, 122.8, 117.5, 112.1, 104.3, 101.4, 69.1, 55.7, 54.6, 42.2, 40.3 (2C) ppm; HRMS (ESI): m/z calcd for C<sub>15</sub>H<sub>22</sub>NO<sub>2</sub><sup>79</sup>BrI<sup>+</sup> [M+H]<sup>+</sup>: 453.9873, found: 453.9872.

3h was prepared as a white solid (77 mg, 52% yield) according to General

*Procedure B.*  $R_f$  = 0.40 (petroleum ether/EtOAc = 4 : 1); Mp. 54–56 °C; IR (film):  $v_{\text{max}}$  = 2930, 2870, 2836, 1618, 1573, 1510, 1475, 1447, 1347, 1227, 1120, 1068, 1018, 937, 800, 735, 702 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.02 (d, J = 9.2 Hz, 1H), 6.57 (d, J = 3.2 Hz, 1H), 6.56 (dd, J = 6.0, 3.2 Hz, 1H), 4.97 (d, J = 4.8 Hz, 1H), 4.10 (dd, J = 8.4, 7.6 Hz, 1H), 3.61 (t, J = 8.0 Hz, 1H), 3.39 (s, 3H), 2.91 (s, 6H), 2.80 (dd, J = 14.4, 9.6 Hz, 1H), 2.71 (dd, J = 13.2, 5.2 Hz, 1H), 2.59 (dd, J = 14.4, 6.8 Hz, 1H), 2.55–2.48 (m, 1H), 2.51 (dd, J = 12.0, 11.2 Hz, 1H), 2.47–2.40 (m, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 149.3, 139.1, 127.9, 127.6, 112.4, 110.8, 105.6, 70.8, 54.9, 43.5, 41.1 (2C), 38.5, 33.3, 25.9 ppm; HRMS (ESI): m/z calcd for  $C_{15}H_{22}NO_2^+$  [M+H]<sup>+</sup>: 248.1645, found: 248.1646.

$$Me_2N$$
 $H$ 
 $OMe_3h'$ 

**3h'** was prepared as a white solid (41 mg, 28% yield) according to *General Procedure B*.  $R_f = 0.30$  (petroleum ether/EtOAc = 4 : 1); Mp. 96–99 °C; IR (film):  $v_{\text{max}} = 3051$ , 2923, 2848, 1614, 1564, 1511, 1445, 1353, 1266, 1127, 1060, 995, 920, 838, 801, 738, 704, 651 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta = 7.02$  (d, J = 8.4 Hz, 1H), 6.61 (dd, J = 8.4, 2.7 Hz, 1H), 6.49 (d, J = 2.1 Hz, 1H), 4.86 (d, J = 6.3 Hz, 1H), 4.12 (dd, J = 7.5, 6.6 Hz, 1H), 3.69 (dd, J = 10.5, 7.8 Hz, 1H), 3.49 (s, 3H), 3.02 (dd, J = 15.3, 5.1 Hz, 1H), 2.90 (s, 6H), 2.89 (dd, J = 15.3, 5.1 Hz, 1H), 2.69 (dd, J = 11.4, 5.4 Hz, 1H), 2.64 (dd, J = 15.6, 5.1 Hz, 1H), 2.21–2.05 (m, 1H), 1.93 (ddd, J = 17.7, 11.7, 5.7 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 149.2$ , 136.0, 130.3, 124.1, 113.5, 111.7, 110.0, 71.8, 56.5, 48.5, 41.8, 40.9 (2C), 32.3, 30.4 ppm; HRMS (ESI): m/z calcd for  $C_{15}H_{22}NO_2^+$  [M+H]<sup>+</sup>: 248.1645, found: 248.1643.

2i was prepared as a colorless oil (1.650 g, 69% overall yield, dr = 1 : 1) according

to General Procedure A-2.  $R_f$  = 0.60 (petroleum ether/EtOAc = 2 : 1); IR (film):  $v_{\text{max}}$  = 3079, 2936, 2836, 1647, 1589, 1482, 1463, 1433, 1396, 1349, 1295, 1270, 1205, 1124, 1031, 934, 809, 799, 737, 645 cm<sup>-1</sup>; (major isomer) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 6.96 (d, J = 8.4 Hz, 1H), 6.77 (d, J = 8.4 Hz, 1H), 5.95–5.83 (m, 1H), 5.29 (dd, J = 17.2, 1.2 Hz, 1H), 5.16 (dd, J = 10.4, 1.2 Hz, 1H), 4.48 (d, J = 4.0 Hz, 1H), 4.30–4.27 (m, 1H), 4.18 (dd, J = 12.8, 5.6 Hz, 1H), 4.10 (dd, J = 14.4, 6.0 Hz, 1H), 3.78 (s, 3H), 3.75 (s, 3H), 3.43 (dd, J = 14.8, 3.6 Hz, 1H), 3.42 (s, 3H), 3.02 (dd, J = 14.8, 10.8 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 151.1, 148.5, 133.8, 133.2, 126.9, 117.5, 111.7, 104.2, 99.2, 69.1, 60.1, 55.8, 55.2, 53.9, 42.6 ppm; HRMS (ESI): m/z calcd for C<sub>15</sub>H<sub>20</sub>O<sub>4</sub><sup>79</sup>BrINa<sup>+</sup> [M+Na]<sup>+</sup>: 492.9482, found: 492.9496.

**3i** was prepared as a colorless oil (68 mg, 43% yield) according to *General Procedure B*.  $R_f$  = 0.55 (petroleum ether/EtOAc = 2 : 1); IR (film):  $v_{\text{max}}$  = 3051, 2938, 2831, 1609, 1584, 1490, 1459, 1426, 1329, 1311, 1267, 1225, 1183, 1115, 1068, 1018, 979, 938, 894, 799, 736, 702. 572, 514 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 6.86 (d, J = 8.4 Hz, 1H), 6.70 (d, J = 8.0 Hz, 1H), 4.97 (d, J = 5.6 Hz, 1H), 4.11 (t, J = 8.0 Hz, 1H), 3.84 (s, 3H), 3.77 (s, 3H), 3.62 (t, J = 8.0 Hz, 1H), 3.38 (s, 3H), 3.17 (dd, J = 14.4, 5.6 Hz, 1H), 2.79 (dd, J = 14.4, 10.0 Hz, 1H), 2.62 (dd, J = 14.4, 6.8 Hz, 1H), 2.53–2.45 (m, 1H), 2.42–2.31 (m, 1H), 2.23 (dd, J = 14.4, 11.2 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 150.8, 145.8, 132.6, 131.9, 122.6, 109.5, 105.5, 70.8, 60.9, 55.8, 54.8, 43.2, 37.9, 26.5, 25.0 ppm; HRMS (ESI): m/z calcd for C<sub>15</sub>H<sub>20</sub>O<sub>4</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 287.1254, found: 287.1259.

**3i'** was prepared as a colorless oil (35 mg, 22% yield) according to *General Procedure B*.  $R_f$  = 0.48 (petroleum ether/EtOAc = 2 : 1); IR (film):  $v_{\text{max}}$  = 3050, 2931, 2843, 1604, 1578, 1515, 1489, 1454, 1420, 1278, 1225, 1116, 1073, 1035, 995, 922, 869, 799, 736, 701, 657 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 6.86 (d, J = 8.4 Hz, 1H), 6.76 (d, J = 8.4 Hz, 1H), 4.86 (d, J = 6.3 Hz, 1H), 4.15 (dd, J = 7.5, 6.6 Hz, 1H), 3.84(s, 3H), 3.80 (s, 3H), 3.72 (dd, J = 10.5, 7.8 Hz, 1H), 3.49 (s, 3H), 3.16 (dd, J = 16.5, 4.8 Hz, 1H), 3.05 (dd, J = 15.6, 5.1 Hz, 1H), 2.69 (dd, J = 15.0, 12.6 Hz, 1H), 2.41 (dd, J = 16.5, 12.0 Hz, 1H), 2.12–1.99 (m, 1H), 1.91 (ddd, J = 18.0, 12.3, 5.7 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 150.7, 146.9, 130.1, 129.1, 124.8, 110.5, 109.8, 71.9, 60.0, 56.5, 55.8, 47.9, 41.3, 30.9, 26.0 ppm; HRMS (ESI): m/z calcd for  $C_{15}H_{20}O_4Na^+$  [M+Na]<sup>+</sup>: 287.1254, found: 287.1261.

**2j** was prepared as a colorless oil (1.325 g, 75% overall yield, dr = 2 : 1) according to *General Procedure A-1*.  $R_f$  = 0.61 (petroleum ether/EtOAc = 2 : 1); IR (film):  $v_{\text{max}}$  = 3079, 2962, 2930, 2842, 1647, 1597, 1506, 1462, 1439, 1379, 1257, 1214, 1164, 1123, 1049, 1030, 920, 856, 795 cm<sup>-1</sup>; (*major isomer*) <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): δ = 6.99 (s, 1H), 6.80 (s, 1H), 6.02–5.88 (m, 1H), 5.35 (dd, J = 17.1, 1.5 Hz, 1H), 5.21 (dd, J = 10.5, 0.9 Hz, 1H), 4.54 (d, J = 4.5 Hz, 1H), 4.33 (dt, J = 10.5, 3.9 Hz, 1H), 4.24 (dd, J = 12.6, 5.1 Hz, 1H), 4.14 (dd, J = 12.6, 5.7 Hz, 1H), 3.84 (s, 6H), 3.51 (dd, J = 14.7, 3.6 Hz, 1H), 3.48 (s, 3H), 2.98 (dd, J = 14.7, 10.5 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ = 148.5, 147.9, 133.8, 129.4, 117.5, 115.4, 115.0, 114.2, 104.4, 69.2, 56.1, 56.0, 55.7, 53.6, 38.7 ppm; HRMS (ESI): m/z calcd for  $C_{15}H_{20}O_4^{79}BrINa^+$  [M+Na]<sup>+</sup>: 492.9482, found: 492.9486.

**3j** was prepared as a white solid (76 mg, 48% yield) according to *General Procedure B*.  $R_f = 0.42$  (petroleum ether/EtOAc = 2 : 1); Mp. 98–99 °C; IR (film):  $v_{\text{max}} = 2934$ , 2869, 2832, 1611, 1514, 1465, 1453, 1305, 1223, 1193, 1107, 1069, 996, 848, 748 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 6.69$  (s, 1H), 6.65 (s, 1H), 4.97 (d, J = 4.8 Hz, 1H), 4.08 (t, J = 8.0 Hz, 1H), 3.86 (s, 3H), 3.85 (s, 3H), 3.59 (dd, J = 8.4, 7.2 Hz, 1H), 3.37 (s, 3H), 2.82 (dd, J = 14.8, 8.8 Hz, 1H), 2.68 (dd, J = 13.2, 4.4 Hz, 1H), 2.61 (dd, J = 14.8, 7.2 Hz, 1H), 2.56–2.48 (m, 1H), 2.46 (dd, J = 9.6, 3.6 Hz, 1H), 2.46–2.40 (m, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 147.2$ , 146.8, 130.9, 130.0, 111.5, 111.2, 105.6, 70.8, 56.0 (2C), 54.9, 43.0, 38.3, 32.2, 26.6 ppm; HRMS (ESI): m/z calcd for  $C_{15}H_{20}O_4Na^+$  [M+Na]<sup>+</sup>: 287.1254, found: 287.1255.

**3j'** was prepared as a colorless oil (40 mg, 25% yield) according to *General Procedure B*.  $R_f = 0.30$  (petroleum ether/EtOAc = 2 : 1); IR (film):  $v_{\text{max}} = 2928$ , 2843, 1611, 1516, 1445, 1398, 1243, 1221, 1190, 1098, 986, 922, 852, 737, 670 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 6.62$  (s, 1H), 6.60 (s, 1H), 4.87 (d, J = 6.4 Hz, 1H), 4.13 (dd, J = 7.6, 6.4 Hz, 1H), 3.850 (s, 3H), 3.845 (s, 3H), 3.70 (dd, J = 10.4, 7.6 Hz, 1H), 3.50 (s, 3H), 3.01 (dd, J = 15.6, 5.2 Hz, 1H), 2.84 (dd, J = 15.2, 4.8 Hz, 1H), 2.69 (t, J = 12.4 Hz, 1H), 2.63 (dd, J = 14.0, 12.0 Hz, 1H), 2.18–2.04 (m, 1H), 1.94 (ddd, J = 17.6, 12.0, 5.6 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 147.36$ , 147.35, 127.7, 127.4, 112.4, 112.2, 109.9, 71.7, 56.5, 55.94, 55.92, 48.2, 41.8, 31.4, 31.0 ppm; HRMS (ESI): m/z calcd for  $C_{15}H_{20}O_4Na^+$  [M+Na]<sup>+</sup>: 287.1254, found: 287.1254.

**2k** was prepared as a colorless oil (1.25 g, 51% overall yield, dr = 2 : 1) according to *General Procedure A-2*.  $R_f$  = 0.68 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$ 

= 3081, 2956, 2930, 2896, 2857, 1647, 1586, 1481, 1439, 1361, 1309, 1256, 1125, 1033, 924, 852, 784, 737, 665 cm<sup>-1</sup>; (*major isomer*) <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 6.87 (d, J = 8.4 Hz, 1H), 6.77 (d, J = 8.4 Hz, 1H), 6.03–5.89 (m, 1H), 5.34 (d, J = 17.1 Hz, 1H), 5.21 (d, J = 10.2 Hz, 1H), 4.51 (d, J = 4.2 Hz, 1H), 4.40 (dt, J = 10.2, 4.2 Hz, 1H), 4.24 (dd, J = 12.6, 6.0 Hz, 1H), 4.13 (dd, J = 12.9, 6.0 Hz, 1H), 3.78 (s, 3H), 3.52 (dd, J = 14.4, 3.6 Hz, 1H), 3.50 (s, 3H), 3.11 (dd, J = 14.4, 9.9 Hz, 1H), 1.05 (s, 9H), 0.26 (s, 6H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 148.0, 145.2, 134.0, 133.5, 123.6, 117.5, 110.6, 104.4, 97.2, 69.2, 55.8, 54.9, 54.0, 43.4, 26.3 (3C), 19.2, -3.1 (2C) ppm; HRMS (ESI): m/z calcd for  $C_{20}H_{32}O_4Si^{79}BrINa^+$  [M+Na]<sup>+</sup>: 593.0190, found: 593.0200.

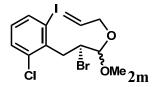
**3k** was prepared as a colorless oil (129 mg, 59% yield) according to *General Procedure B*.  $R_f$  = 0.57 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 2930, 2858, 2833, 1609, 1585, 1490, 1452, 1361, 1297, 1268, 1227, 1116, 1069, 1010, 925, 841, 783, 687, 651, 573 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 6.71 (d, J = 8.1 Hz, 1H), 6.63 (d, J = 8.1 Hz, 1H), 4.97 (d, J = 5.1 Hz, 1H), 4.10 (t, J = 8.1 Hz, 1H), 3.76 (s, 3H), 3.61 (t, J = 8.1 Hz, 1H), 3.38 (s, 3H), 3.19 (dd, J = 14.1, 5.4 Hz, 1H), 2.77 (dd, J = 14.1, 9.9 Hz, 1H), 2.59 (dd, J = 14.4, 6.6 Hz, 1H), 2.52–2.41 (m, 1H), 2.39–2.26 (m, 1H), 2.15 (dd, J = 14.1, 10.8 Hz, 1H), 1.00 (s, 9H), 0.16 (s, 3H), 0.13 (s, 3H) ppm; <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  = 148.5, 141.4, 132.5, 129.5, 119.6, 108.7, 105.6, 70.8, 55.0, 54.8, 43.2, 38.0, 26.8, 26.0 (3C), 25.5, 18.8, –4.2 (2C) ppm; HRMS (ESI): m/z calcd for C<sub>20</sub>H<sub>36</sub>NO<sub>4</sub>Si<sup>+</sup> [M+NH<sub>4</sub>]<sup>+</sup>: 382.2408, found: 382.2409.

**3k'** was prepared as a colorless oil (68 mg, 31% yield) according to *General Procedure B*.  $R_f$  = 0.43 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 2928, 2856, 1586, 1491, 1452, 1364, 1263, 1227, 1102, 1051, 990, 922, 840, 783, 684 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 6.70 (d, J = 8.1 Hz, 1H), 6.64 (d, J = 8.1 Hz, 1H), 4.71 (s, 1H), 4.09 (dd, J = 8.4, 7.5 Hz, 1H), 3.76 (s, 3H), 3.63 (dd, J = 8.7, 3.0 Hz, 1H), 3.33 (s, 3H), 3.01 (dd, J = 14.4, 6.0 Hz, 1H), 2.81 (dd, J = 17.7, 9.9 Hz, 1H), 2.62–2.50 (m, 1H), 2.44 (dd, J = 14.4, 9.3 Hz, 1H), 2.46–2.41 (m, 1H), 2.37 (dd, J = 14.7, 8.7 Hz, 1H), 1.00 (s, 9H), 0.16 (s, 3H), 0.15 (s, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 148.7, 141.8, 130.8, 128.9, 119.5, 110.8, 108.9, 72.4, 55.0, 54.6, 45.6, 36.8, 30.7, 26.03 (3C), 25.99, 18.8, –4.1 (2C) ppm; HRMS (ESI): m/z calcd for  $C_{20}H_{36}NO_4Si^+$  [M+NH<sub>4</sub>]<sup>+</sup>: 382.2408, found: 382.2407.

**21** was prepared as a colorless oil (720 mg, 65% overall yield, dr = 2 : 1) according to *General Procedure A-1*.  $R_f$  = 0.69 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 3080, 2930, 2836, 1647, 1598, 1568, 1451, 1348, 1243, 1130, 1056, 924, 776, 738, 647, 561 cm<sup>-1</sup>; (*one isomer*) <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.63 (d, J = 7.8 Hz, 1H), 7.04 (t, J = 8.7 Hz, 1H), 6.96 (dd, J = 7.8, 5.7 Hz, 1H), 6.03–5.86 (m, 1H), 5.32 (dd, J = 17.1, 1.5 Hz, 1H), 5.20 (dd, J = 10.5, 1.5 Hz, 1H), 4.61 (t, J = 5.7 Hz, 1H), 4.44 (dt, J = 9.6, 5.1 Hz, 1H), 4.24 (dd, J = 12.6, 5.4 Hz, 1H), 4.14 (dd, J = 12.6, 6.9 Hz, 1H), 3.48 (s, 3H), 3.48 (dd, J = 14.1, 5.4 Hz, 1H), 3.39 (dd, J = 14.4, 9.9 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 160.3 (d,  $J_{C-F}$  = 250.0 Hz), 135.2 (d,  $J_{C-F}$  = 3.0 Hz), 133.8, 129.7 (d,  $J_{C-F}$  = 9.0 Hz), 129.1 (d,  $J_{C-F}$  = 15.0 Hz), 117.3, 115.5 (d,  $J_{C-F}$  = 24.0 Hz), 104.0, 101.2, 68.9, 55.3, 51.4, 36.5 ppm; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  = -108.88 ppm; HRMS (ESI): m/z calcd for C<sub>13</sub>H<sub>15</sub>O<sub>2</sub>F<sup>79</sup>BrINa<sup>+</sup> [M+Na]<sup>+</sup>: 450.9176, found: 450.9172.

**31** was prepared as a colorless oil (61 mg, 46% yield) according to *General Procedure B* except the use of 30 mol% NiCl<sub>2</sub>•DME.  $R_f = 0.62$  (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}} = 3048$ , 2928, 2873, 1621, 1583, 1470, 1371, 1266, 1245, 1117, 1070, 1032, 999, 940, 893, 780, 739, 703 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.06$  (dd, J = 13.6, 7.6 Hz, 1H), 6.88 (d, J = 6.8 Hz, 1H), 6.86 (d, J = 8.4 Hz, 1H), 4.98 (d, J = 5.2 Hz, 1H), 4.10 (dd J = 8.4, 7.6 Hz, 1H), 3.59 (dd, J = 8.0, 7.2 Hz, 1H), 3.36 (s, 3H), 2.97 (dd, J = 15.2, 7.2 Hz, 1H), 2.77 (dd, J = 14.0, 5.2 Hz, 1H), 2.70 (dd, J = 15.2, 8.0 Hz, 1H), 2.55 (dd, J = 14.0, 10.0 Hz, 1H), 2.54–2.40 (m, 2H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 160.0$  (d,  $J_{C-F} = 242.0$  Hz), 140.9 (d,  $J_{C-F} = 5.0$  Hz), 126.3 (d,  $J_{C-F} = 8.0$  Hz), 125.5 (d,  $J_{C-F} = 16.0$  Hz), 122.8 (d,  $J_{C-F} = 3.0$  Hz), 105.6, 70.9, 54.9, 41.9, 37.7, 32.3 (d,  $J_{C-F} = 3.0$  Hz), 18.5 (d,  $J_{C-F} = 3.0$  Hz) ppm; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -121.62$  ppm; HRMS (ESI): m/z calcd for C<sub>13</sub>H<sub>15</sub>O<sub>2</sub>FNa<sup>+</sup> [M+Na]<sup>+</sup>: 245.0948, found: 245.0948.

**31'** was prepared as a white solid (29 mg, 22% yield) according to *General Procedure B* except the use of 30 mol% NiCl<sub>2</sub>•DME.  $R_f = 0.45$  (petroleum ether/EtOAc = 4 : 1); Mp. 96–97 °C; IR (film):  $v_{\text{max}} = 3066$ , 2991, 2920, 2851, 1576, 1461, 1400, 1238, 1115, 972, 939, 884, 776, 741, 693, 655 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta = 7.10$  (dd, J = 13.8, 7.8 Hz, 1H), 6.91 (d, J = 6.9 Hz, 1H), 6.85 (d, J = 8.7 Hz, 1H), 4.90 (d, J = 6.3 Hz, 1H), 4.14 (dd, J = 7.8, 6.6 Hz, 1H), 3.70 (dd, J = 10.5, 7.8 Hz, 1H), 3.50 (s, 3H), 3.25 (dd, J = 15.9, 5.4 Hz, 1H), 2.96 (dd, J = 15.9, 4.5 Hz, 1H), 2.69 (dd, J = 15.6, 12.3 Hz, 1H), 2.52 (dd, J = 15.9, 12.3 Hz, 1H), 2.20–2.04 (m, 1H), 1.90 (ddd, J = 18.0, 12.0, 5.7 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 18.0$ 


161.4 (d,  $J_{C-F}$  = 243.0 Hz), 138.2 (d,  $J_{C-F}$  = 5.0 Hz), 127.0 (d,  $J_{C-F}$  = 8.0 Hz), 124.9 (d,  $J_{C-F}$  = 3.0 Hz), 123.7 (d,  $J_{C-F}$  = 18.0 Hz), 112.5 (d,  $J_{C-F}$  = 21.0 Hz), 109.9, 71.5, 56.5, 47.4, 41.2, 31.7 (d,  $J_{C-F}$  = 2.0 Hz), 24.4 (d,  $J_{C-F}$  = 5.0 Hz) ppm; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  = -117.20 ppm; HRMS (ESI): m/z calcd for C<sub>13</sub>H<sub>15</sub>O<sub>2</sub>FNa<sup>+</sup> [M+Na]<sup>+</sup>: 245.0948, found: 245.0941. This product (11 mg) was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (1 mL) and petroleum ether (2 mL). After 5 days, colorless single crystals were obtained by slow evaporation of solvents at room temperature.



**Table S7**: X-ray crystal data of **31'** (selected H atoms have been omitted for clarity)

|                                           | (selected 11 dtollis have been offitted for clarity) |
|-------------------------------------------|------------------------------------------------------|
| Empirical formula                         | $C_{13}H_{15}FO_2$                                   |
| Temperature (K)                           | 273.77(10)                                           |
| Crystal color                             | colorless                                            |
| Formula weight                            | 222.25                                               |
| Crystal system                            | Triclinic                                            |
| Space group                               | P-1                                                  |
| a (Å)                                     | 7.4670(16)                                           |
| b (Å)                                     | 8.1131(16)                                           |
| c (Å)                                     | 10.193(2)                                            |
| α (°)                                     | 107.549(19)                                          |
| β (°)                                     | 90.344(18)                                           |
| γ (°)                                     | 106.555(18)                                          |
| $V(\mathring{A}^3)$                       | 561.5(2)                                             |
| Z                                         | 2                                                    |
| Density (calculated) (g/cm <sup>3</sup> ) | 1.314                                                |
| F (000)                                   | 236.0                                                |
| $\lambda$ (Å)                             | 0.71073                                              |
| Reflections collected                     | 3562                                                 |
| Independent reflections                   | 2209                                                 |
|                                           |                                                      |

| $\theta$ Range for data collection (°)    | 3.33—26.02                    |
|-------------------------------------------|-------------------------------|
|                                           | $-9 \le h \le 8$              |
| Index range                               | $-9 \le k \le 10$             |
|                                           | $-12 \le l \le 12$            |
| Final <i>R</i> indices [I>2 $\sigma(I)$ ] | $R_1 = 0.0550, wR_2 = 0.1163$ |
| Largest difference peak and hole [e Å -3] | 0.140, -0.180                 |



**2m** was prepared as a colorless oil (1.605 g, 68% overall yield, dr = 2 : 1) according to *General Procedure A-1*.  $R_f$  = 0.73 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 3078, 2986, 2928, 2835, 1647, 1573, 1552, 1428, 1348, 1271, 1202, 1120, 1054, 996, 919, 773, 738, 722, 643, 557 cm<sup>-1</sup>; (*major isomer*) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.78 (d, J = 8.0 Hz, 1H), 7.36 (d, J = 8.0 Hz, 1H), 6.86 (t, J = 8.0 Hz, 1H), 5.92 (ddd, J = 16.0, 10.8, 5.6 Hz, 1H), 5.31 (dd, J = 17.2, 1.6 Hz, 1H), 5.19 (dd, J = 10.8, 1.6 Hz, 1H), 4.64 (d, J = 5.6 Hz, 1H), 4.63–4.58 (m, 1H), 4.23 (dd, J = 12.8, 5.2 Hz, 1H), 4.14 (dd, J = 13.2, 6.0 Hz, 1H), 3.64–3.60 (m, 2H), 3.48 (s, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 138.8, 138.7, 134.5, 133.9, 130.1, 129.4, 117.2, 104.2, 102.3, 68.9, 54.8, 51.3, 40.9 ppm; HRMS (ESI): m/z calcd for  $C_{13}H_{15}O_{2}^{35}Cl^{79}BrINa^{+}[M+Na]^{+}$ : 466.8881, found: 466.8898.

**3m** was prepared as a colorless oil (67 mg, 47% yield) according to *General Procedure B*.  $R_f$  = 0.63 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 3063, 2932, 2833, 1597, 1570, 1451, 1371, 1308, 1265, 1180, 1144, 1113, 1070, 1022, 973, 938, 902, 873, 826, 776, 737, 657, 569 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.21 (d, J = 7.6 Hz, 1H), 7.04 (t, J = 7.2 Hz, 1H), 6.99 (d, J = 7.2 Hz, 1H), 4.99 (d, J = 5.2 Hz, 1H), 4.10 (t, J = 8.0 Hz, 1H), 3.59 (dd, J = 8.4, 7.6 Hz, 1H), 3.36 (s, 3H) 3.10 (dd, J =

16.0, 7.6 Hz, 1H), 2.80 (dd, J = 8.8, 6.0 Hz, 1H), 2.76 (dd, J = 8.8, 5.6 Hz, 1H), 2.58–2.51 (m, 1H), 2.54 (dd, J = 13.6, 10.8 Hz, 1H), 2.48–2.38 (m, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 140.5$ , 136.6, 132.9, 126.9, 126.3, 125.8, 105.6, 70.9, 54.9, 42.3, 37.7, 33.1, 23.5 ppm; HRMS (ESI): m/z calcd for  $C_{13}H_{15}O_{2}^{35}CINa^{+}$  [M+Na]<sup>+</sup>: 261.0653, found: 261.0661.

**3m'** was prepared as a white solid (34 mg, 24% yield) according to *General Procedure B*.  $R_f$  = 0.55 (petroleum ether/EtOAc = 4 : 1); Mp. 118–119 °C; IR (film):  $v_{\text{max}}$  = 3063, 2933, 2918, 2872, 2844, 1592, 1560, 1441, 1399, 1240, 1188, 1120, 1079, 987, 922, 869, 777, 702, 669, 636, 539, 477 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.23 (d, J = 7.6 Hz, 1H), 7.08 (t, J = 7.6 Hz, 1H), 7.03 (d, J = 7.2 Hz, 1H), 4.92 (d, J = 6.4 Hz, 1H), 4.14 (dd, J = 7.6, 6.8 Hz, 1H), 3.70 (dd, J = 10.4, 7.6 Hz, 1H), 3.51 (s, 3H), 3.31 (dd, J = 16.8, 5.6 Hz, 1H), 2.94 (dd, J = 16.0, 4.8 Hz, 1H), 2.70 (dd, J = 15.6, 12.4 Hz, 1H), 2.55 (dd, J = 16.4, 12.4 Hz, 1H), 2.17–2.04 (m, 1H), 1.92 (ddd, J = 18.0, 12.0, 6.0 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 138.0, 135.3, 134.1, 128.1, 127.0, 126.9, 109.9, 71.5, 56.6, 48.0, 40.9, 32.3, 29.4 ppm; HRMS (ESI): m/z calcd for  $C_{13}H_{15}O_2^{35}ClNa^+$  [M+Na]<sup>+</sup>: 261.0653, found: 261.0660.

**2n** was prepared as a colorless oil (380 mg, 51% overall yield, dr = 1 : 1) according to *General Procedure A-2*.  $R_f$  = 0.73 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 2926, 1638, 1580, 1459, 1385, 1264, 1198, 1121, 1101, 1056, 925, 808, 628 cm<sup>-1</sup>; (*major isomer*) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.72 (d, J = 8.4 Hz, 1H), 7.29 (d, J = 2.4 Hz, 1H), 6.95 (dd, J = 8.4, 2.4 Hz, 1H), 6.01–5.91 (m, 1H), 5.35 (dd, J = 17.2, 1.6 Hz, 1H), 5.23 (d, J = 10.4 Hz, 1H), 4.58 (d, J = 4.4 Hz, 1H), 4.33–4.22 (m, 2H),

4.19–4.14 (m, 1H), 3.51 (s, 3H), 3.50 (dd, J = 14.8, 8.4 Hz, 1H), 3.09 (dd, J = 14.8, 10.4 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 142.6$ , 140.4, 134.2, 133.8, 131.5, 128.8, 117.7, 104.5, 97.3, 69.2, 56.2, 52.6, 42.8 ppm; HRMS (ESI): m/z calcd for  $C_{13}H_{16}O_2^{35}Cl^{79}BrI^+$  [M+H]<sup>+</sup>: 444.9061, found: 444.9062.

**3n** was prepared as a colorless oil (64 mg, 45% yield) according to *General Procedure B*.  $R_f = 0.64$  (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}} = 3046$ , 2981, 2936, 2875, 1598, 1573, 1482, 1444, 1410, 1362, 1252, 1183, 1107, 1068, 990, 899, 818, 743, 683 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta = 7.13$  (s, 1H), 7.08 (dd, J = 8.1, 2.1 Hz, 1H), 7.01 (d, J = 8.1 Hz, 1H), 4.97 (d, J = 4.8 Hz, 1H), 4.09 (dd, J = 8.1, 7.8 Hz, 1H), 3.57 (dd, J = 8.4, 7.2 Hz, 1H), 3.36 (s, 3H), 2.86 (dd, J = 14.7, 8.7 Hz, 1H), 2.73 (dd, J = 12.9, 4.2 Hz, 1H), 2.63 (dd, J = 15.0, 6.9 Hz, 1H), 2.57–2.37 (m, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 141.2$ , 136.8, 131.5, 128.3, 127.5, 125.6, 105.3, 70.6, 54.8, 42.7, 38.2, 32.0, 27.1 ppm; HRMS (ESI): m/z calcd for  $C_{12}H_{12}O^{35}Cl^+$  [M-OMe+H] $^+$ : 207.0571, found: 207.0568.

**3n'** was prepared as a colorless oil (36 mg, 25% yield) according to *General Procedure B*.  $R_f$  = 0.56 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 3049, 2927, 2848, 1597, 1566, 1483, 1441, 1398, 1313, 1236, 1178, 1117, 996, 924, 809, 737, 700, 667 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.12 (s, 1H), 7.10 (dd, J = 8.1, 1.8 Hz, 1H), 7.03 (d, J = 8.1 Hz, 1H), 4.86 (d, J = 6.3 Hz, 1H), 4.13 (dd, J = 7.8, 6.3 Hz, 1H), 3.69 (dd, J = 10.5, 7.8 Hz, 1H), 3.49 (s, 3H), 3.07 (dd, J = 16.2, 5.1 Hz, 1H), 2.91 (dd, J = 15.9, 4.8 Hz, 1H), 2.72 (dd, J = 12.9, 8.1 Hz, 1H), 2.60 (dd, J = 9.3, 6.6 Hz, 1H), 2.19–2.04 (m, 1H), 1.93 (ddd, J = 17.7, 12.0, 5.4 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz,

CDCl<sub>3</sub>):  $\delta = 137.7$ , 134.0, 131.6, 130.8, 129.5, 126.2, 109.6, 71.5, 56.5, 47.8, 41.5, 31.3, 31.2 ppm; HRMS (ESI): m/z calcd for  $C_{12}H_{12}O^{35}Cl^+$  [M–OMe+H]<sup>+</sup>: 207.0571, found: 207.0569.

**20** was prepared as a colorless oil (1.250 g, 51% overall yield, dr = 1 : 1) according to *General Procedure A-2*.  $R_f$  = 0.64 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 3080, 2951, 2930, 2839, 1724, 1647, 1597, 1574, 1437, 1348, 1293, 1258, 1201, 1111, 1056, 1028, 994, 930, 837, 762, 688, 559 cm<sup>-1</sup>; (*major isomer*) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.97 (d, J = 2.0 Hz, 1H), 7.77 (dd, J = 8.4, 2.0 Hz, 1H), 7.62 (d, J = 8.4 Hz, 1H), 6.01–5.90 (m, 1H), 5.35 (dd, J = 17.2, 1.6 Hz, 1H), 5.23 (dd, J = 10.4, 1.6 Hz, 1H), 4.60 (d, J = 4.4 Hz, 1H), 4.39–4.34 (m, 1H), 4.29–4.22 (m, 1H), 4.18–4.12 (m, 1H), 3.91 (s, 3H), 3.63 (dd, J = 14.8, 4.0 Hz, 1H), 3.50 (s, 3H), 3.15 (dd, J = 14.8, 10.8 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 166.3, 138.1, 133.8, 133.2 (2C), 133.0, 129.9, 129.3, 117.6, 104.6, 69.1, 55.9, 52.5, 52.3, 38.8 ppm; HRMS (ESI): m/z calcd for C<sub>15</sub>H<sub>22</sub>NO<sub>4</sub><sup>79</sup>Br<sub>2</sub><sup>+</sup> [M+NH<sub>4</sub>]<sup>+</sup>: 437.9910, found: 437.9908.

**30** was prepared as a colorless oil (91 mg, 58% yield) according to *General Procedure B*.  $R_f$  = 0.55 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 2947, 2872, 2836, 1720, 1614, 1580, 1438, 1371, 1276, 1194, 1099, 1020, 1001, 938, 925, 843, 764, 674, 555, 461 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.81 (s, 1H), 7.80 (d, J = 6.9 Hz, 1H), 7.15 (d, J = 8.1, Hz, 1H), 4.99 (d, J = 5.1 Hz, 1H), 4.11 (t, J = 8.1 Hz, 1H), 3.90 (s, 3H), 3.58 (t, J = 8.1 Hz, 1H), 3.36 (s, 3H), 2.91 (dd, J = 15.0, 9.3 Hz, 1H), 2.81 (dd, J = 13.8, 5.4 Hz, 1H), 2.73 (dd, J = 15.0, 7.2 Hz, 1H), 2.58–2.38 (m, 2H), 2.56 (dd, J = 14.1, 10.5 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 167.4,

144.0, 139.6, 128.6, 128.1, 127.3, 127.2, 105.4, 70.7, 54.8, 51.9, 42.9, 38.0, 32.8, 27.1 ppm; HRMS (ESI): m/z calcd for  $C_{15}H_{22}NO_4^+$  [M+NH<sub>4</sub>]<sup>+</sup>: 280.1543, found: 280.1544.

$$MeO_2C$$
 $H$ 
 $OMe 30'$ 

**30'** was prepared as a colorless oil (42 mg, 27% yield) according to *General Procedure B. R<sub>f</sub>* = 0.45 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 3054, 2930, 2847, 1720, 1614, 1571, 1439, 1399, 1382, 1307, 1288, 1238, 1195, 1117, 993, 922, 802, 764, 737, 665, 546, 438 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.82 (s, 1H), 7.78 (d, J = 8.1 Hz, 1H), 7.17 (d, J = 8.1, Hz, 1H), 4.88 (d, J = 6.3 Hz, 1H), 4.14 (t, J = 6.9 Hz, 1H), 3.90 (s, 3H), 3.70 (dd, J = 10.5, 8.1 Hz, 1H), 3.50 (s, 3H), 3.16 (dd, J = 15.6, 4.8 Hz, 1H), 3.00 (dd, J = 16.5, 4.8 Hz, 1H), 2.76 (dd, J = 16.5, 12.0 Hz, 1H), 2.72 (dd, J = 16.2, 12.0 Hz, 1H), 2.23–2.07 (m, 1H), 1.97 (ddd, J = 17.7, 11.4, 6.0 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 167.1, 141.1, 136.2, 131.1, 129.7, 128.1, 127.2, 109.6, 71.5, 56.5, 52.0, 48.0, 41.3, 32.1, 31.3 ppm; HRMS (ESI): m/z calcd for  $C_{15}H_{22}NO_4^+$  [M+NH<sub>4</sub>]<sup>+</sup>: 280.1543, found: 280.1547.

#### Preparation of β-Bromo Acetal 2p

In a 100 mL round-bottom flask, 2-iodo-5-methoxybenzaldehyde (1.310 g, 5 mmol) was dissolved in anhydrous CH<sub>2</sub>Cl<sub>2</sub> (20 mL) and the resulting solution was cooled to -78 °C, followed by the addition of BBr<sub>3</sub> (7.5 mL, 7.5 mmol, 1.5 equiv) dropwise over a 3 min period. The resulting mixture was gradually warmed to room

temperature, stirred for 1.5 h, and cooled to 0 °C again then quenched with saturated aqueous NaHCO<sub>3</sub> (5 mL). The reaction mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 40 mL), and the combined organic layers were washed with water (2 × 20 mL) and brine (20 mL) respectively, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The resulting phenol (ca. 5 mmol) was directly dissolved in anhydrous DMF (15 mL) and the resulting solution was cooled to 0 °C, followed by the addition of imidazole (681 mg, 10 mmol, 2.0 equiv). After 5 min, TBSCl (1.465 g, 10 mmol, 2.0 equiv) was added portionwise. The resulting mixture was gradually warmed to room temperature, and stirred for 45 min. The reaction was cooled to 0 °C again then quenched with saturated aqueous NaHCO<sub>3</sub> (2 mL) at 0 °C. The resulting mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 40 mL), and the combined organic layers were washed with water (2 × 20 mL) and brine (20 mL) respectively, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether/EtOAc = 30 : 1  $\rightarrow$  petroleum ether/EtOAc = 10 : 1) on silica gel to afford silyl ether (1.575 g, 87% yield) as a colorless oil.

Potassium *tert*-butoxide (98%, 1.143 g, 10 mmol, 2.0 equiv) was added in portions to a suspension of (methoxymethyl)triphenylphosphonium chloride (3.602 g, 10.5 mmol, 2.1 equiv) in THF (20 mL) at 0 °C. After stirring for 40 min at 0 °C, a solution of the above silyl ether (1.810 g, 5 mmol) in THF (10 mL) was added dropwise and the resulting mixture was gradually warmed to room temperature, and stirred for 4 h. The reaction was quenched by the addition of saturated aqueous NH<sub>4</sub>Cl solution (3 mL). The mixture was extracted with EtOAc (3 × 40 mL), and the combined organic layers were washed with water (2 × 20 mL) and brine (20 mL) respectively, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether/EtOAc = 60 : 1  $\rightarrow$  petroleum ether/EtOAc = 10 : 1) on silica gel. The resulting enol ether was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (20 mL) followed by the addition of water (0.5 mL) and TFA (0.8 mL) at room temperature. The mixture was stirred for 24 h, and then extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 30 mL), and the combined organic layers were washed with saturated aqueous NaHCO<sub>3</sub> (15 mL), water (1 × 15 mL) and brine (15 mL) respectively, dried over

filtered and concentrated under reduced pressure. The resulting Na<sub>2</sub>SO<sub>4</sub>, phenylacetaldehyde could be used directly for the next reaction without further purification. In a 50 mL round-bottom flask, potassium tert-butoxide (98%, 571 mg, 5 portions mmol. equiv) was added in to suspension (methoxymethyl)triphenylphosphonium chloride (2.058 g, 6 mmol, 1.2 equiv) in THF (20 mL) at 0 °C. After stirring for 40 min at 0 °C, a solution of the above phenylacetaldehyde (ca. 5 mmol) in THF (8 mL) was added dropwise. The resulting mixture was gradually warmed to room temperature, and stirred for 4 h. The reaction was then quenched by the addition of saturated aqueous NH<sub>4</sub>Cl solution (3 mL). The resulting mixture was extracted with EtOAc (3 × 40 mL), and the combined organic layers were washed with water (2 × 20 mL) and brine (20 mL) respectively, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether/EtOAc =  $60:1 \rightarrow$ petroleum ether/EtOAc = 10 : 1) on silica gel to afford the desired enol methylether (1.030 g, 51% yield) as a colorless oil.

The following synthesis of the corresponding  $\beta$ -bromo acetal as a colorless oil was completed according to the corresponding protocol in *General Procedure A-1*.

To a stirred solution of the above  $\beta$ -bromo acetal (540 mg, 1.0 mmol) in THF (8 mL) was added TBAF (1.0 M in THF, 1.5 mL, 1.5 mmol, 1.5 equiv) at 0 °C. The mixture was stirred for 1 h at 0 °C. The resultant mixture was extracted with EtOAc (3 × 25 mL), and the combined organic layers were washed with water (2 × 10 mL) and brine (10 mL) respectively, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The resulting phenol (ca. 1 mmol) was dissolved directly in THF (5 mL), followed by the addition of Et<sub>3</sub>N (0.15 mL, 1.1 mmol, 1.1 equiv) at 0 °C. After 2 min, AcCl (0.11 mL, 1.5 mmol, 1.5 equiv) was added dropwise, and the resulting mixture was gradually warmed to room temperature, and stirred for 3 h. The resultant mixture was then extracted with EtOAc (3 × 25 mL), and the combined organic layers were washed with water (2 × 10 mL) and brine (10 mL) respectively, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether/EtOAc = 8 : 1  $\rightarrow$  petroleum

ether/EtOAc = 4 : 1) on silica gel to afford β-bromo acetal **2p** (450 mg, 43% overall yield, dr = 1.5 : 1) as a colorless oil.  $R_f$  = 0.58 (petroleum ether/EtOAc = 2 : 1); IR (film):  $v_{\text{max}}$  = 2954, 2927, 2854, 1770, 1647, 1593, 1572, 1466, 1436, 1369, 1267, 1201, 1159, 1055, 1011, 921, 815, 738, 702, 676, 597, 558, 459 cm<sup>-1</sup>; (*major isomer*) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.81 (d, J = 8.4 Hz, 1H), 7.06 (d, J = 2.8 Hz, 1H), 6.76 (dd, J = 8.4, 2.8 Hz, 1H), 6.02–5.90 (m, 1H), 5.35 (dd, J = 16.8, 1.6 Hz, 1H), 5.23 (d, J = 10.4 Hz, 1H), 4.57 (d, J = 4.0 Hz, 1H), 4.32 (dt, J = 10.4, 4.0 Hz, 1H), 4.25 (dd, J = 12.0, 5.6 Hz, 1H), 4.17 (dd, J = 12.4, 5.6 Hz, 1H), 3.52 (dd, J = 14.8, 5.2 Hz, 1H), 3.50 (s, 3H), 3.11 (dd, J = 14.8, 10.4 Hz, 1H), 2.29 (s, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 169.0, 150.6, 142.3, 140.2, 133.9, 124.9, 122.1, 117.6, 104.5, 96.0, 69.2, 56.1, 52.8, 43.1, 21.1 ppm; HRMS (ESI): m/z calcd for C<sub>15</sub>H<sub>22</sub>NO<sub>4</sub><sup>79</sup>BrI<sup>+</sup> [M+NH<sub>4</sub>]<sup>+</sup>: 485.9771, found: 485.9770.

**3p** was prepared as a colorless oil (88 mg, 56% yield) according to *General Procedure B*.  $R_f$  = 0.48 (petroleum ether/EtOAc = 2 : 1); IR (film):  $v_{\text{max}}$  = 2934, 2872, 2838, 1762, 1614, 1590, 1493, 1469, 1440, 1370, 1290, 1212, 1142, 1107, 1069, 1018, 913, 819, 736, 655, 597, 536, 508, 454 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.08 (d, J = 8.0 Hz, 1H), 6.87 (s, 1H), 6.82 (dd, J = 8.0, 2.0 Hz, 1H), 4.97 (d, J = 5.2 Hz, 1H), 4.10 (t, J = 8.0 Hz, 1H), 3.59 (t, J = 8.0 Hz, 1H), 3.36 (s, 3H), 2.88 (dd, J = 14.8, 9.2 Hz, 1H), 2.75 (dd, J = 12.8, 4.4 Hz, 1H), 2.65 (dd, J = 14.8, 6.8 Hz, 1H), 2.57–2.50 (m, 1H), 2.48 (dd, J = 12.8, 10.0 Hz, 1H), 2.47–2.40 (m, 1H), 2.28 (s, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 169.8, 148.9, 140.8, 136.0, 127.8, 120.6, 118.5, 105.4, 70.7, 54.8, 42.8, 38.3, 32.2, 27.3, 21.1 ppm; HRMS (ESI): m/z calcd for C<sub>15</sub>H<sub>22</sub>NO<sub>4</sub><sup>+</sup> [M+NH<sub>4</sub>]<sup>+</sup>: 280.1543, found: 280.1542.

**3p'** was prepared as a colorless oil (40 mg, 25% yield) according to *General Procedure B*.  $R_f$  = 0.39 (petroleum ether/EtOAc = 2 : 1); IR (film):  $v_{\text{max}}$  = 3055, 2927, 2851, 1760, 1612, 1581, 1494, 1442, 1370, 1266, 1209, 1180, 1116, 996, 918, 816, 740, 704, 665, 567, 446 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.11 (d, J = 8.8 Hz, 1H), 6.86 (d, J = 2.8 Hz, 1H), 6.85 (s, 1H), 4.86 (d, J = 6.4 Hz, 1H), 4.13 (dd, J = 7.6, 6.4 Hz, 1H), 3.69 (dd, J = 10.8, 8.0 Hz, 1H), 3.49 (s, 3H), 3.08 (dd, J = 16.4, 5.2 Hz, 1H), 2.93 (dd, J = 16.0, 5.2 Hz, 1H), 2.75 (dd, J = 15.2, 12.8 Hz, 1H), 2.66 (dd, J = 15.6, 12.4 Hz, 1H), 2.28 (s, 3H), 2.19–2.08 (m, 1H), 1.95 (ddd, J = 18.4, 12.4, 6.0 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 169.7, 148.8, 137.3, 133.2, 130.4, 122.4, 119.4, 109.7, 71.6, 56.5, 47.8, 41.6, 31.4 (2C), 21.1 ppm; HRMS (ESI): m/z calcd for  $C_{15}H_{22}NO_4^+$  [M+NH<sub>4</sub>]<sup>+</sup>: 280.1543, found: 280.1542.

## Preparation of β-Bromo Acetal 2q

*o*-Bromophenylacetic acid (3.230 g, 15 mmol) were dissolved in CH<sub>2</sub>Cl<sub>2</sub> (30 mL) followed by the addition of *N*,*N*-carbonyldiimidazole (98%, 2.728 g, 16.5 mmol, 1.1 equiv) at 0 °C. After a good stirring for 30 min, *N*,*O*-dimethylhydroxyamine hydrochloride (98%, 1.782 g, 18 mmol, 1.2 equiv) and Et<sub>3</sub>N (6.2 mL, 45 mmol, 3.0 equiv) were successively added at 0 °C. The resulting mixture was slowly warmed to room temperature and stirred for 8 h. The reaction mixture was then quenched by saturated aqueous NH<sub>4</sub>Cl (5 mL), and extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 50 mL). The combined organic layers were washed with saturated aqueous NaHCO<sub>3</sub> (20 mL), HCl (1*N*, 20 mL), water (2 × 20 mL) and brine (20 mL) respectively, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by flash

column chromatography (petroleum ether/EtOAc/Et<sub>3</sub>N = 10 : 1 : 0.2  $\rightarrow$  petroleum ether/EtOAc = 2 : 1 : 0.05) on silica gel to afford the corresponding Weinreb amides as pale yellow oils. The above Weinreb amides (ca. 15 mmol) were then dissolved in THF (30 mL) followed by the addition of methylmagnesium bromide (18 mmol, 1.2 equiv) dropwise via a syringe at -78 °C. The resulting mixture was gradually warmed to 0 °C, and stirred for 1 h. The reaction was quenched by saturated aqueous NH<sub>4</sub>Cl solution (5 mL), and the mixture was extracted with EtOAc (3 × 50 mL). The combined organic layers were washed with water (2 × 20 mL) and brine (20 mL) respectively, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether/EtOAc = 10 : 1  $\rightarrow$  petroleum ether/EtOAc = 5 : 1) on silica gel to afford the methyl ketone (2.415 g, 76% yield) as a colorless oil.

To a suspension of (methoxymethyl)triphenylphosphonium chloride (2.573 g, 7.5 mmol, 1.5 equiv) in THF (20 mL) was added n-BuLi (4.7 mL, 7.5 mmol, 1.5 equiv) dropwise at -78 °C. The resulting mixture was gradually warmed to room temperature, and stirred for 50 min. The reaction was then cooled to -78 °C again, followed by the addition of a solution of the above methyl ketone (1.060 g, 5 mmol) in THF (10 mL) dropwise. The resulting mixture was gradually warmed to room temperature, and stirred further for 8 h. The reaction was then quenched by the addition of saturated aqueous NH<sub>4</sub>Cl solution (2 mL). The resultant mixture was extracted with EtOAc (3 × 35 mL), and the combined organic layers were washed with water (2 × 15 mL) and brine (15 mL) respectively, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether/EtOAc = 80 : 1  $\rightarrow$  petroleum ether/EtOAc = 5 : 1) on silica gel to afford enol methylether (420 mg, 35% yield) as a colorless oil and recovered ketone (620mg)

The following synthesis of  $\beta$ -bromo acetal **2q** (250 mg, 36% overall yield, dr = 1.8 : 1) as a colorless oil was completed according to the corresponding protocol in *General Procedure A-1*.  $R_f$  = 0.60 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 3068, 2982, 2930, 2869, 1648, 1595, 1566, 1499, 1472, 1440, 1377, 1345, 1185, 1102,

1056, 1024, 992, 926, 811, 752, 661, 585, 563, 453 cm<sup>-1</sup>; (one isomer) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.60 (t, J = 8.0 Hz, 1H), 7.57 (d, J = 8.4 Hz, 1H), 7.27 (t, J = 7.6 Hz, 1H), 7.12 (t, J = 8.0 Hz, 1H), 6.04–5.93 (m, 1H), 5.36 (d, J = 17.6 Hz, 1H), 5.23 (d, J = 10.4 Hz, 1H), 4.47 (s, 1H), 4.36 (dd, J = 12.8, 3.6 Hz, 1H), 4.28 (t, J = 6.0 Hz, 1H), 3.62 (s, 3H), 3.56 (d, J = 14.8 Hz, 1H), 3.41 (d, J = 14.4 Hz, 1H), 1.69 (s, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 136.4, 134.0, 133.1, 132.9, 128.4, 126.7 (2C), 117.3, 109.1, 71.7, 71.6, 58.5, 42.7, 25.8 ppm; HRMS (ESI): m/z calcd for  $C_{14}H_{18}O_2^{79}Br_2Na^+$  [M+Na]<sup>+</sup>: 398.9566, found: 398.9574.

**3q** was prepared as a colorless oil (68 mg, 52% yield) according to *General Procedure B*.  $R_f$  = 0.50 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 3021, 2956, 2928, 2871, 1604, 1486, 1458, 1381, 1365, 1265, 1191, 1099, 1075, 1021, 990, 940, 795, 741, 705, 589, 453 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.14–7.08 (m, 4H), 4.61 (s, 1H), 4.16 (t, J = 8.4 Hz, 1H), 3.62 (t, J = 8.4 Hz, 1H), 3.37 (s, 3H), 3.14 (d, J = 14.4 Hz, 1H), 2.71 (dd, J = 14.0, 5.6 Hz, 1H), 2.53 (dd, J = 14.0, 10.0 Hz, 1H), 2.32 (d, J = 14.8 Hz, 1H), 1.99–1.91 (m, 1H), 0.99 (s, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 138.9, 137.6, 128.2, 126.9, 126.0, 125.8, 111.5, 71.3, 55.0, 47.6, 46.3, 34.9, 32.8, 28.3 ppm; HRMS (ESI): m/z calcd for  $C_{14}H_{18}O_{2}Na^{+}$  [M+Na]<sup>+</sup>: 241.1199, found: 241.1203.

**3q'** was prepared as a colorless oil (35 mg, 27% yield) according to *General Procedure B*.  $R_f$  = 0.42 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 3054, 2925, 2874, 2848, 1602, 1491, 1465, 1398, 1372, 1266, 1211, 1156, 1120, 1097, 999, 931, 851, 741, 704, 657, 440 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.14–7.10 (m, 4H), 4.74 (s, 1H), 4.04 (t, J = 10.0 Hz, 1H), 3.76 (dd, J = 14.8, 10.0 Hz, 1H), 3.54 (s, 3H),

2.91–2.56 (m, 4H), 2.36–2.24 (m, 1H), 0.86 (s, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 135.4$ , 134.6, 130.4, 129.6, 126.2, 125.9, 112.6, 69.2, 57.6, 42.7, 41.8, 39.6, 27.4, 10.4 ppm; HRMS (ESI): m/z calcd for  $C_{14}H_{18}O_2Na^+$  [M+Na]<sup>+</sup>: 241.1199, found: 241.1205.

**2r** was prepared as a colorless oil (1.160 g, 78% overall yield, dr = 2 : 1) according to *General Procedure A-1*.  $R_f$  = 0.63 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 3053, 2927, 2862, 1656, 1587, 1563, 1467, 1438, 1374, 1349, 1265, 1196, 1127, 1074, 1012, 910, 740, 704, 647, 553, 443 cm<sup>-1</sup>; (*major isomer*) <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.83 (d, J = 7.8 Hz, 1H), 7.30 (d, J = 4.5 Hz, 2H), 6.96 (dd, J = 8.4, 4.5 Hz, 1H), 5.07 (s, 1H), 4.95 (s, 1H), 4.60 (d, J = 4.2 Hz, 1H), 4.38 (dt, J = 10.8, 3.6 Hz, 1H), 4.16 (dd, J = 12.3, 6.6 Hz, 1H), 4.06 (dd, J = 12.3, 8.4 Hz, 1H), 3.57 (dd, J = 6.6, 4.2 Hz, 1H), 3.52 (s, 3H), 3.13 (dd, J = 14.7, 10.8 Hz, 1H), 1.82 (s, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 141.3, 140.7, 139.6, 131.7, 128.6, 128.0, 113.0, 104.5, 100.4, 72.2, 56.1, 53.4, 43.1, 19.8 ppm; HRMS (ESI): m/z calcd for  $C_{14}H_{18}O_2^{79}BrINa^+$  [M+Na]<sup>+</sup>: 446.9427, found: 446.9434.

**3r** was prepared as a colorless oil (73 mg, 56% yield) according to *General Procedure B*.  $R_f$  = 0.55 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 3020, 2954, 2924, 2869, 2832, 1607, 1585, 1489, 1458, 1379, 1361, 1310, 1264, 1186, 1113, 1043, 1025, 943, 895, 751, 740, 664, 569, 450 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.15–7.06 (m, 4H), 5.04 (d, J = 6.0 Hz, 1H), 3.70 (d, J = 8.4 Hz, 1H), 3.63 (d, J = 8.4 Hz, 1H), 3.35 (s, 3H), 2.83 (dd, J = 14.8, 8.8 Hz, 1H), 2.69 (d, J = 14.0 Hz, 1H), 2.63 (dd, J = 14.8, 6.8 Hz, 1H), 2.49 (d, J = 14.0 Hz, 1H), 2.03 (dt, J = 8.4, 6.8 Hz, 1H), 0.96 (s, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 138.5, 137.8, 127.8, 127.3, 126.1,

125.6, 106.4, 77.3, 55.0, 50.5, 43.2, 39.4, 28.5, 27.6 ppm; HRMS (ESI): m/z calcd for  $C_{14}H_{18}O_2Na^+$  [M+Na]<sup>+</sup>: 241.1199, found: 241.1202.

**3r'** was prepared as a white solid (37 mg, 28% yield) according to *General Procedure B*.  $R_f$  = 0.45 (petroleum ether/EtOAc = 4 : 1); Mp. 102–103 °C; IR (film):  $v_{\text{max}}$  = 3051, 2962, 2926, 2856, 1615, 1503, 1444, 1399, 1266, 1238, 1196, 1120, 1086, 994, 972, 913, 818, 739, 706, 664, 559, 445 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.16–7.07 (m, 4H), 4.87 (d, J = 7.2 Hz, 1H), 3.86 (d, J = 7.5 Hz, 1H), 3.79 (d, J = 7.5 Hz, 1H), 3.50 (s, 3H), 2.98 (dd, J = 16.2, 5.4 Hz, 1H), 2.81 (dd, J = 15.6, 10.2 Hz, 1H), 2.70 (d, J = 12.9 Hz, 1H), 2.65 (d, J = 15.6 Hz, 1H), 2.04 (ddd, J = 18.6, 12.9, 6.0 Hz, 1H), 0.97 (s, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 135.2, 135.1, 130.3, 129.8, 126.2, 125.9, 108.6, 78.7, 56.6, 49.7, 41.0, 39.9, 26.7, 17.4 ppm; HRMS (ESI): m/z calcd for  $C_{14}H_{18}O_2Na^+$  [M+Na]<sup>+</sup>: 241.1199, found: 241.1204.


**2s** was prepared as a colorless oil (750 mg, 60% overall yield, dr = 2 : 1) according to *General Procedure A-2*.  $R_f$  = 0.55 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 3025, 2926, 2903, 1678, 1625, 1599, 1503, 1478, 1449, 1410, 1353, 1232, 1119, 1070, 1039, 967, 935, 861, 738, 693, 656, 537, 439 cm<sup>-1</sup>; (*major isomer*) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.40 (d, J = 7.6 Hz, 2H), 7.32 (t, J = 8.0 Hz, 2H), 7.25 (t, J = 7.6 Hz, 1H), 6.99 (s, 1H), 6.80 (s, 1H), 6.66 (d, J = 15.6 Hz, 1H), 6.32 (dt, J = 16.0, 6.0 Hz, 1H), 5.95 (s, 1H), 5.94 (s, 1H), 4.61 (t, J = 4.0 Hz, 1H), 4.41 (dd, J = 12.0, 6.0 Hz, 1H), 4.36–4.32 (m, 1H), 4.31 (dd, J = 12.8, 6.4 Hz, 1H), 3.53 (dd, J = 15.2, 3.6 Hz, 1H), 3.51 (s, 3H), 2.99 (dd, J = 14.8, 10.4 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 147.4, 147.0, 136.5, 132.9, 130.6, 128.6 (2C), 127.8, 126.5 (2C), 125.0,

114.7, 112.7, 111.9, 104.4, 101.7, 68.8, 55.8, 53.4, 39.1 ppm; HRMS (ESI): m/z calcd for  $C_{20}H_{20}O_4^{79}Br_2Na^+$  [M+Na]<sup>+</sup>: 504.9621, found: 504.9629.

**3s** was prepared as a colorless oil (99 mg, 51% yield) according to *General Procedure B*.  $R_f$  = 0.48 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 3027, 2927, 1672, 1602, 1501, 1481, 1450, 1361, 1288, 1254, 1149, 1113, 1044, 1014, 936, 871, 751, 702, 599, 546, 439 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.31 (t, J = 7.5 Hz, 2H), 7.24 (d, J = 7.2 Hz, 1H), 7.16 (d, J = 6.9 Hz, 2H), 6.64 (s, 1H), 5.98 (s, 1H), 5.78 (s, 1H), 5.76 (s, 1H), 4.93 (d, J = 4.8 Hz, 1H), 3.74 (t, J = 8.4 Hz, 1H), 3.59 (d, J = 10.8 Hz, 1H), 3.48 (t, J = 8.4 Hz, 1H), 3.33 (s, 3H), 2.91 (dd, J = 14.1, 9.9 Hz, 1H), 2.72–2.50 (m, 2H), 2.63 (dd, J = 13.2, 6.9 Hz, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 145.5, 145.4, 141.0, 135.4, 132.1, 129.2 (2C), 128.8 (2C), 127.0, 108.1, 107.3, 105.4, 100.6, 70.2, 54.8, 48.7, 44.8, 43.5, 27.5 ppm; HRMS (ESI): m/z calcd for  $C_{20}H_{20}O_4Na^+$  [M+Na]<sup>+</sup>: 347.1254, found: 347.1258.

**3s'** was prepared as a white solid (47 mg, 24% yield) according to *General Procedure B*.  $R_f$  = 0.40 (petroleum ether/EtOAc = 4 : 1); Mp. 198–200 °C; IR (film):  $v_{\text{max}}$  = 3029, 2959, 2909, 2848, 1599, 1488, 1375, 1242, 1117, 1036, 991, 929, 868, 748, 703, 646, 606, 568, 424 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  =7.24 (t, J = 7.2 Hz, 2H), 7.18 (d, J = 5.6 Hz, 1H), 7.03 (d, J = 7.2 Hz, 2H), 6.55 (s, 1H), 6.14 (s, 1H), 5.78 (s, 2H), 4.81 (d, J = 6.0 Hz, 1H), 3.74 (d, J = 10.8 Hz, 1H), 3.65 (d, J = 7.2 Hz, 1H), 3.64 (d, J = 9.6 Hz, 1H), 3.41 (s, 3H), 2.99 (dd, J = 15.6, 4.8 Hz, 1H), 2.78 (t, J = 14.0 Hz, 1H), 2.25–2.15 (m, 1H), 2.06 (ddd, J = 18.0, 12.0, 5.6 Hz, 1H) ppm; <sup>13</sup>C

NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 146.1 (2C), 144.2, 132.7, 129.5, 128.7 (2C), 128.4 (2C), 126.9, 110.0, 109.4, 108.8, 100.9, 71.1, 56.5, 49.9, 49.7, 47.9, 32.1 ppm; HRMS (ESI): m/z calcd for  $C_{20}H_{20}O_4Na^+$  [M+Na]<sup>+</sup>: 347.1254, found: 347.1258. This product (8.4 mg) was dissolved in EtOAc (1 mL) and petroleum ether (2 mL). After a week, colorless single crystals were obtained by slow evaporation of solvents at room temperature.



**Table S8**: X-ray crystal data of **3s'** (selected H atoms have been omitted for clarity)

| · · · · · · · · · · · · · · · · · · ·     | • *               |
|-------------------------------------------|-------------------|
| Empirical formula                         | $C_{20}H_{20}O_4$ |
| Temperature (K)                           | 294.06(10)        |
| Crystal color                             | colorless         |
| Formula weight                            | 324.36            |
| Crystal system                            | Triclinic         |
| Space group                               | P-1               |
| a (Å)                                     | 6.4202(14)        |
| b (Å)                                     | 8.678(2)          |
| c (Å)                                     | 15.259(4)         |
| α (°)                                     | 77.58(2)          |
| β(°)                                      | 82.191(19)        |
| γ (°)                                     | 85.69(2)          |
| $V(\mathring{A}^3)$                       | 821.6(3)          |
| Z                                         | 2                 |
| Density (calculated) (g/cm <sup>3</sup> ) | 1.311             |
| F (000)                                   | 344.0             |
| λ(Å)                                      | 0.71073           |
| Reflections collected                     | 5016              |
| Independent reflections                   | 3189              |
| $\theta$ Range for data collection (°)    | 3.26—26.02        |
|                                           |                   |

Index range  $-7 \le h \le 7$   $-10 \le k \le 10$   $-16 \le l \le 18$ Final R indices [I>2 $\sigma$ (I)]  $R_I = 0.0637, wR_2 = 0.1343$ Largest difference peak and hole [e Å  $^{-3}$ ] 0.189, -0.244

**2t** was prepared as a colorless oil (530 mg, 43% overall yield, dr = 1.5 : 2 : 1 : 1) according to *General Procedure A-2*.  $R_f$  = 0.55 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 3078, 2977, 2927, 2834, 1642, 1595, 1468, 1444, 1371, 1318, 1265, 1230, 1194, 1059, 994, 928, 807, 706, 673, 572, 451 cm<sup>-1</sup>; (*major isomer*) <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.67 (d, J = 8.1 Hz, 1H), 7.11 (s, 1H), 6.76 (d, J = 8.1 Hz, 1H), 5.92–5.71 (m, 1H), 5.24 (d, J = 18.0 Hz, 1H), 5.18 (d, J = 9.6 Hz, 1H), 4.60 (d, J = 3.6 Hz, 1H), 4.36–4.21 (m, 2H), 3.54–4.48 (m, 1H), 3.47 (s, 3H), 3.11 (dd, J = 12.0, 6.9 Hz, 1H), 2.29 (s, 3H), 1.34 (d, J = 6.0 Hz, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 140.4, 139.5, 139.1, 137.7, 132.5, 129.5, 117.0, 102.3, 96.2, 75.5, 55.1, 54.0, 42.6, 21.5, 20.9 ppm; HRMS (ESI): m/z calcd for  $C_{15}H_{20}O_{2}^{79}BrINa^{+}$  [M+Na]<sup>+</sup>: 460.9584, found: 460.9594.

**3t** was prepared as a colorless oil (67 mg, 48% yield) according to *General Procedure B*.  $R_f$  = 0.48 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 2926, 1618, 1500, 1451, 1384, 1316, 1183, 1116, 1094, 1074, 1025, 977, 902, 854, 812, 594, 572, 441 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 6.99 (d, J = 7.6 Hz, 1H), 6.96 (s, 1H), 6.93 (d, J = 7.2 Hz, 1H), 4.98 (d, J = 4.8 Hz, 1H), 3.90–3.83 (m, 1H), 3.38 (s, 3H), 2.86–2.79 (m, 1H), 2.72 (dd, J = 14.4, 6.0 Hz, 1H), 2.63–2.54 (m, 2H), 2.42 (dd, J = 13.6, 10.8 Hz, 1H), 2.31 (s, 3H), 1.97–1.88 (m, 1H), 1.33 (d, J = 6.0 Hz, 3H) ppm;

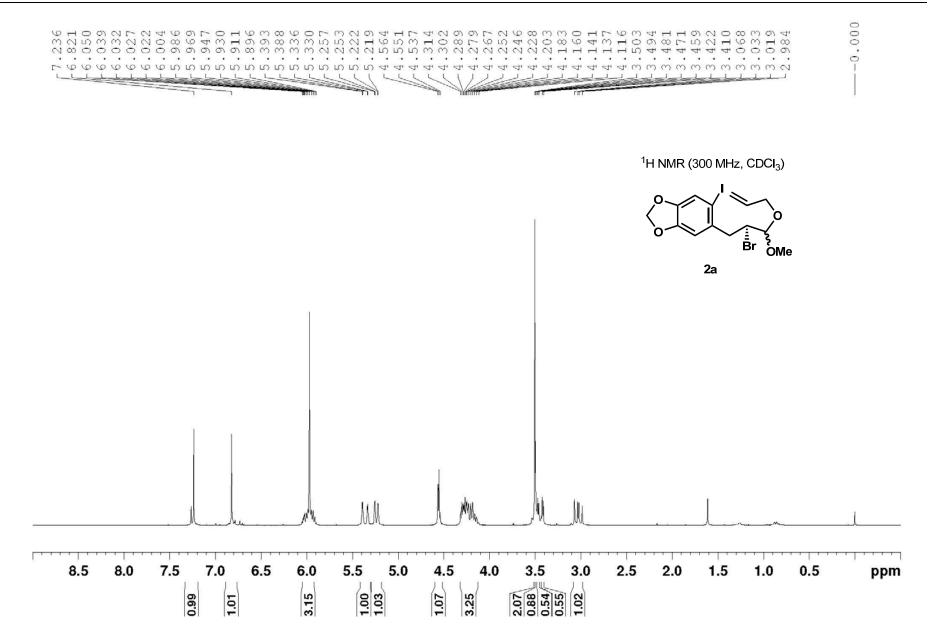
<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 139.5, 135.6, 135.4, 128.2, 126.9, 126.3, 105.2, 77.8, 54.8, 46.3, 44.1, 31.4, 27.6, 21.1, 19.3 ppm; HRMS (ESI): m/z calcd for C<sub>15</sub>H<sub>20</sub>O<sub>2</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 255.1356, found: 255.1359.

**3t'** was prepared as a colorless oil (31 mg, 22% yield) according to *General Procedure B*.  $R_f$  = 0.39 (petroleum ether/EtOAc = 4 : 1); IR (film):  $v_{\text{max}}$  = 3050, 2959, 2925, 2870, 1616, 1502, 1459, 1443, 1401, 1377, 1326, 1266, 1188, 1114, 1060, 1031, 981, 963, 810, 739, 705, 440 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.01 (d, J = 8.4 Hz, 1H), 6.95 (s, 1H), 6.94 (d, J = 8.4 Hz, 1H), 4.87 (d, J = 6.3 Hz, 1H), 3.95 (dq, J = 9.6, 6.0 Hz, 1H), 3.50 (s, 3H), 3.05 (dd, J = 15.9, 5.4 Hz, 1H), 2.84 (dd, J = 15.6, 5.1 Hz, 1H), 2.71 (dd, J = 15.6, 12.6 Hz, 1H), 2.60 (dd, J = 14.7, 12.9 Hz, 1H), 2.29 (s, 3H), 2.04 (ddd, J = 18.0, 12.0, 5.7 Hz, 1H), 1.68–1.55 (m, 1H), 1.33 (d, J = 6.0 Hz, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 135.7, 135.6, 132.4, 130.4, 129.5, 126.9, 109.1, 78.8, 56.5, 48.8, 48.4, 31.7, 30.9, 20.9, 18.8 ppm; HRMS (ESI): m/z calcd for  $C_{15}H_{20}O_2Na^+$  [M+Na]<sup>+</sup>: 255.1356, found: 255.1357.

## Stereoselective Synthesis of *Podophyllum* Lignans Core by Intramolecular Reductive Nickel-catalysis

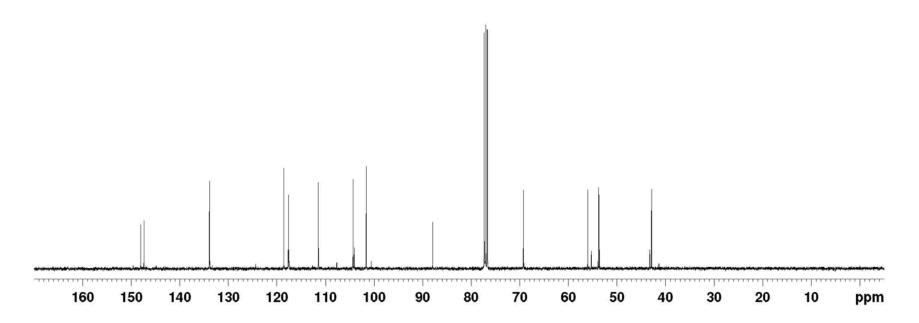
Jian Xiao, Xiao-Wei Cong, Gui-Zhen Yang, Ya-Wen Wang and Yu Peng\*

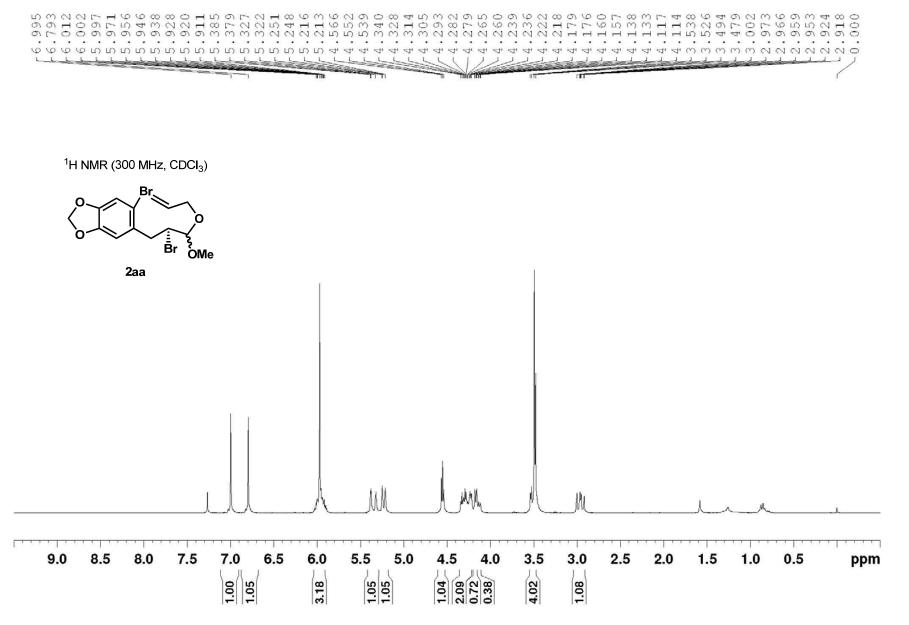
State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China

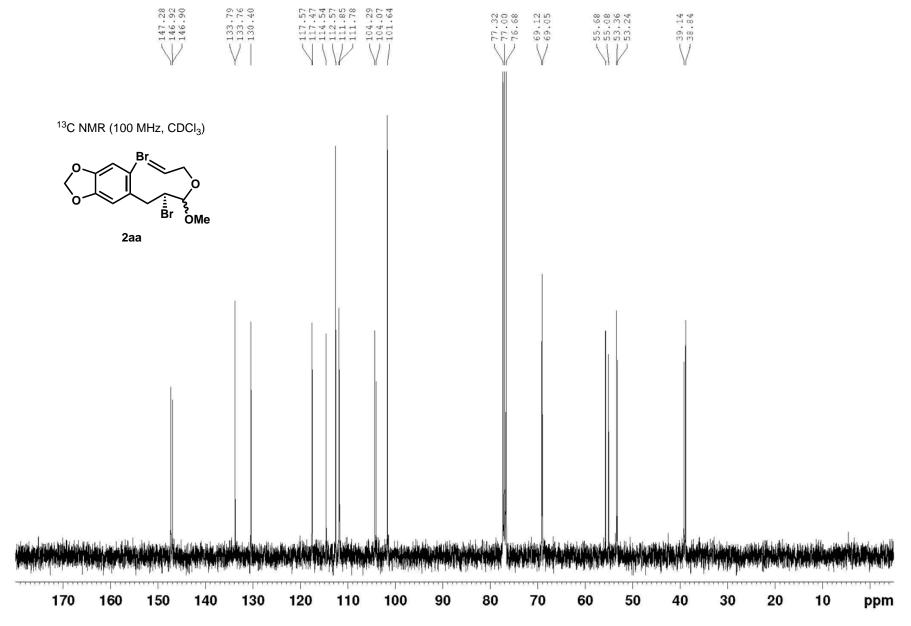

## pengyu@lzu.edu.cn

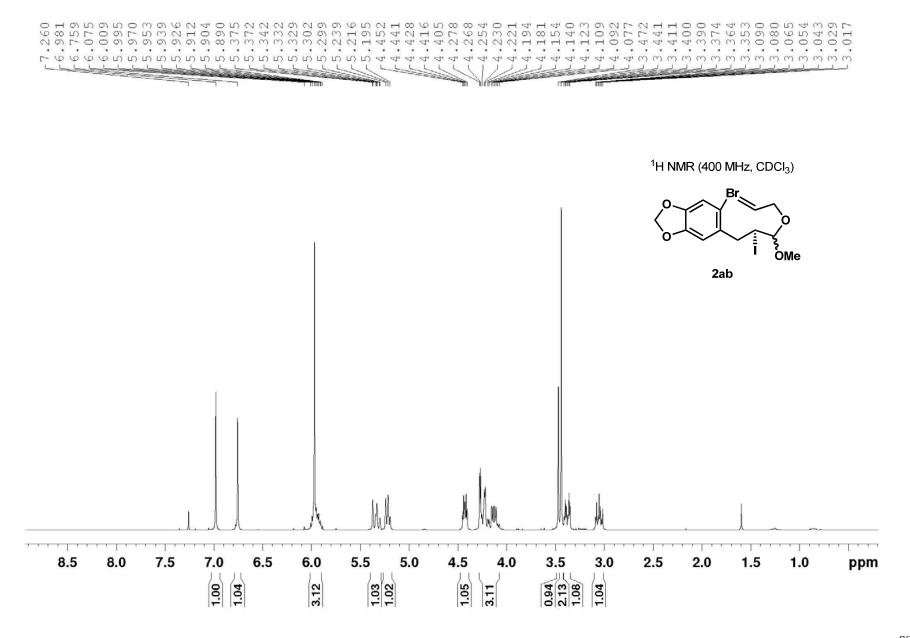
## **Table of Contents**

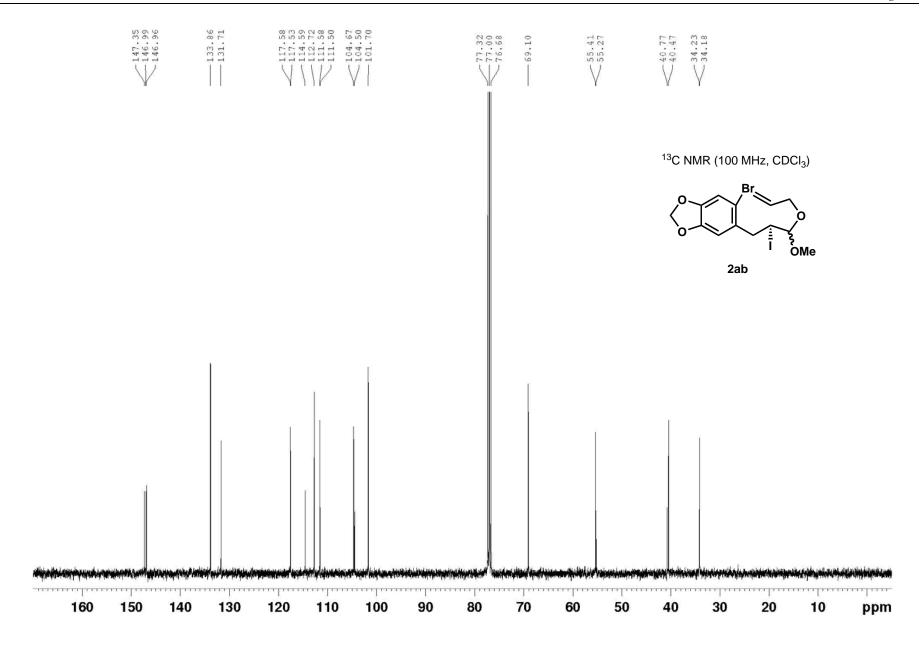
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>2a</b>  | S4-S5   |
|---|------------------------------------------------------------------|---------|
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>2aa</b> | S6-S7   |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>2ab</b> | S8-S9   |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>2ac</b> | S10-S11 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3a</b>  | S12-S13 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3a'</b> | S14-S15 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>2b</b>  | S16-S17 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3b</b>  | S18-S19 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3b'</b> | S20-S21 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>2c</b>  | S22-S23 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3c</b>  | S24-S25 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3c'</b> | S26-S27 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>2d</b>  | S28-S29 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3d</b>  | S30-S31 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3d'</b> | S32-S33 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>2e</b>  | S34-S35 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3e</b>  | S36-S37 |

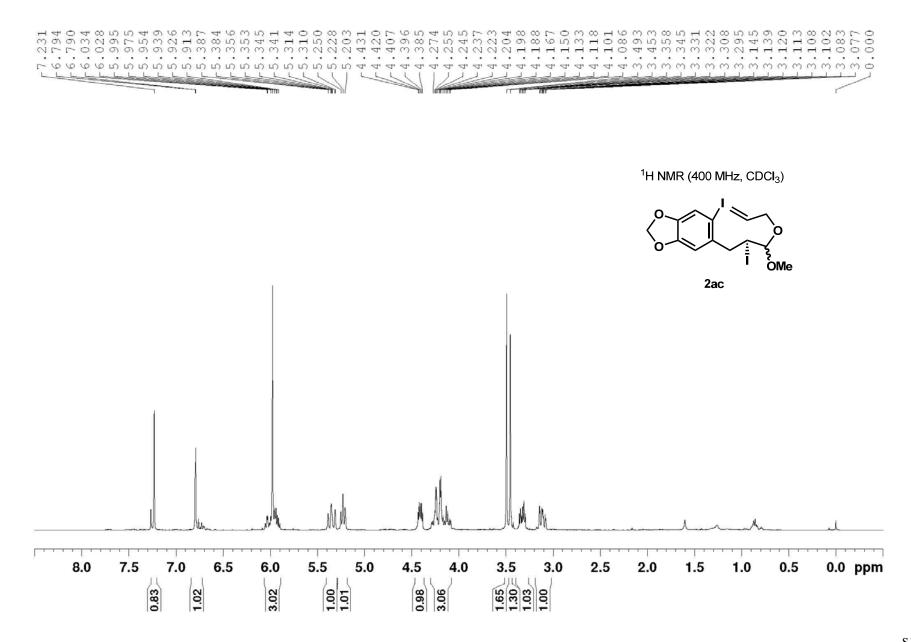

| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3e'</b>                      | . S38-S39 |
|---|---------------------------------------------------------------------------------------|-----------|
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>2f</b>                       | . S40-S41 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3f</b>                       | . S42-S43 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3f'</b>                      | . S44-S45 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>2g</b>                       | . S46-S47 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3g</b>                       | . S48-S49 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3g'</b>                      | S50-S51   |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>2h</b>                       | S52-S53   |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3h</b>                       | . S54-S55 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3h'</b>                      | . S56-S57 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>2i</b>                       | . S58-S59 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3i</b>                       | . S60-S61 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3i'</b>                      | . S62-S63 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>2j</b>                       | . S64-S65 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3j</b>                       |           |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3j'</b>                      | . S68-S69 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>2k</b>                       | . S70-S71 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3k</b>                       | . S72-S73 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3k'</b>                      | . S74-S75 |
| • | <sup>1</sup> H NMR, <sup>13</sup> C NMR and <sup>19</sup> F NMR spectra of <b>2l</b>  | . S76-S78 |
| • | <sup>1</sup> H NMR, <sup>13</sup> C NMR and <sup>19</sup> F NMR spectra of <b>3l</b>  | . S79-S81 |
| • | <sup>1</sup> H NMR, <sup>13</sup> C NMR and <sup>19</sup> F NMR spectra of <b>31'</b> | . S82-S84 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>2m</b>                       | . S85-S86 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3m</b>                       | . S87-S88 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3m'</b>                      | . S89-S90 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>2n</b>                       | . S91-S92 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3n</b>                       | . S93-S94 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3n'</b>                      | . S95-S96 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>20</b>                       | . S97-S98 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>30</b>                       | S99-S100  |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>30'</b>                      | 101-S102  |

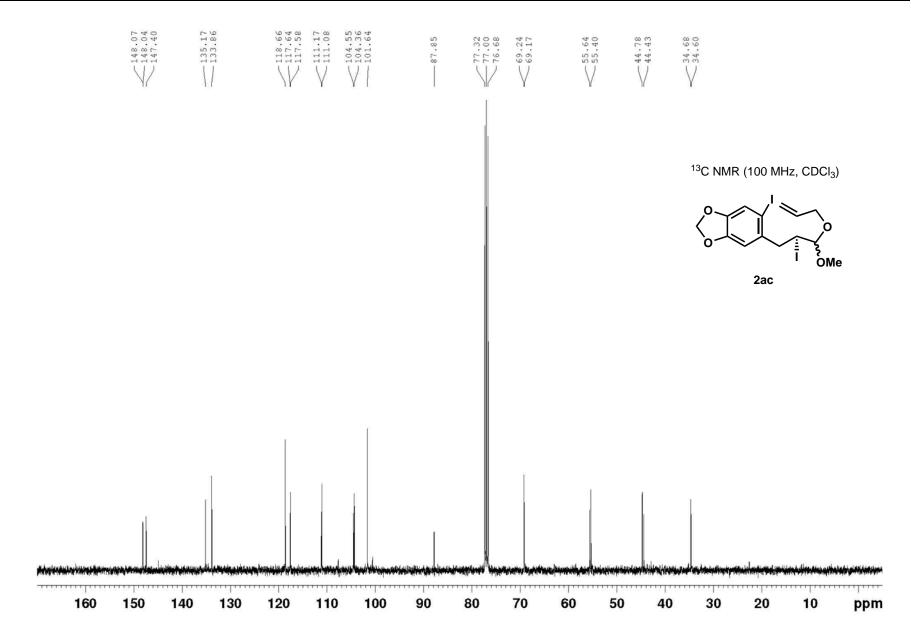

| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>2p</b>                                              | S103-S104   |
|---|--------------------------------------------------------------------------------------------------------------|-------------|
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3p</b>                                              | S105-S106   |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3p'</b>                                             | . S107-S108 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>2q</b>                                              | . S109-S110 |
| • | <sup>1</sup> H NMR, <sup>13</sup> C NMR, <sup>1</sup> H– <sup>1</sup> H COSY and NOESY spectra of <b>3q</b>  | . S111-S115 |
| • | <sup>1</sup> H NMR, <sup>13</sup> C NMR, <sup>1</sup> H– <sup>1</sup> H COSY and NOESY spectra of <b>3q'</b> | . S116-S119 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>2r</b>                                              | . S120-S121 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3r</b>                                              | . S122-S123 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3r'</b>                                             | . S124-S125 |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>2s</b>                                              | . S126-S127 |
| • | <sup>1</sup> H NMR, <sup>13</sup> C NMR, <sup>1</sup> H– <sup>1</sup> H COSY and NOESY spectra of <b>3s</b>  | . S128-S131 |
| • | <sup>1</sup> H NMR, <sup>13</sup> C NMR, <sup>1</sup> H– <sup>1</sup> H COSY and NOESY spectra of <b>3s'</b> | S132-S135   |
| • | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>2t</b>                                              | . S136-S137 |
| • | <sup>1</sup> H NMR, <sup>13</sup> C NMR, <sup>1</sup> H– <sup>1</sup> H COSY and NOESY spectra of <b>3t</b>  | . S138-S141 |
| • | <sup>1</sup> H NMR, <sup>13</sup> C NMR, <sup>1</sup> H– <sup>1</sup> H COSY and NOESY spectra of <b>3t'</b> | . S142-S145 |

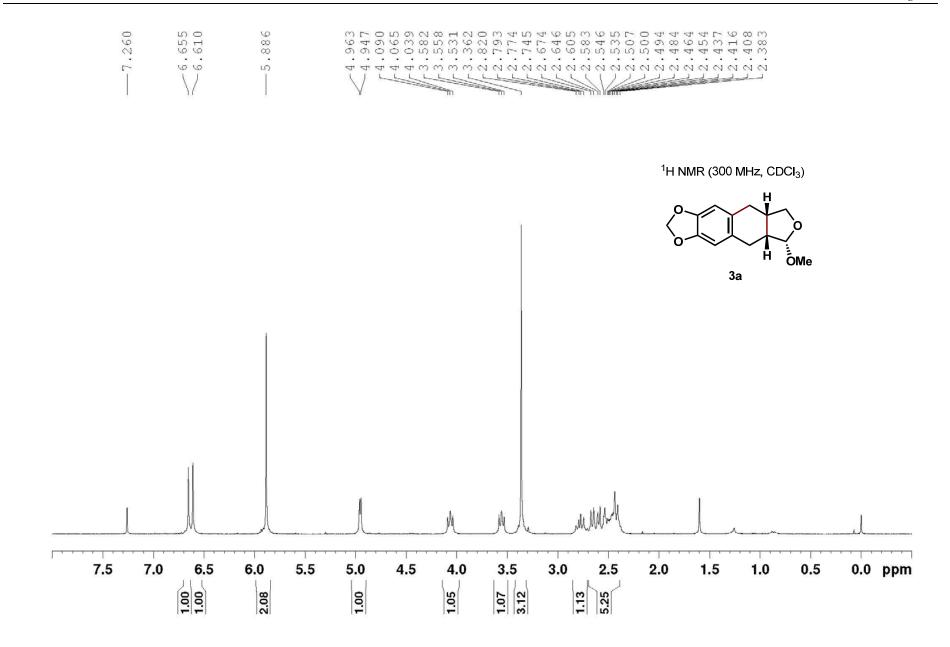


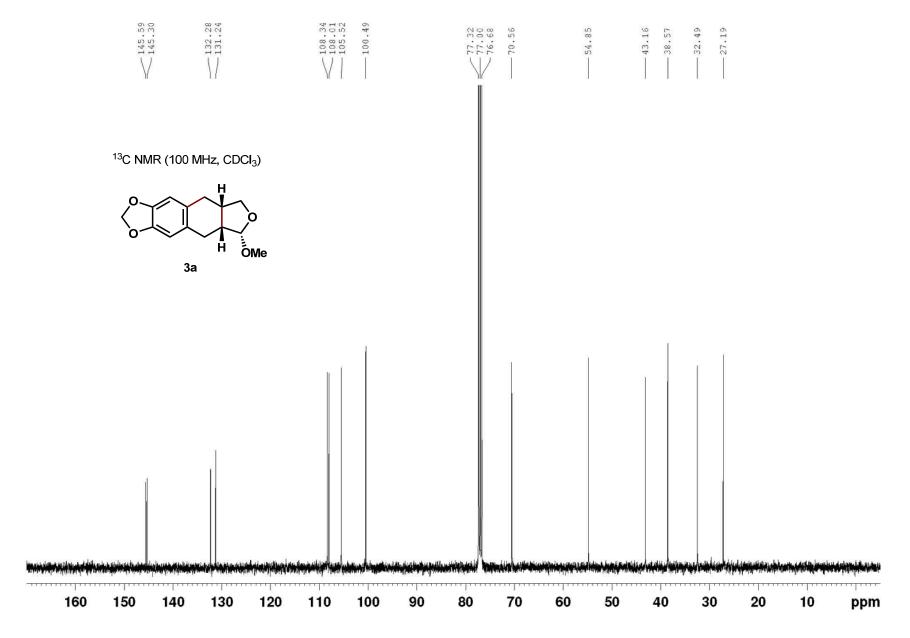



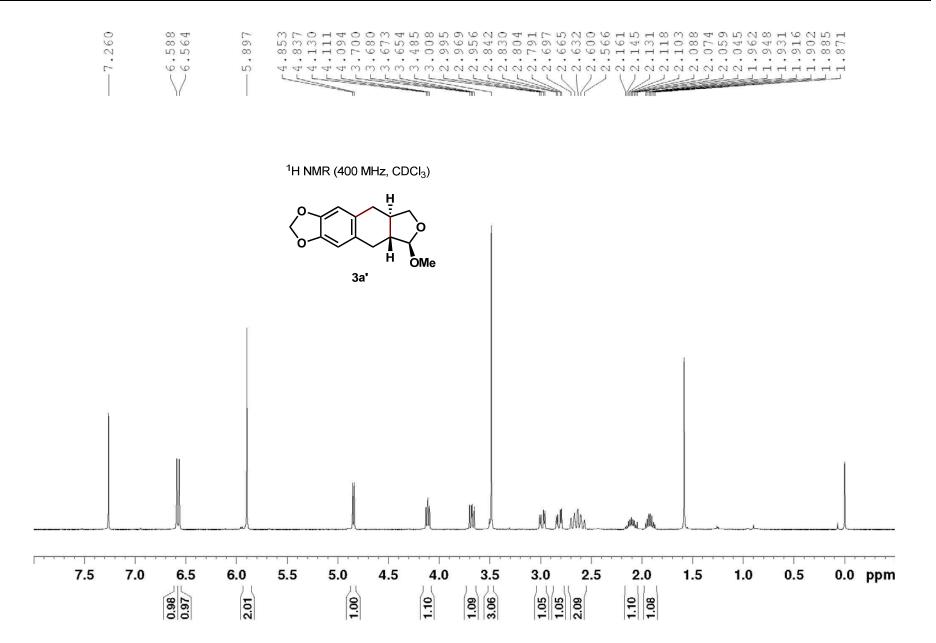


<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)

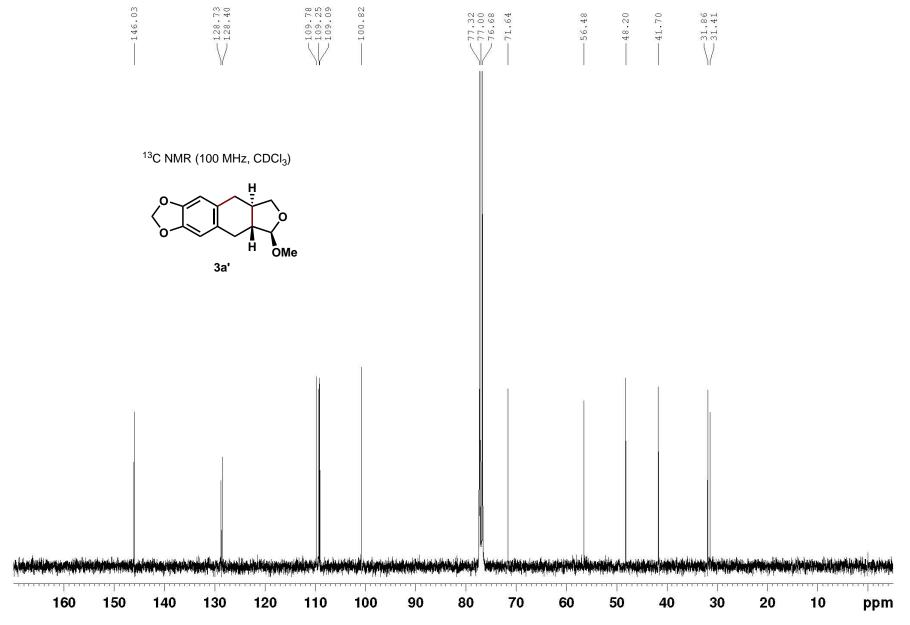


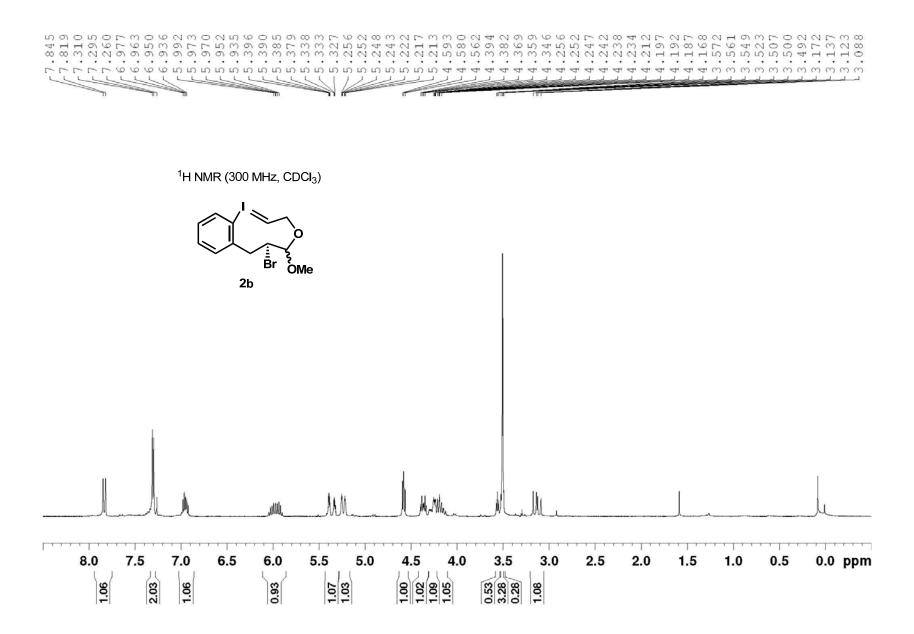



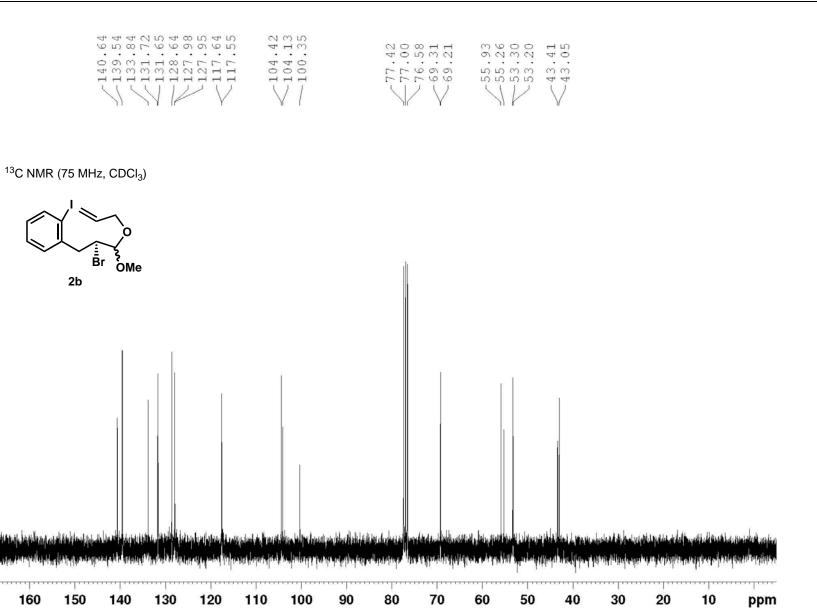



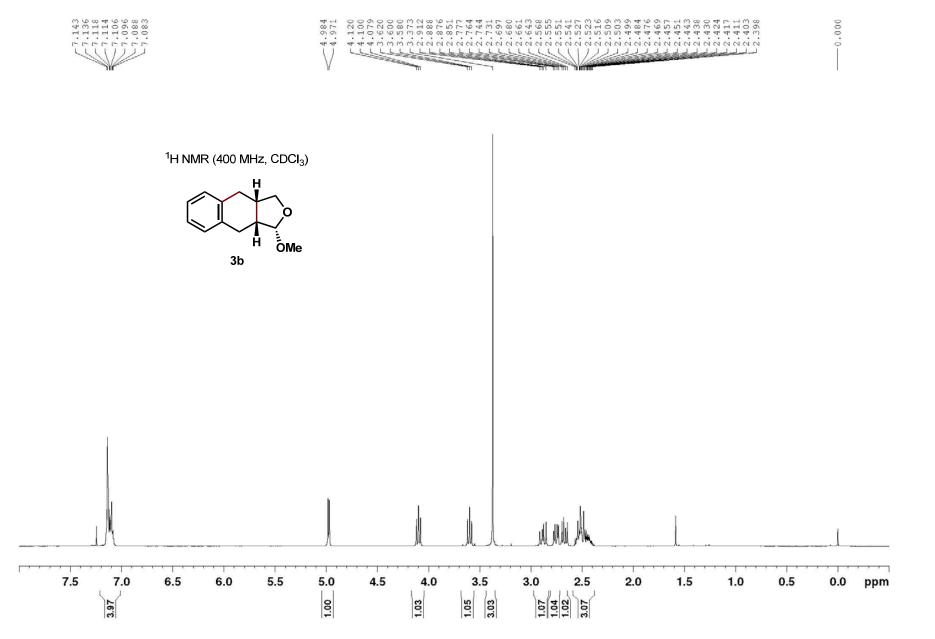



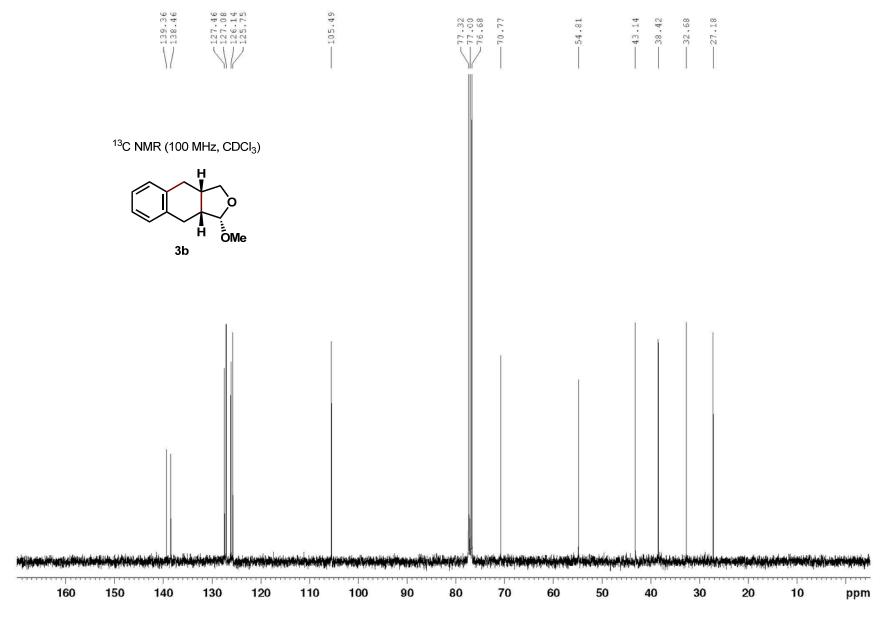



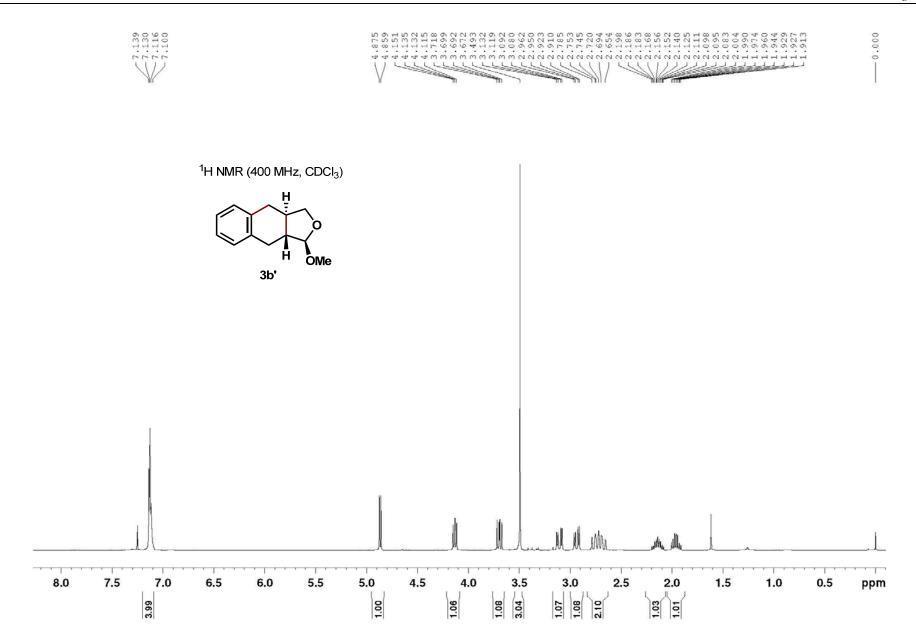



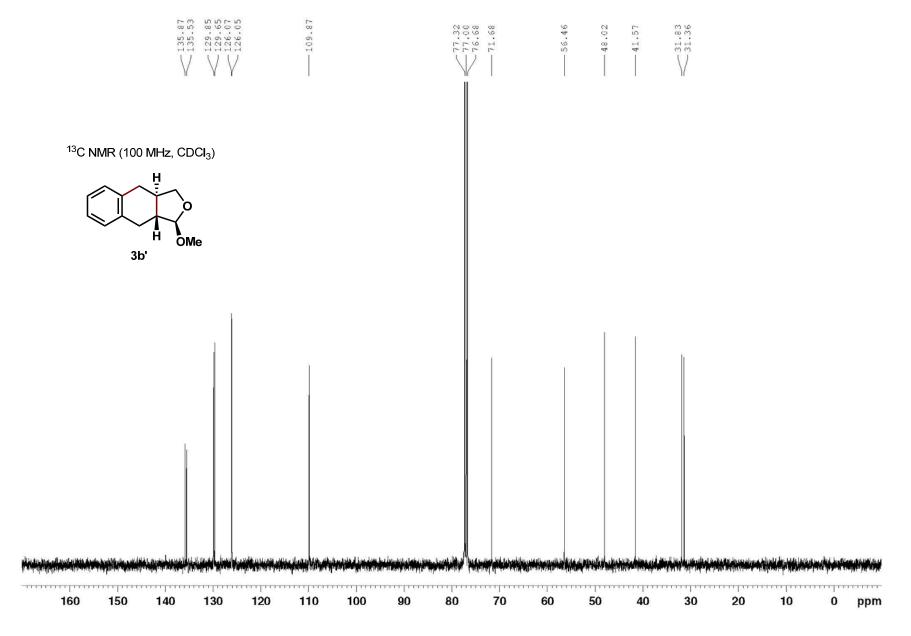



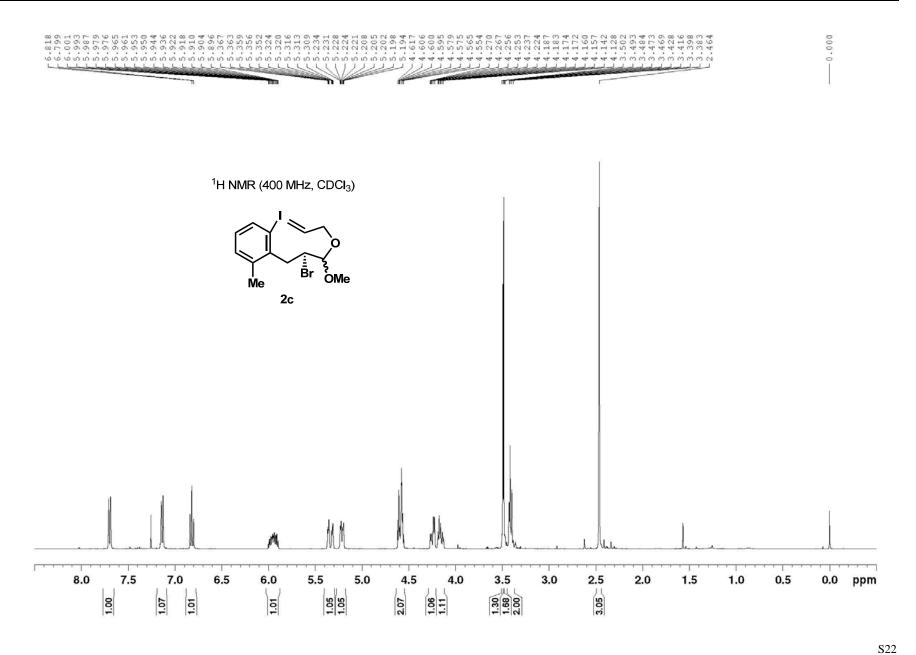


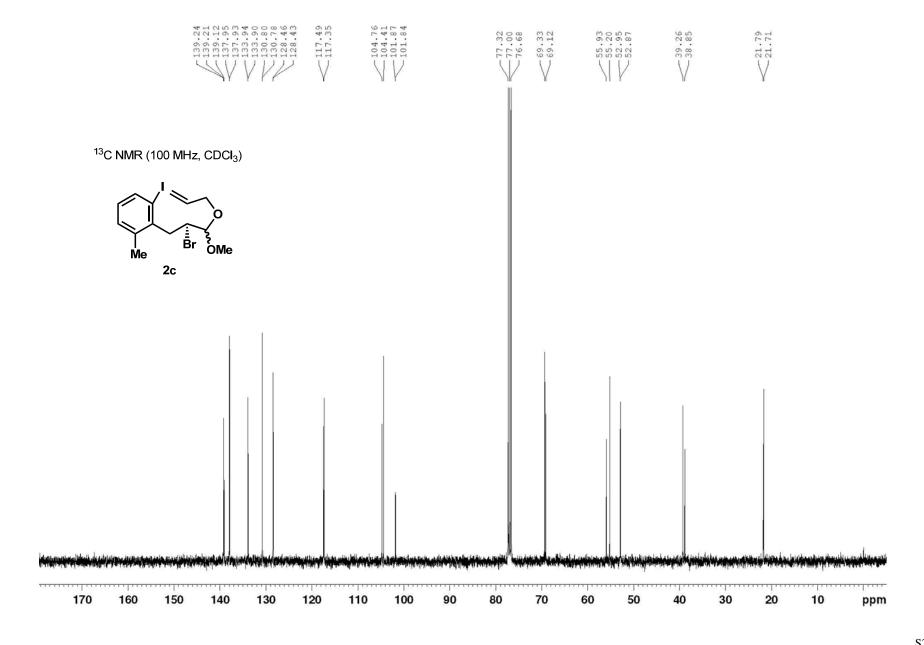



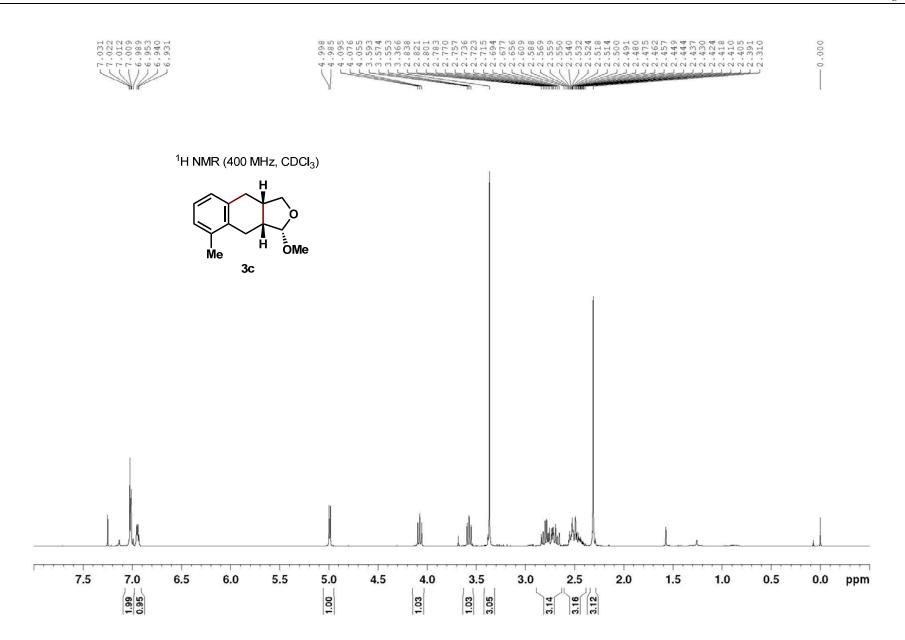



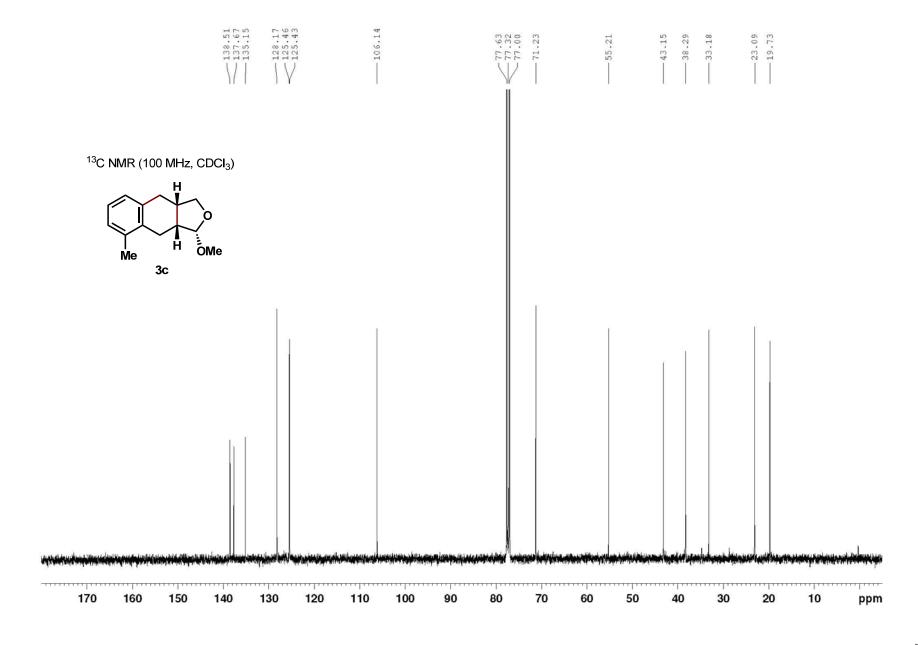



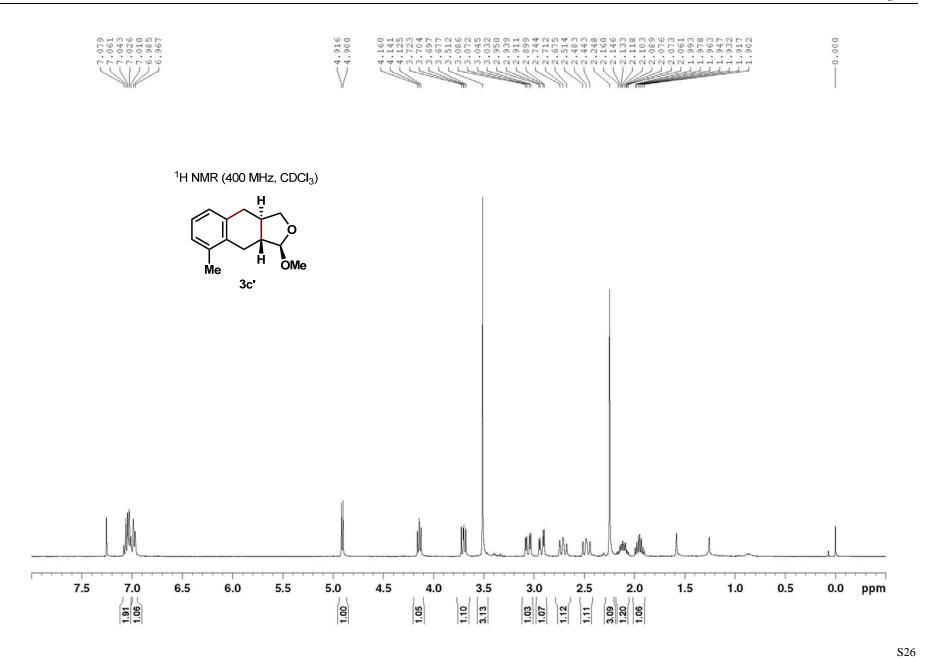



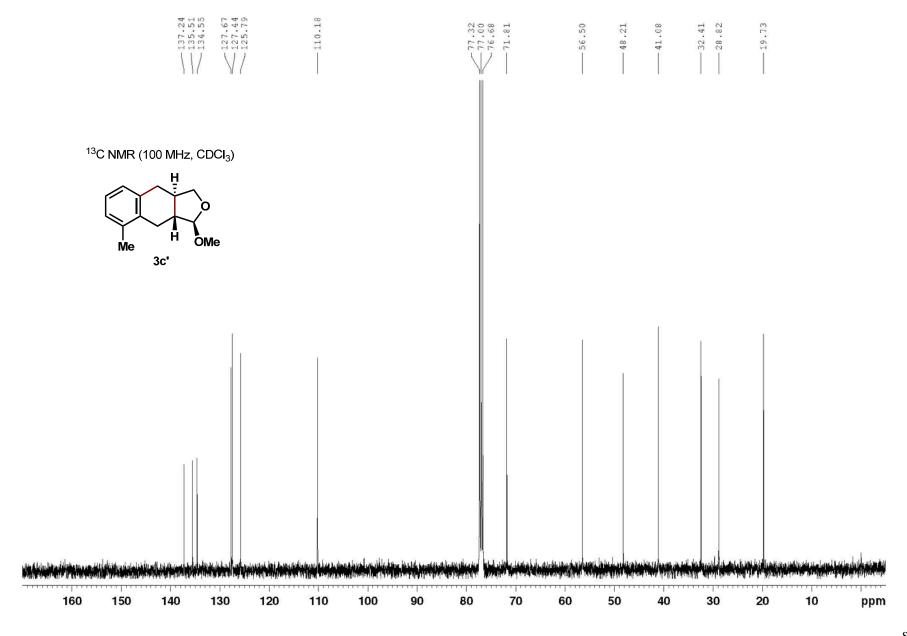


170

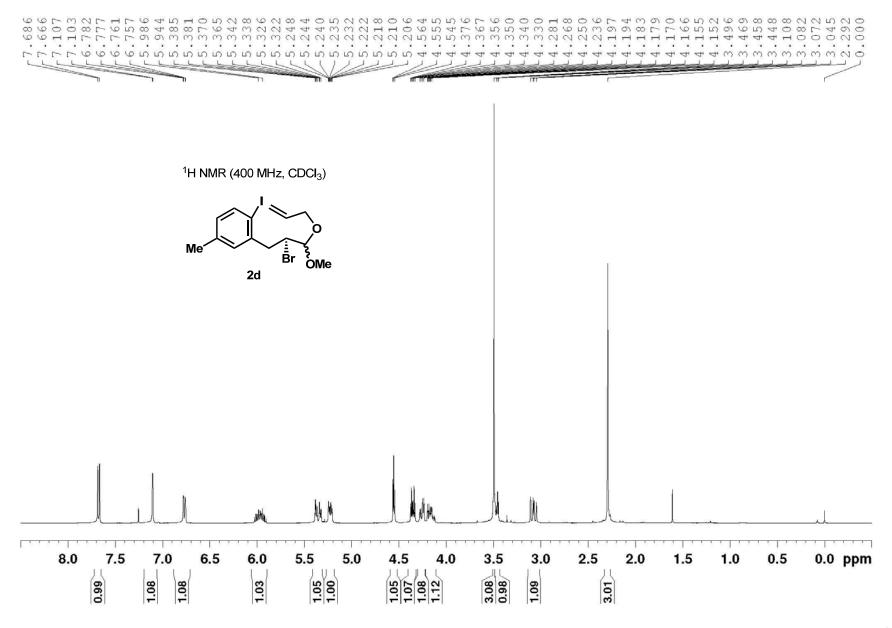


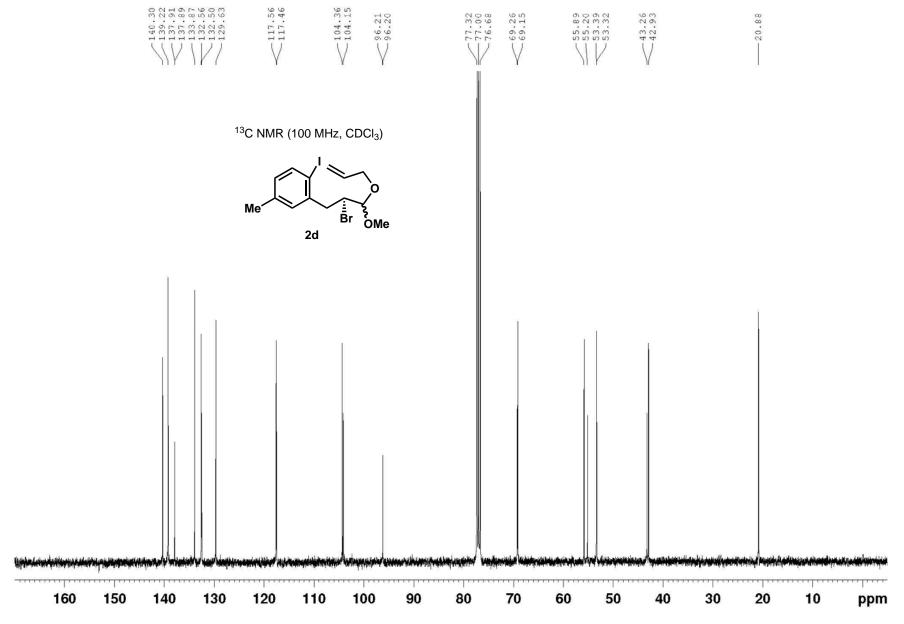



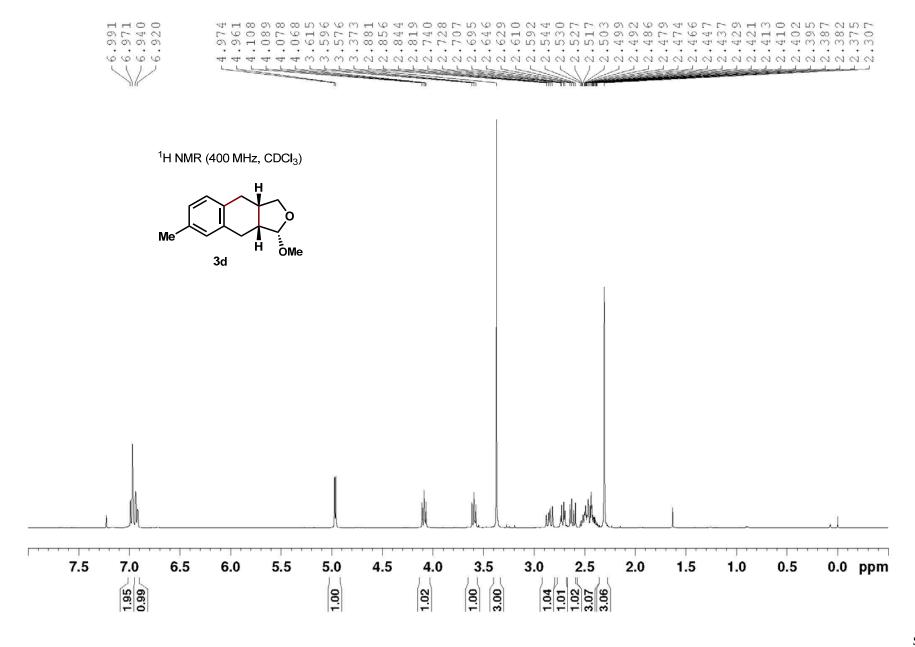



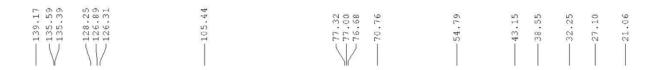



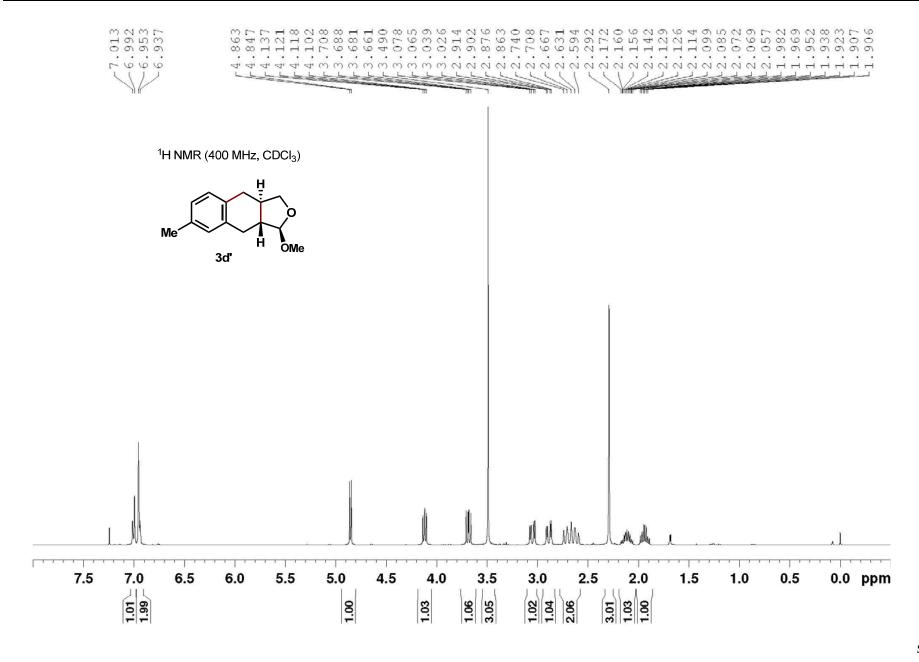



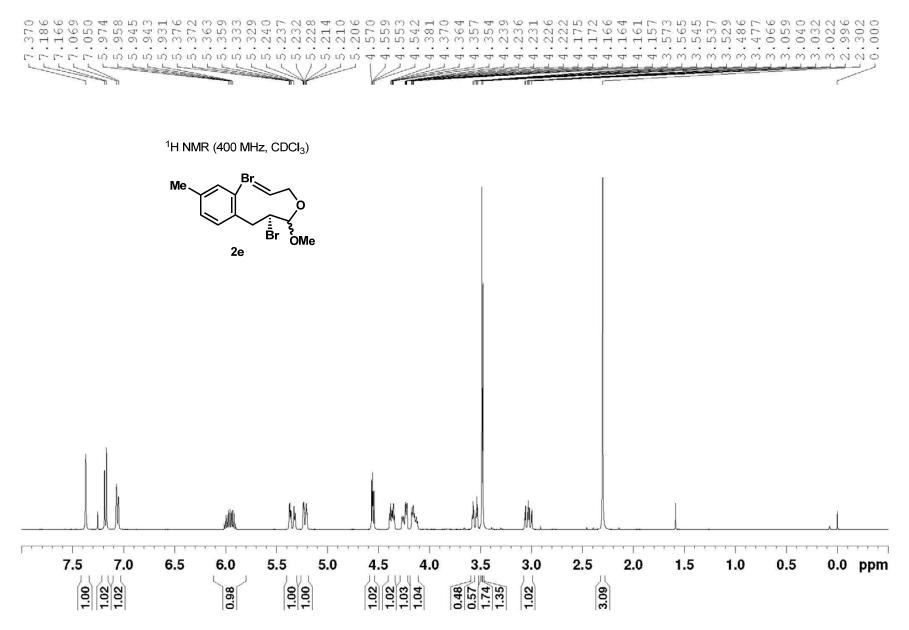


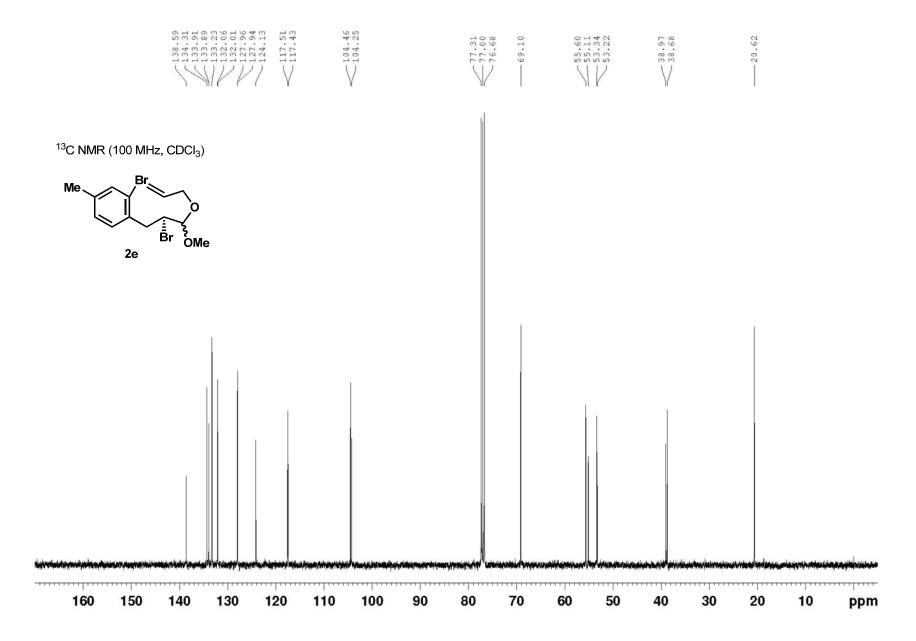


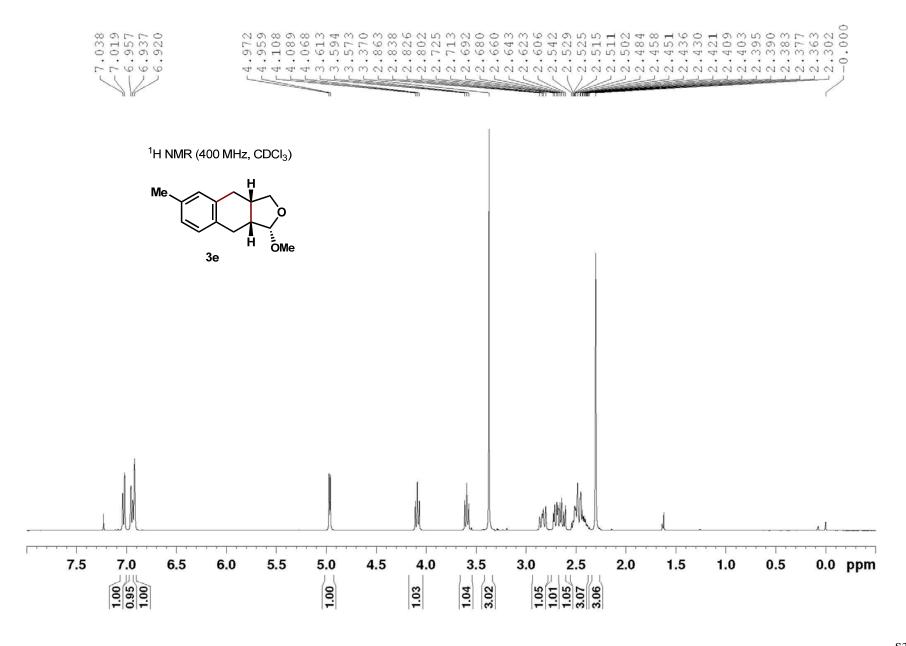


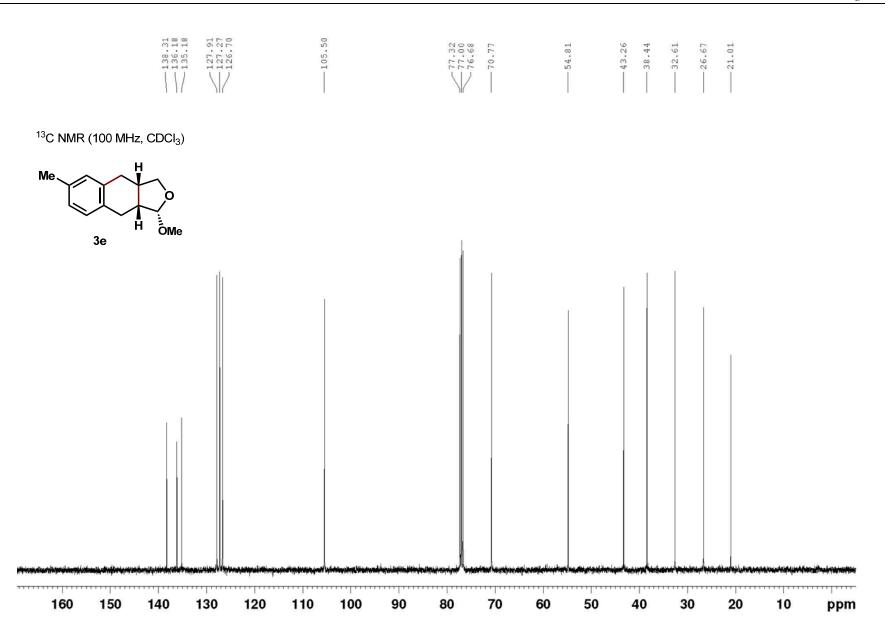



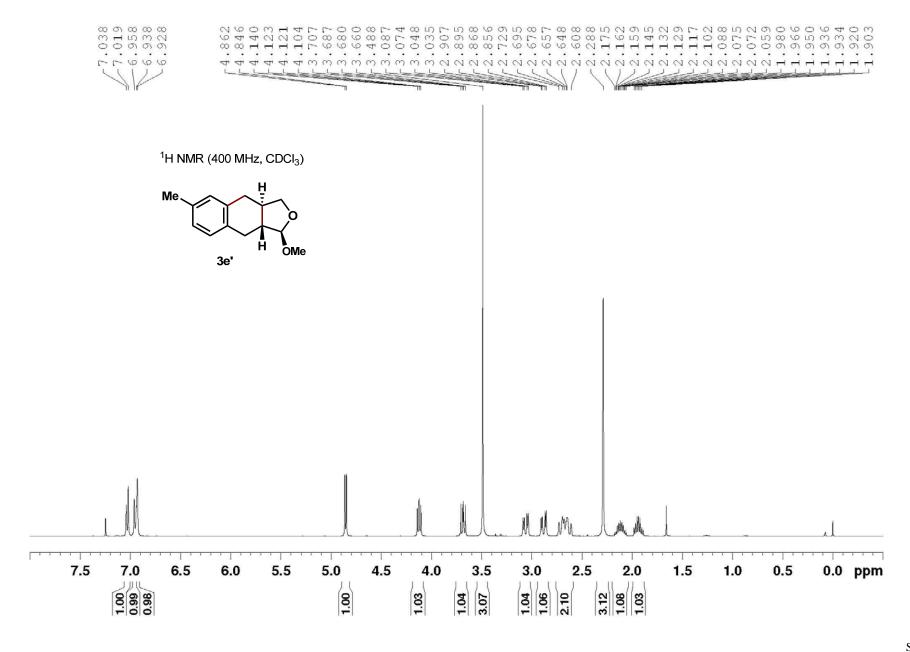


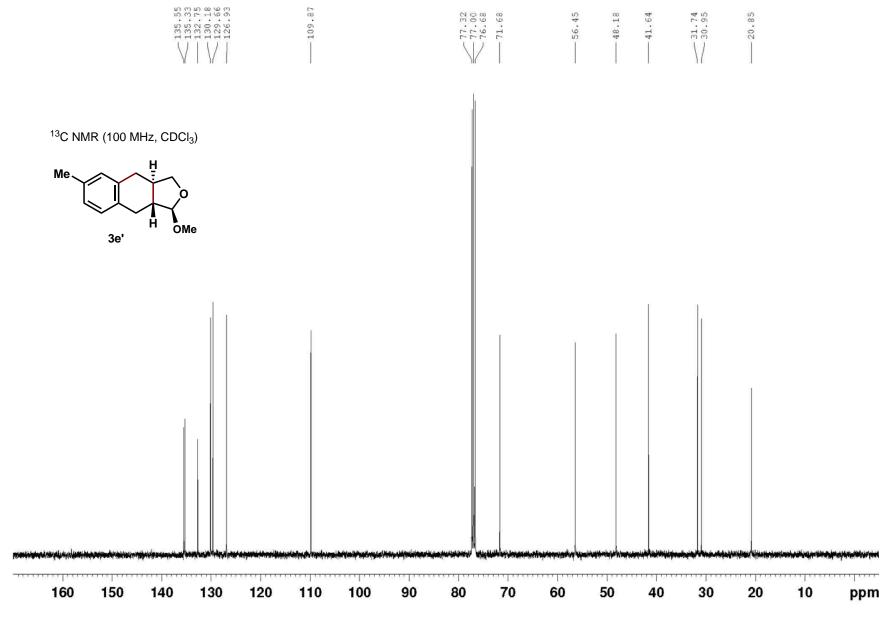


<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)

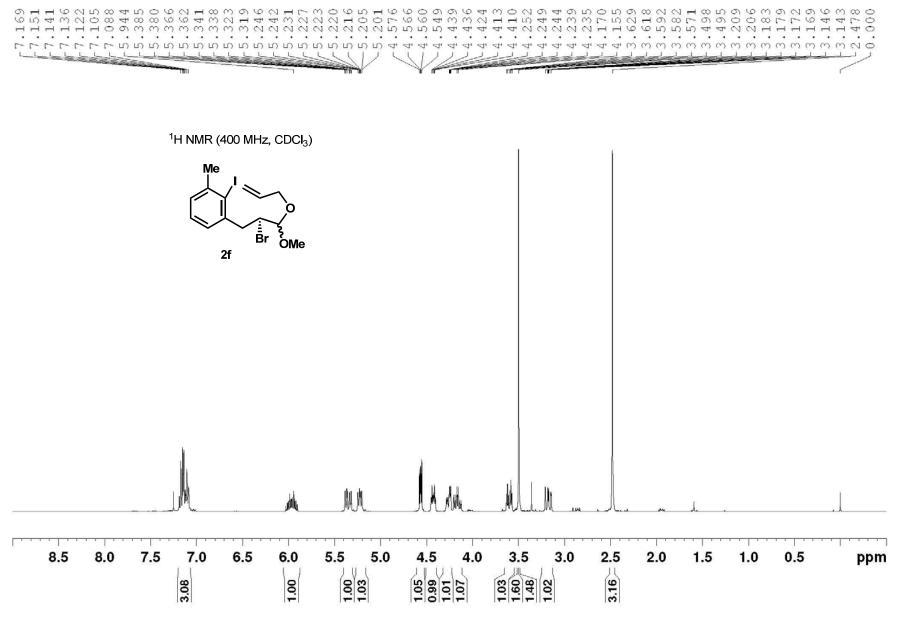


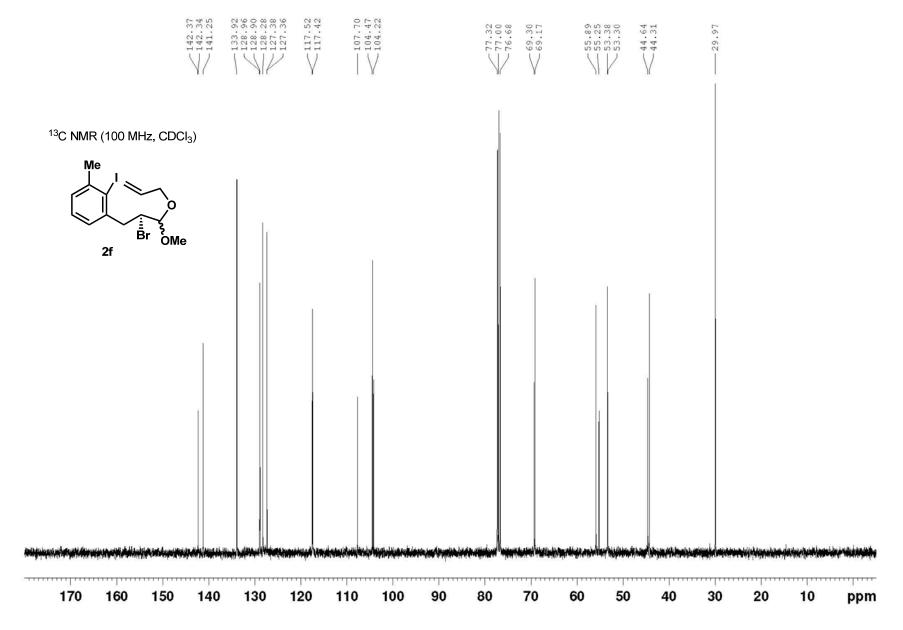



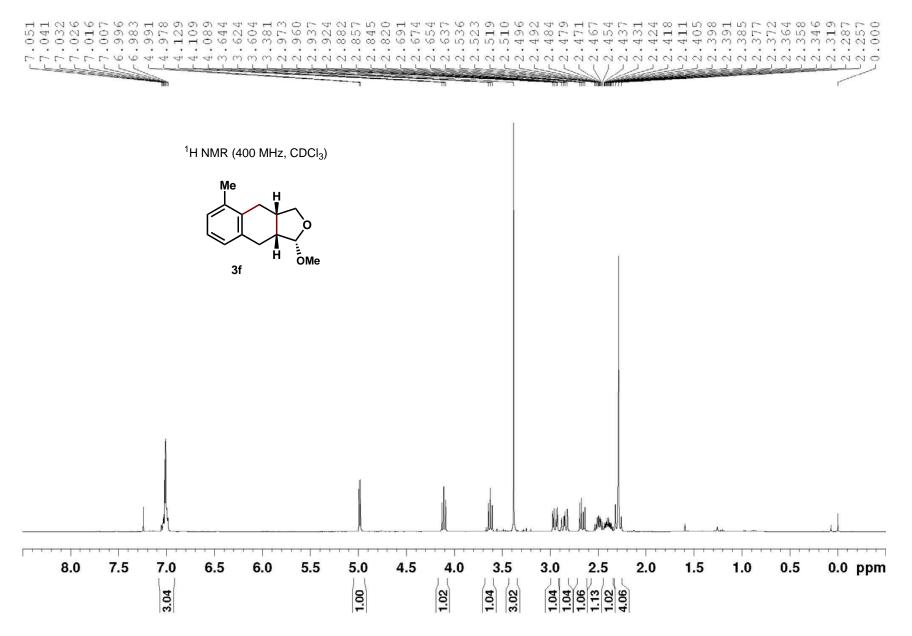



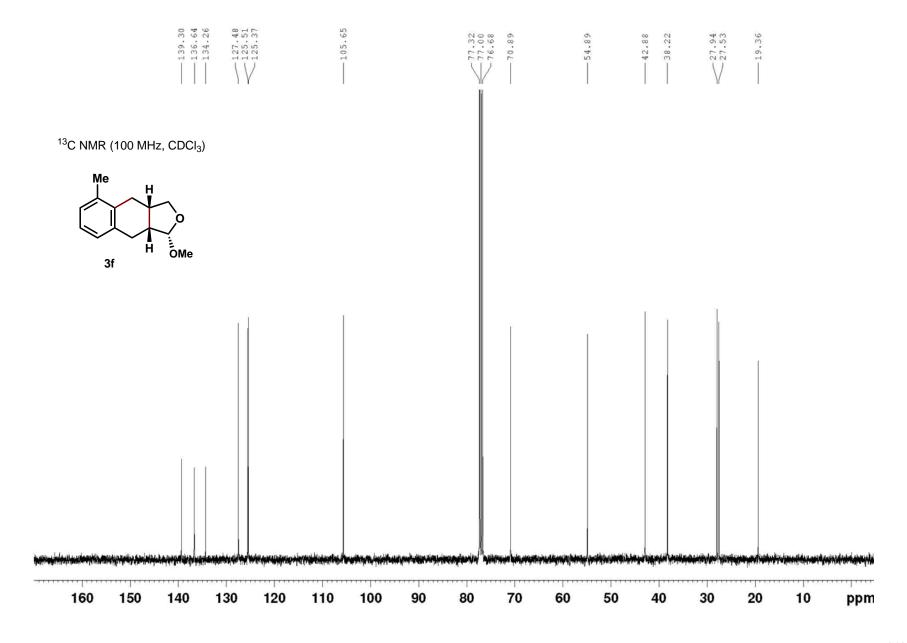



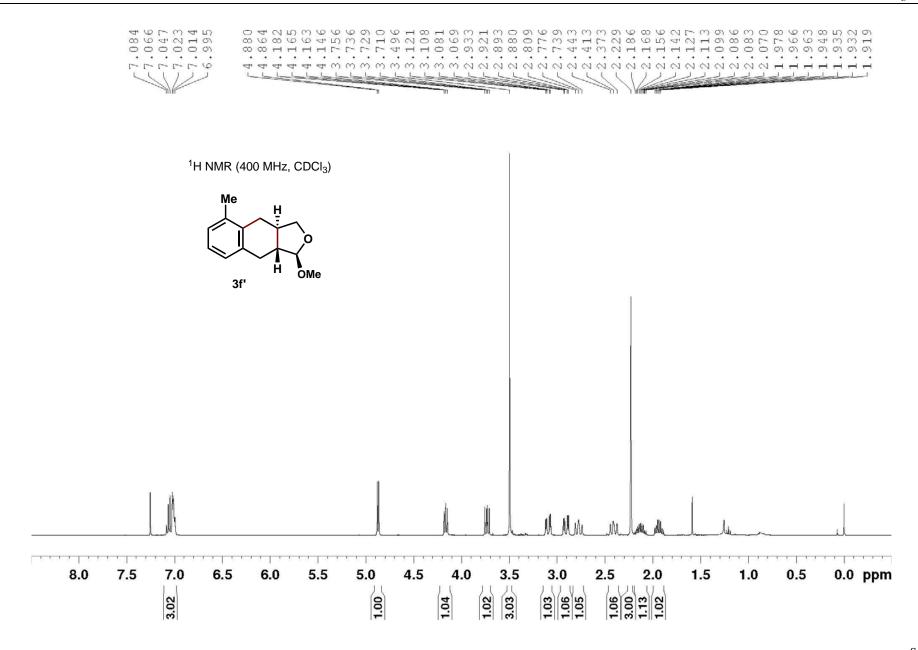



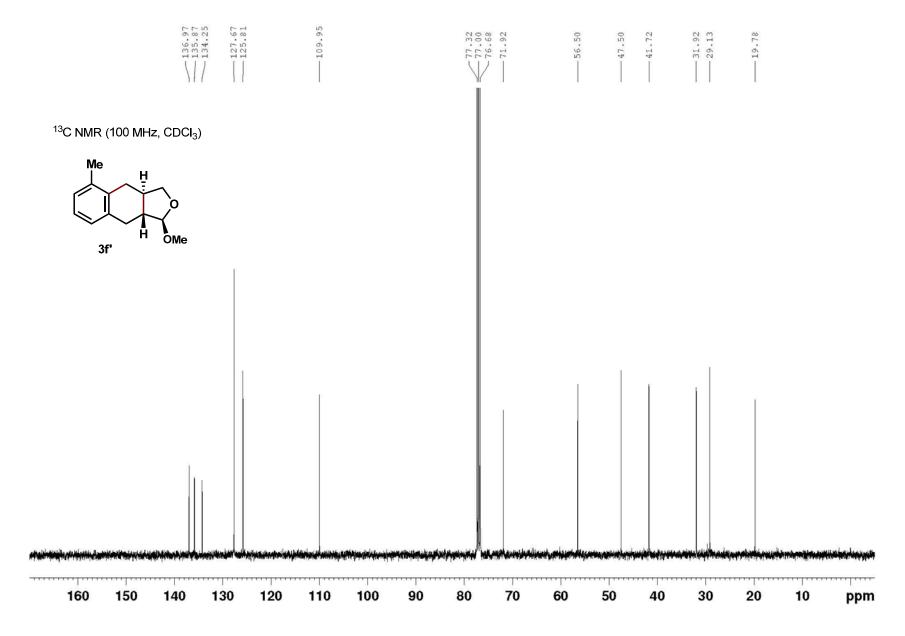



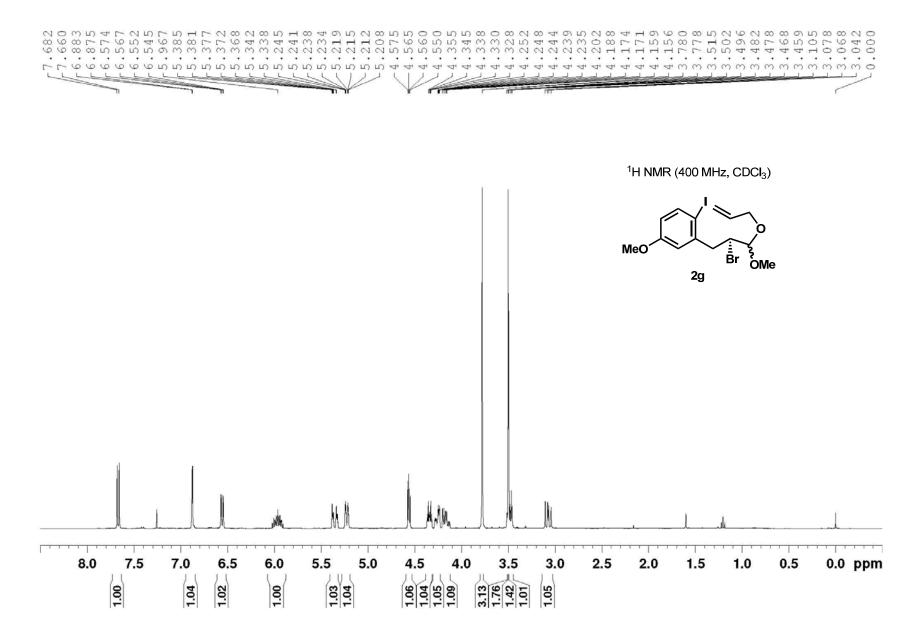



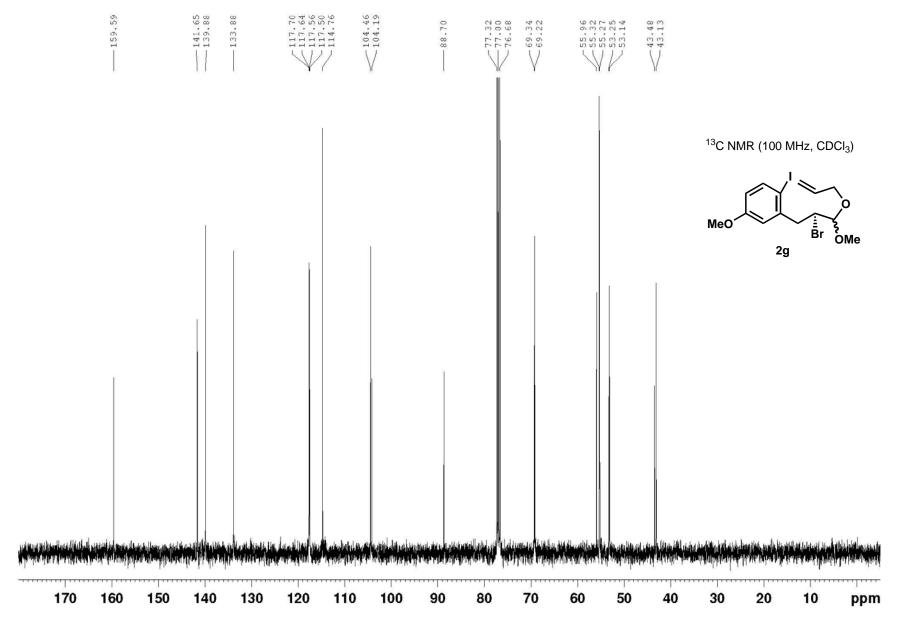



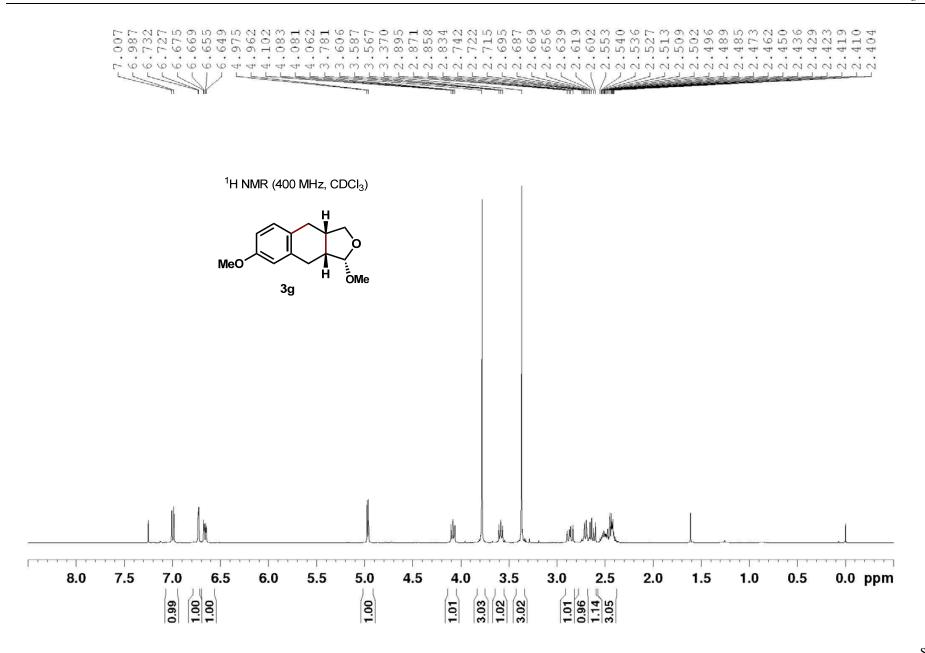



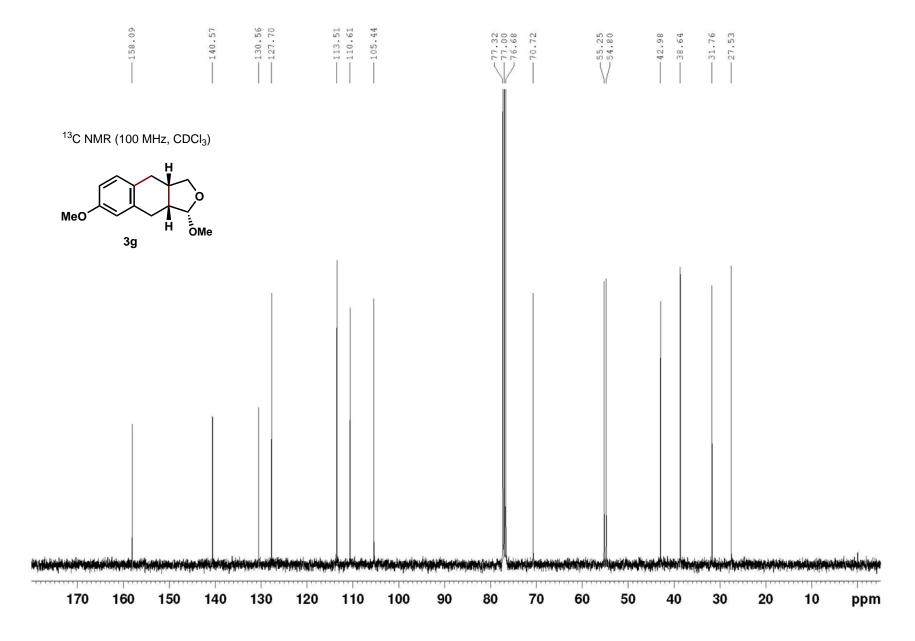



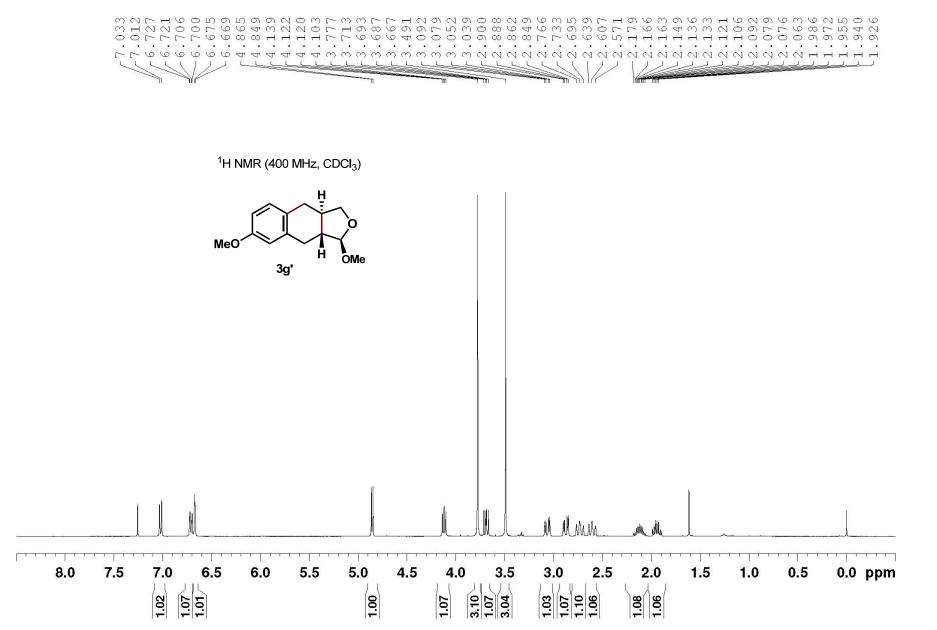



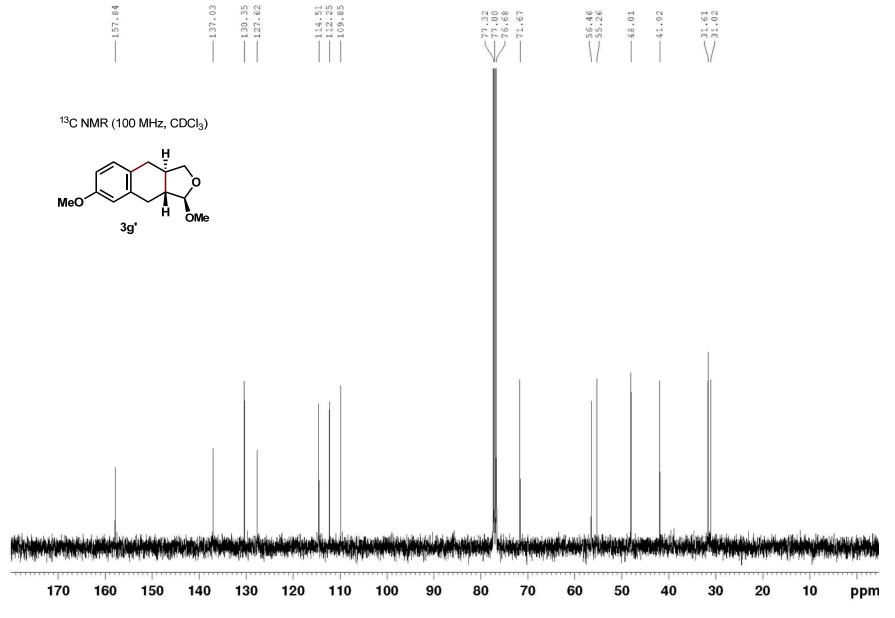



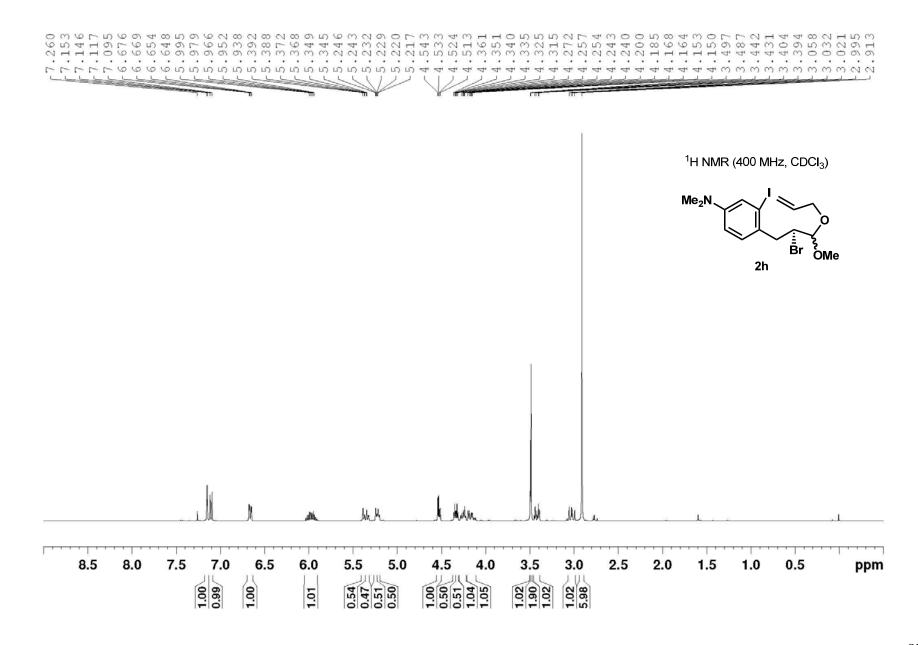



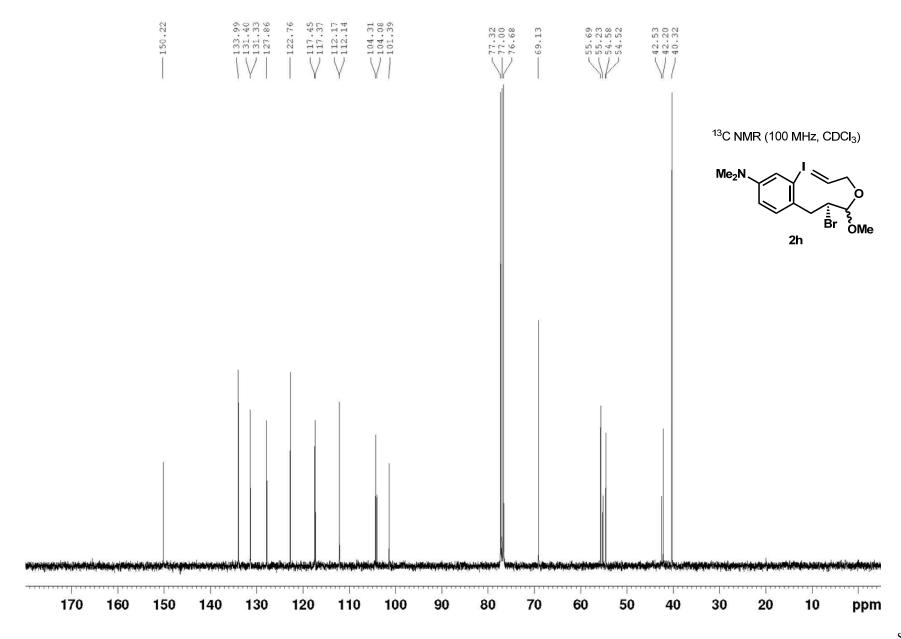



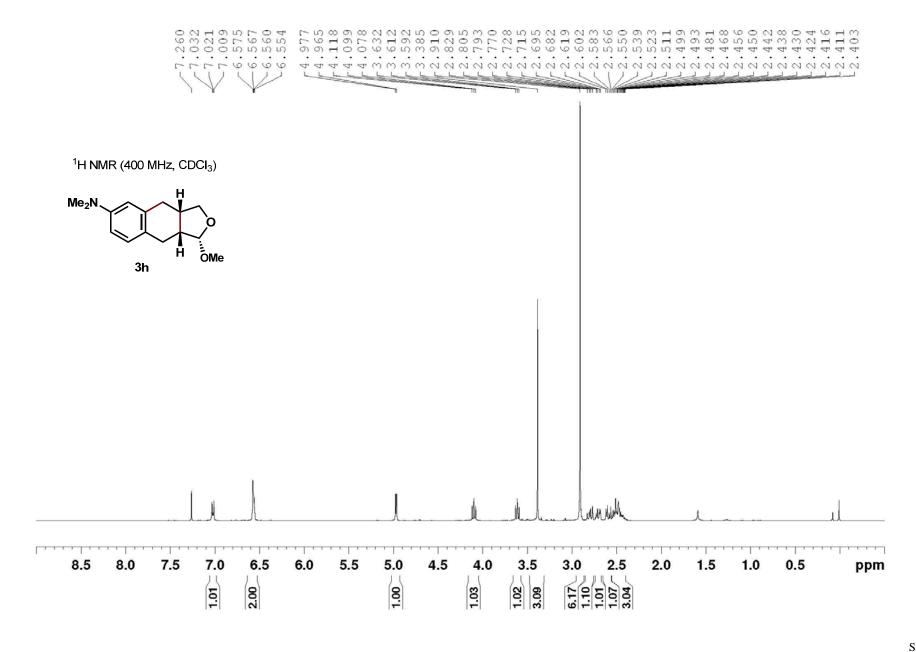



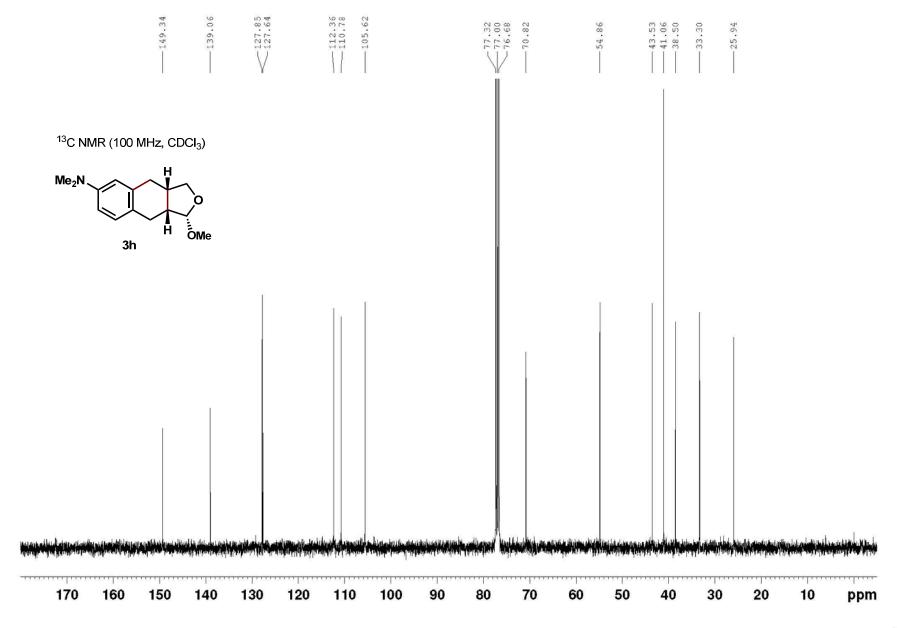



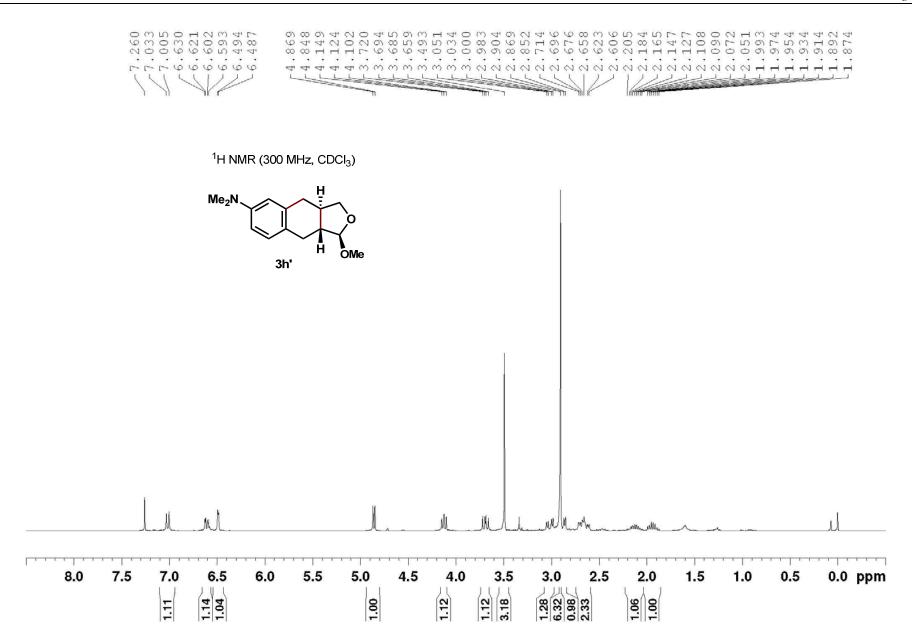



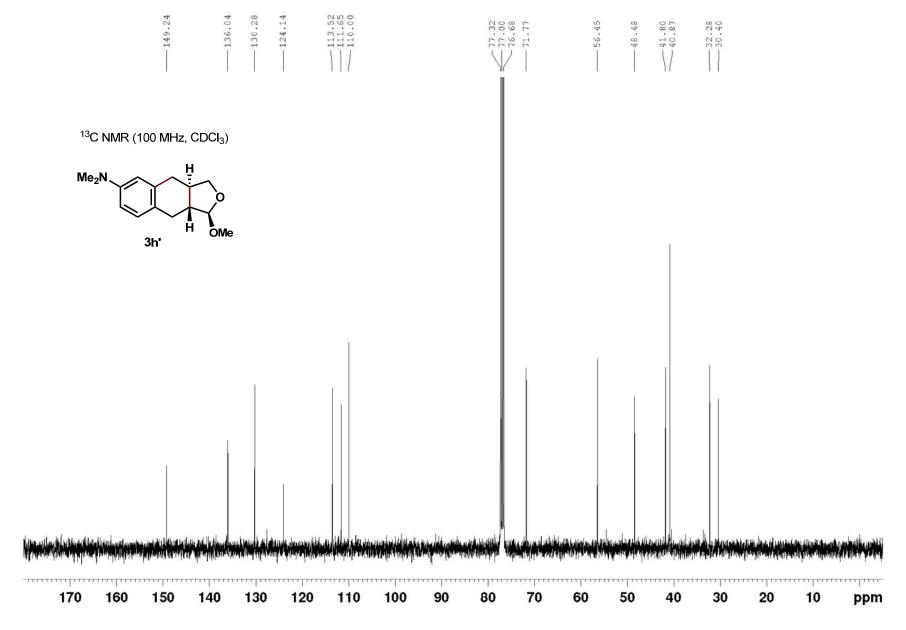



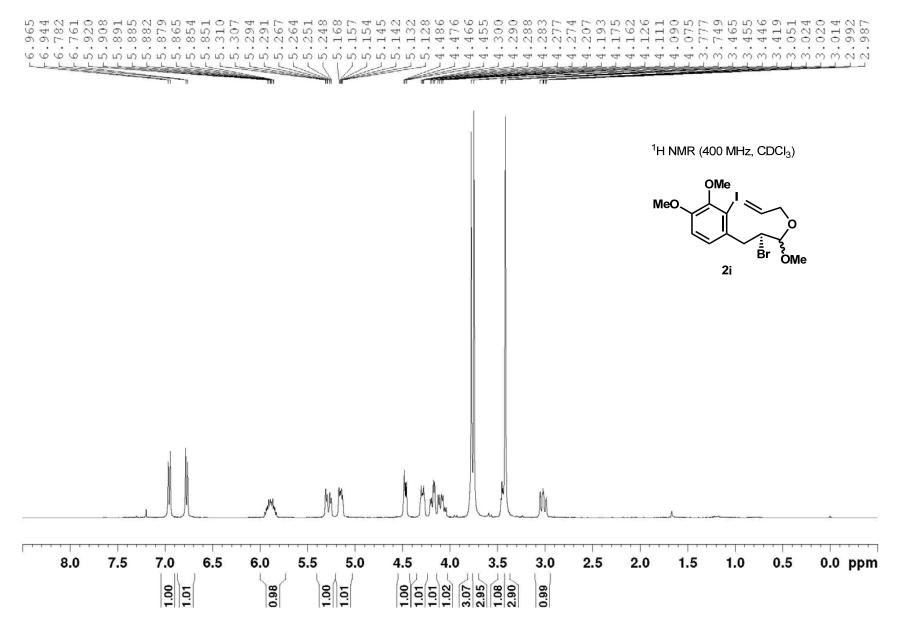



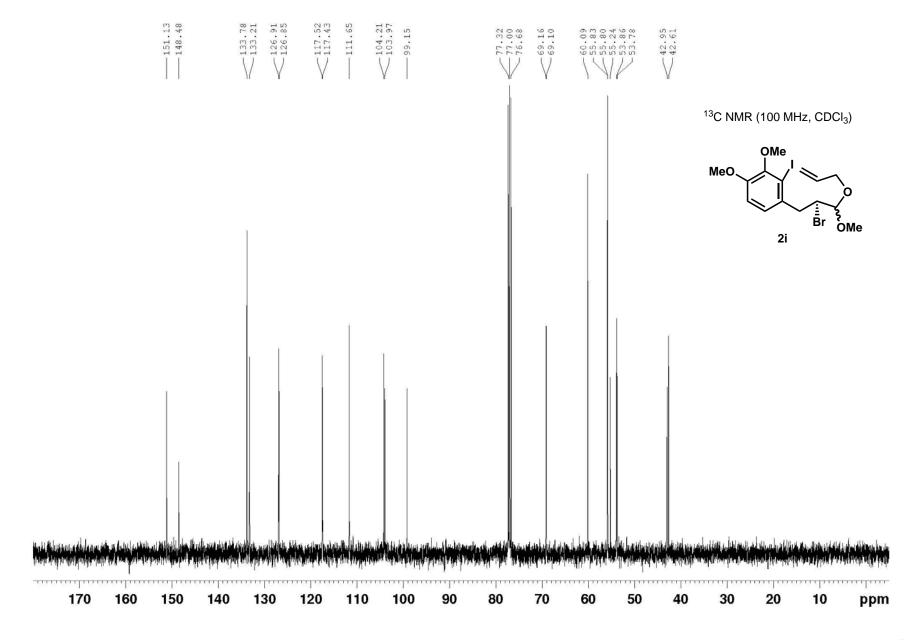



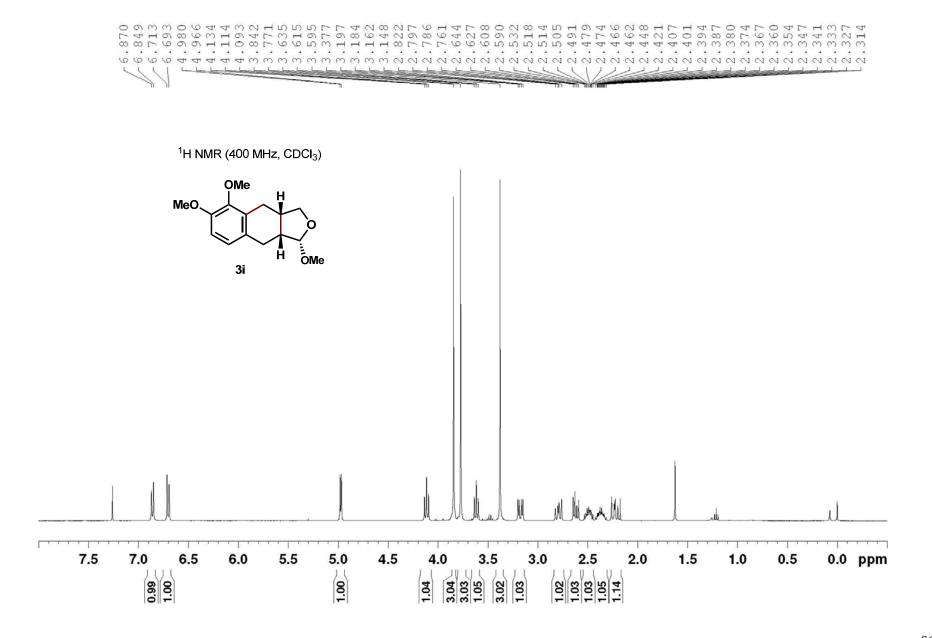



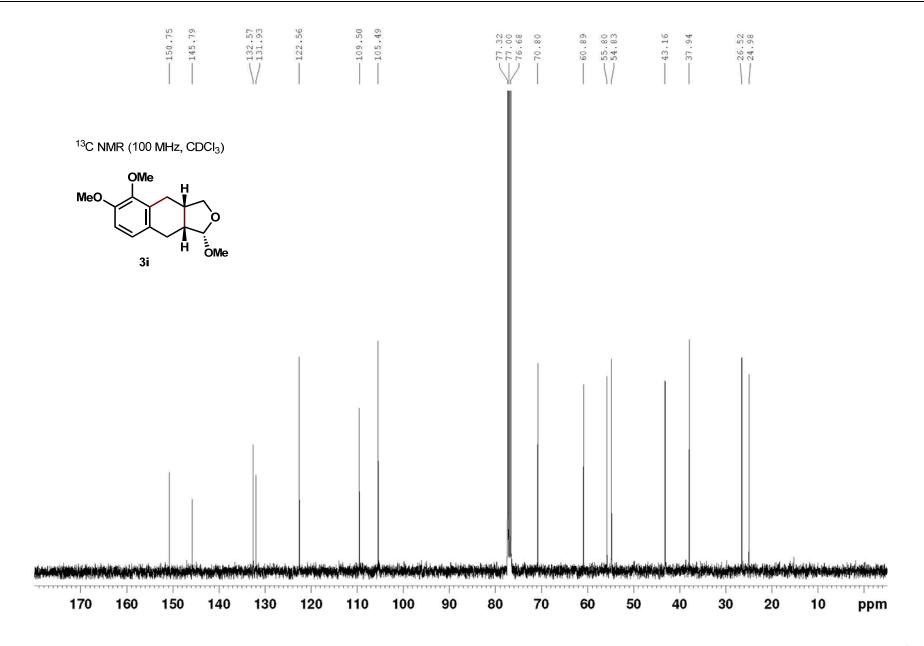



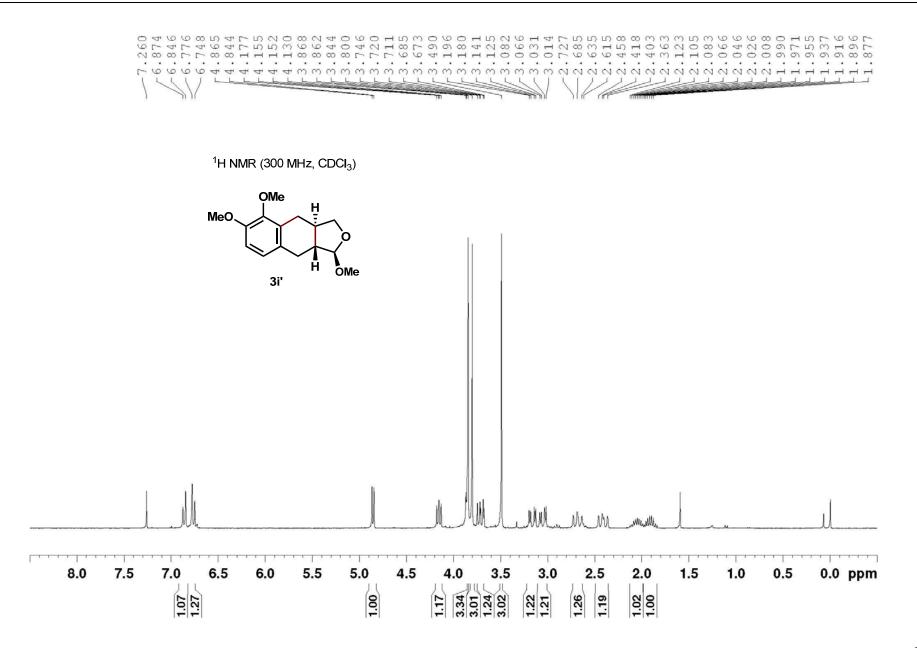



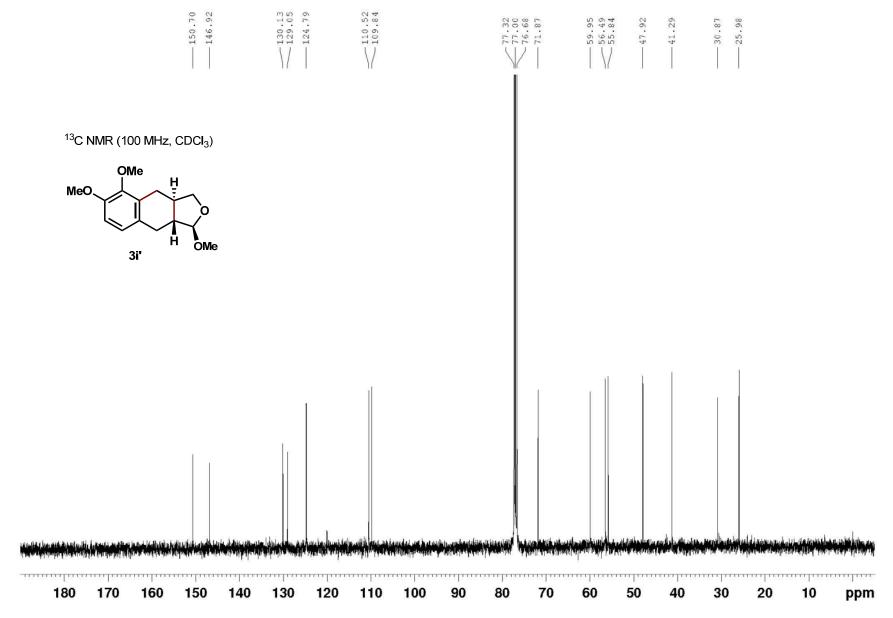



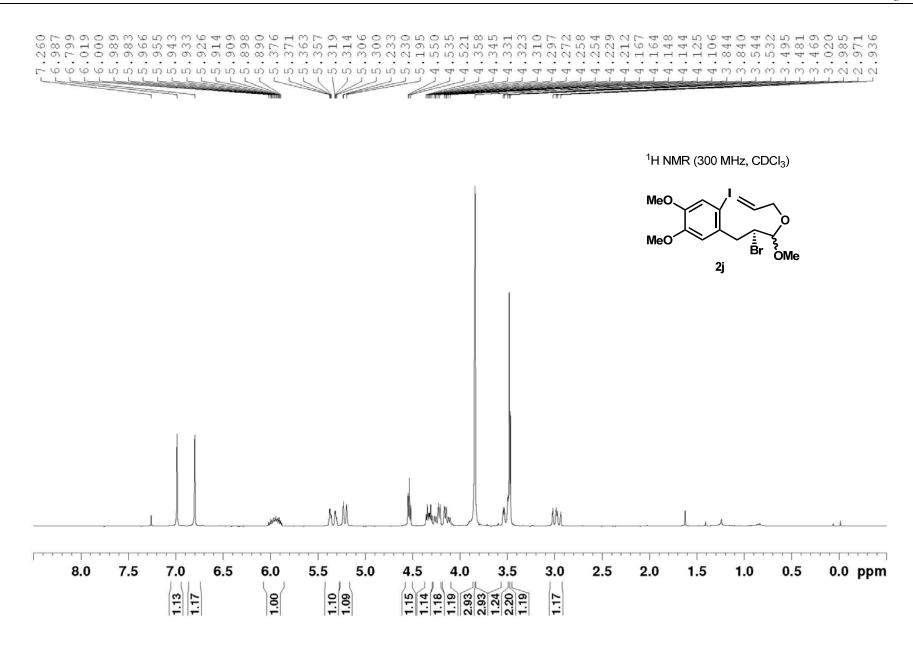



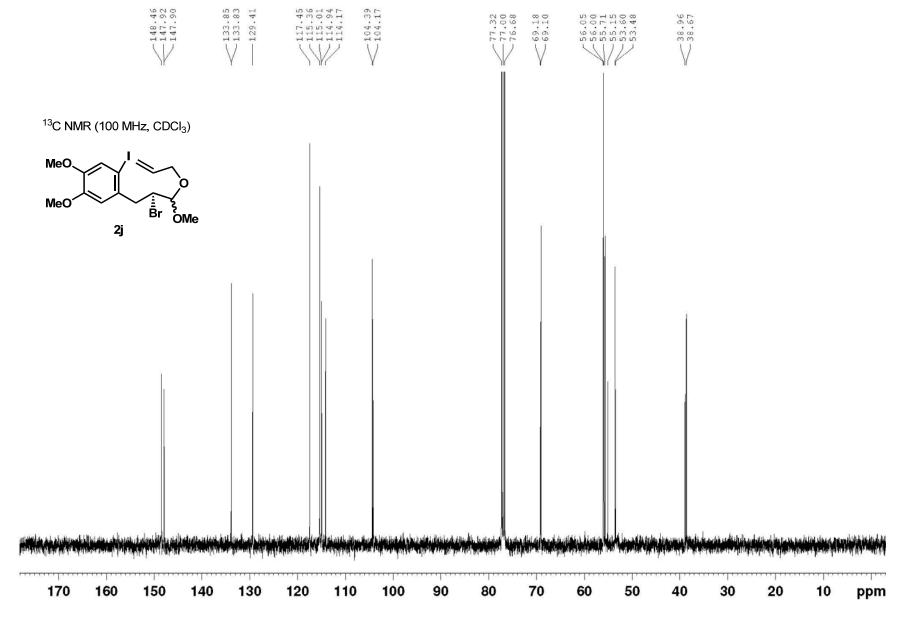



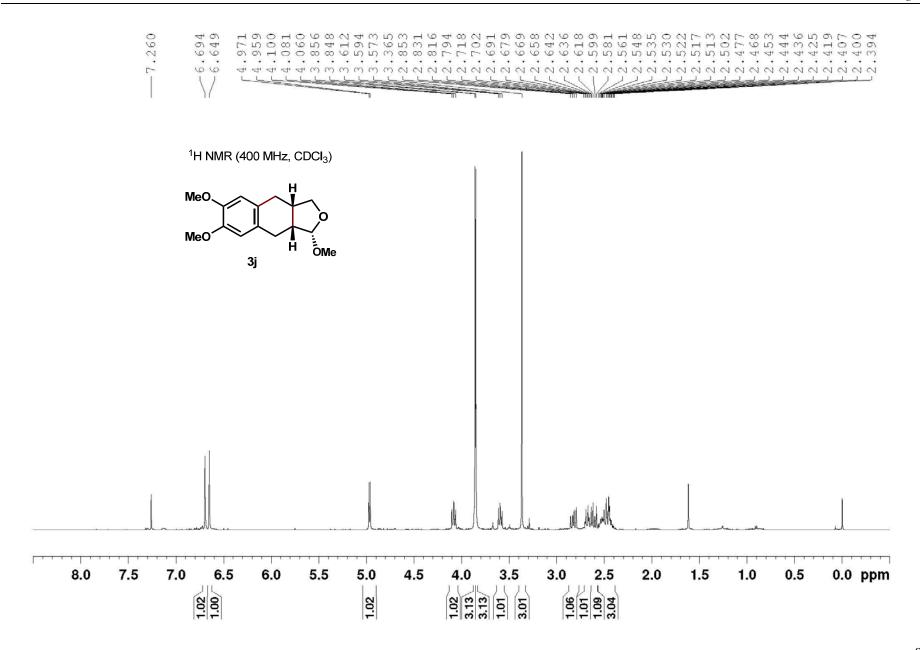



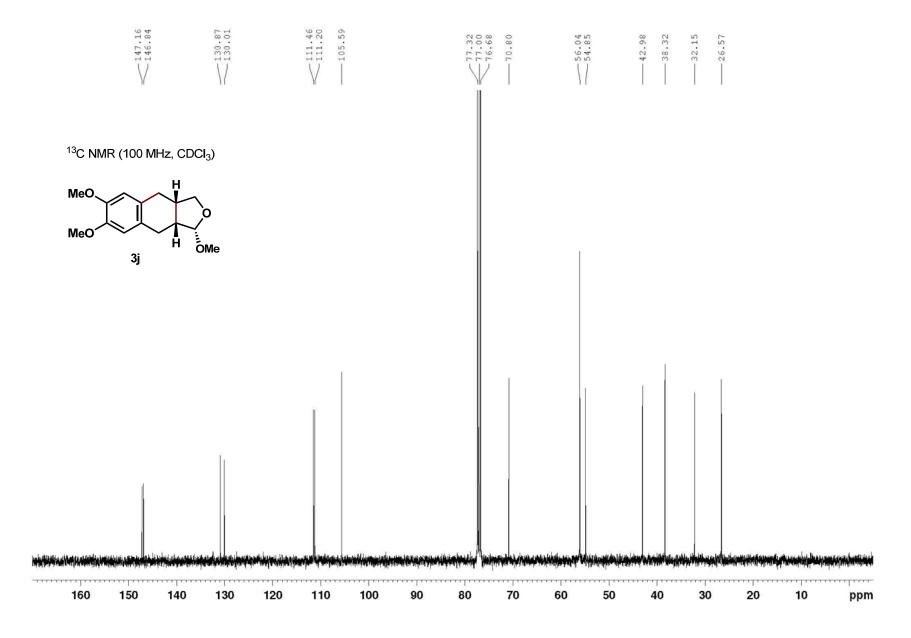



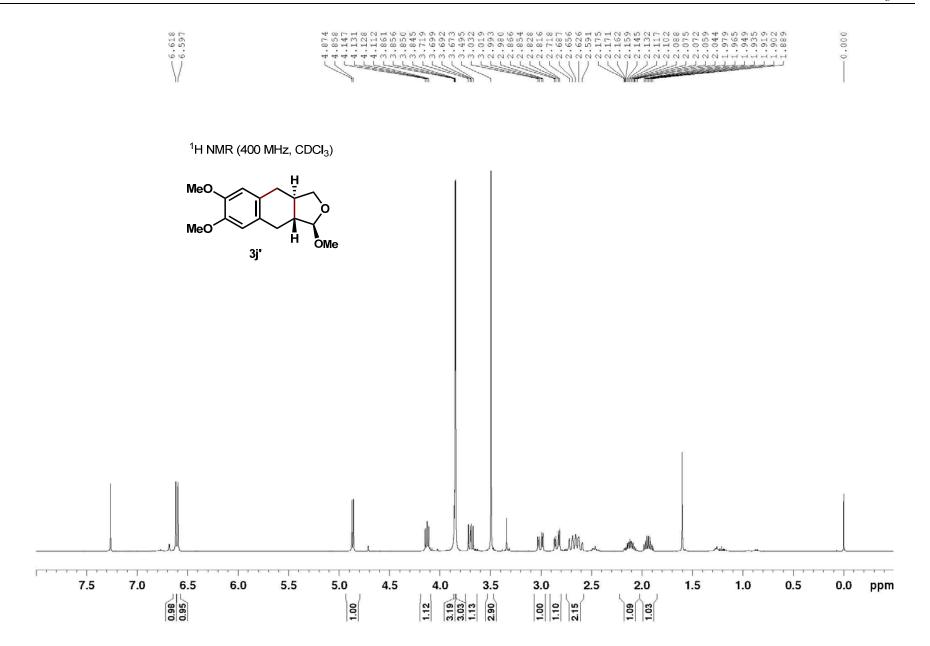



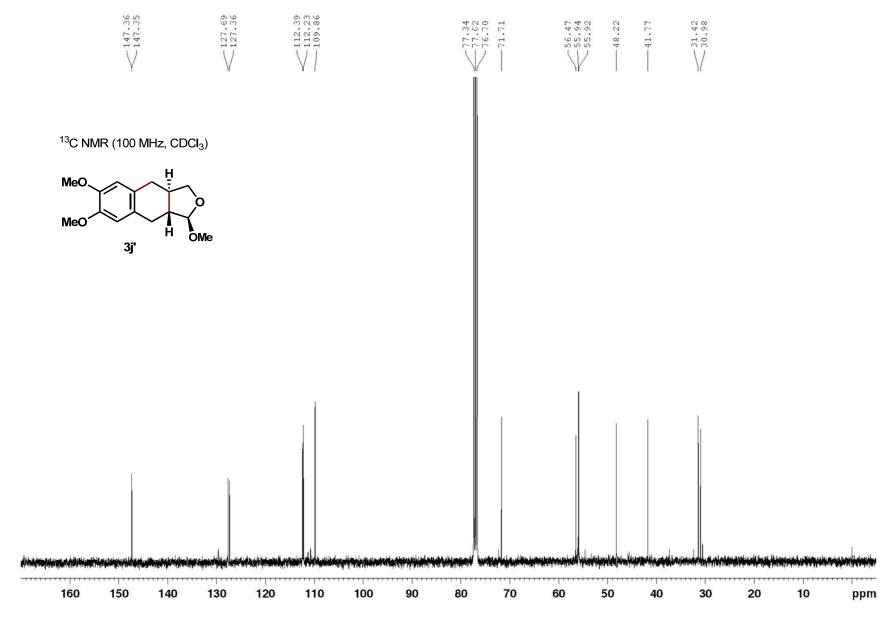



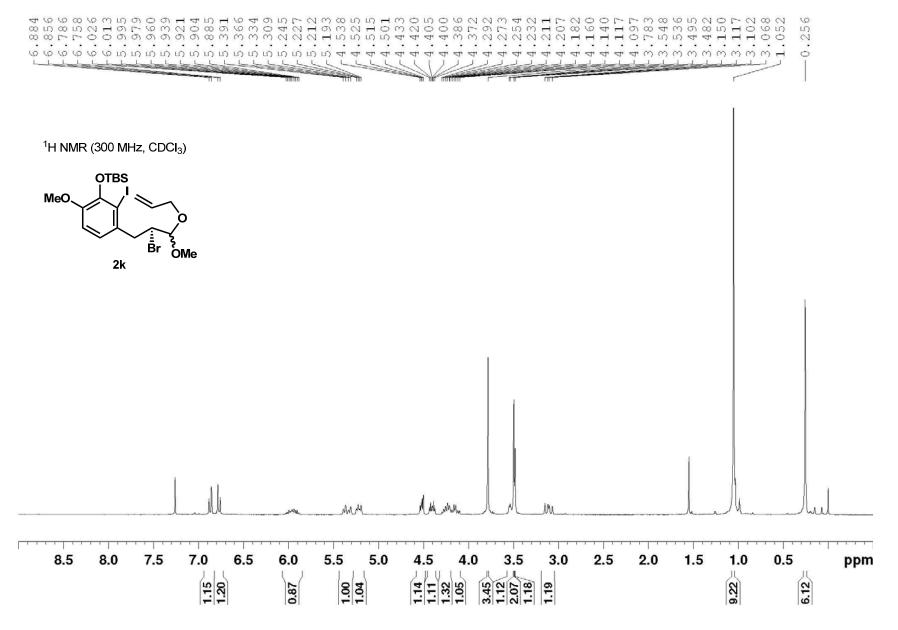



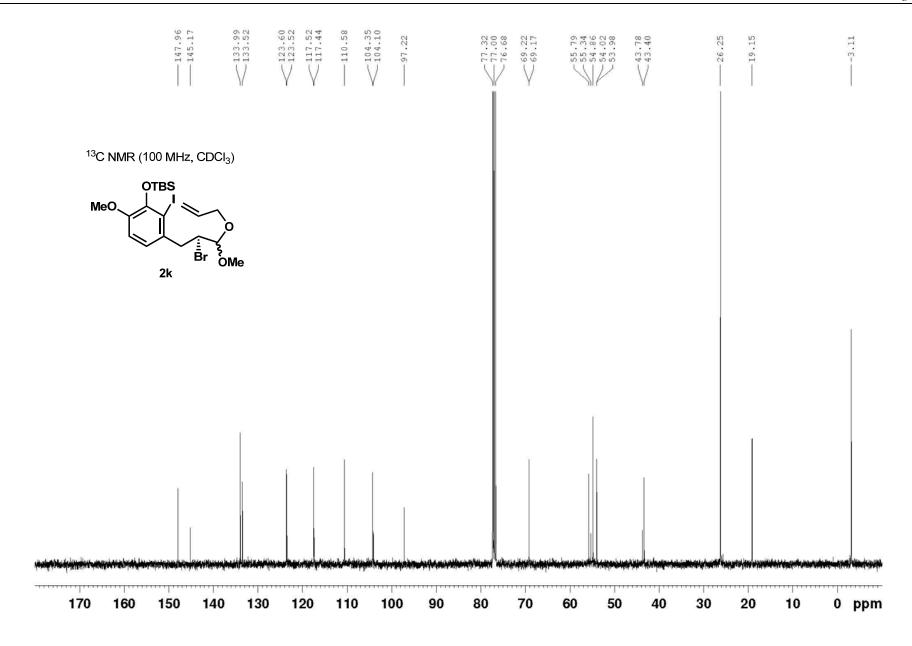



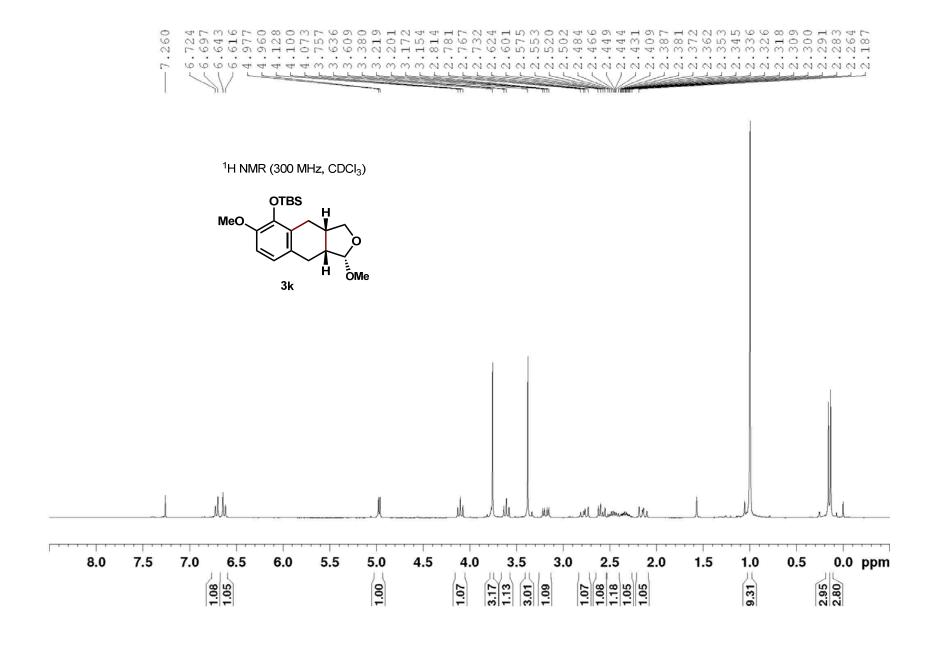



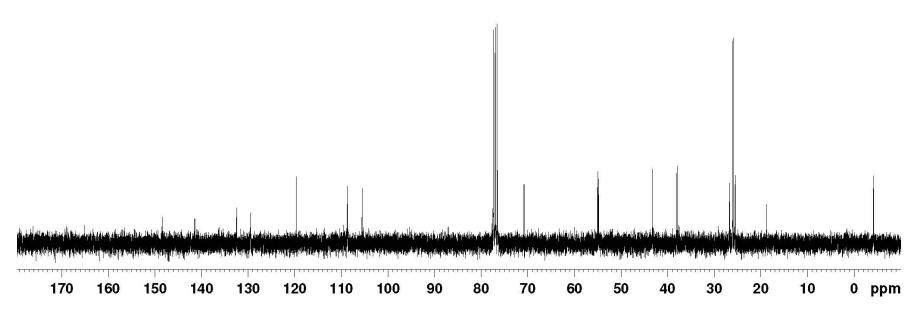



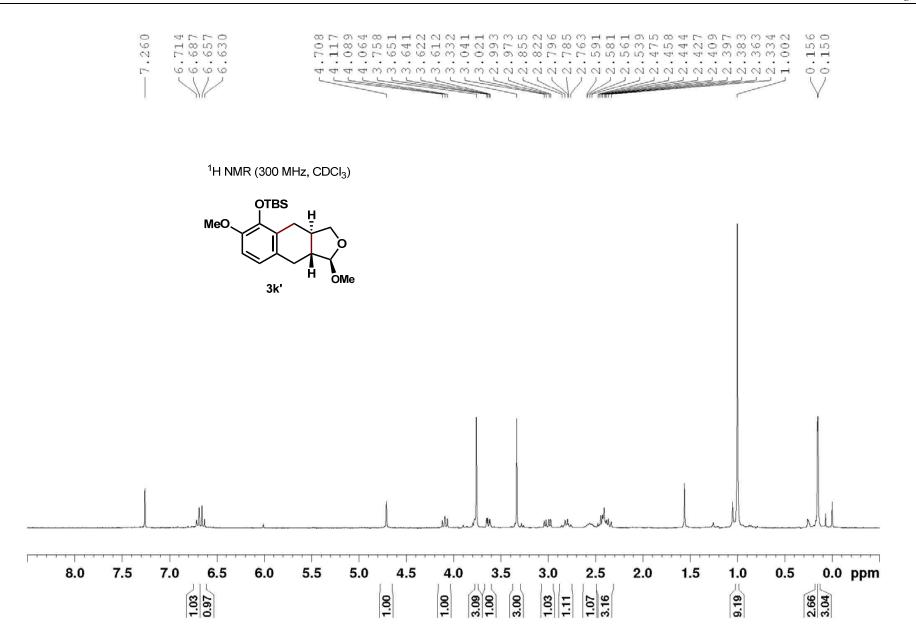



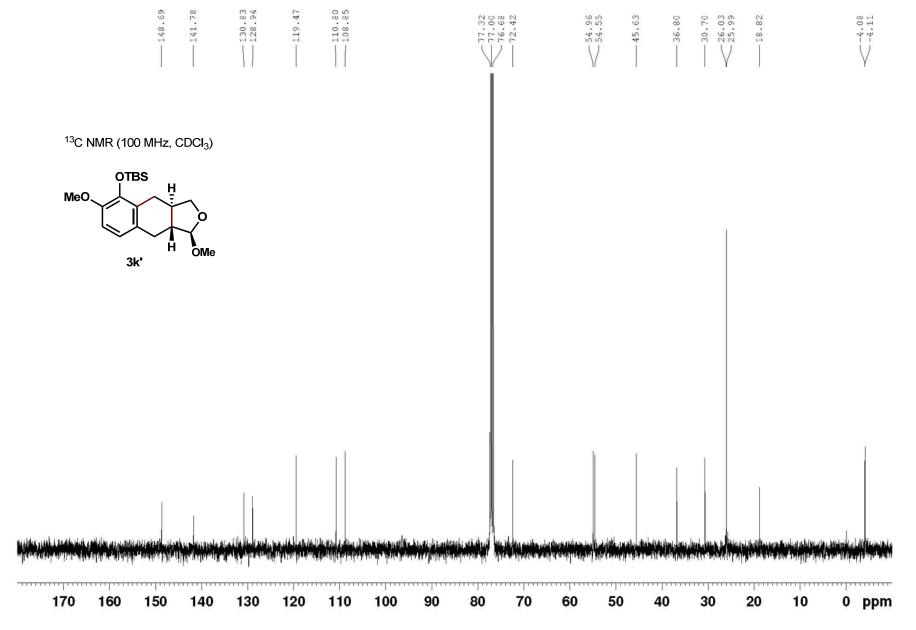



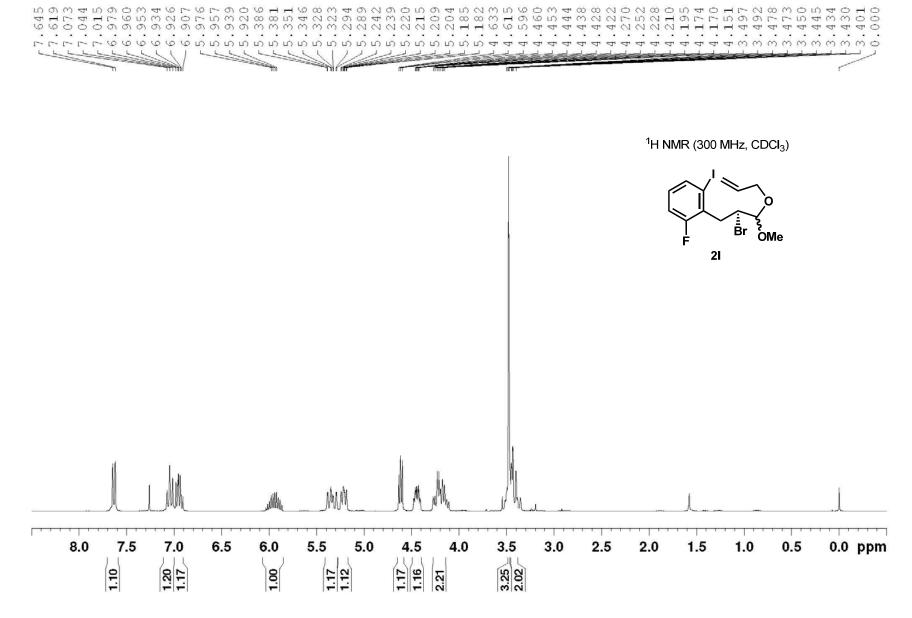


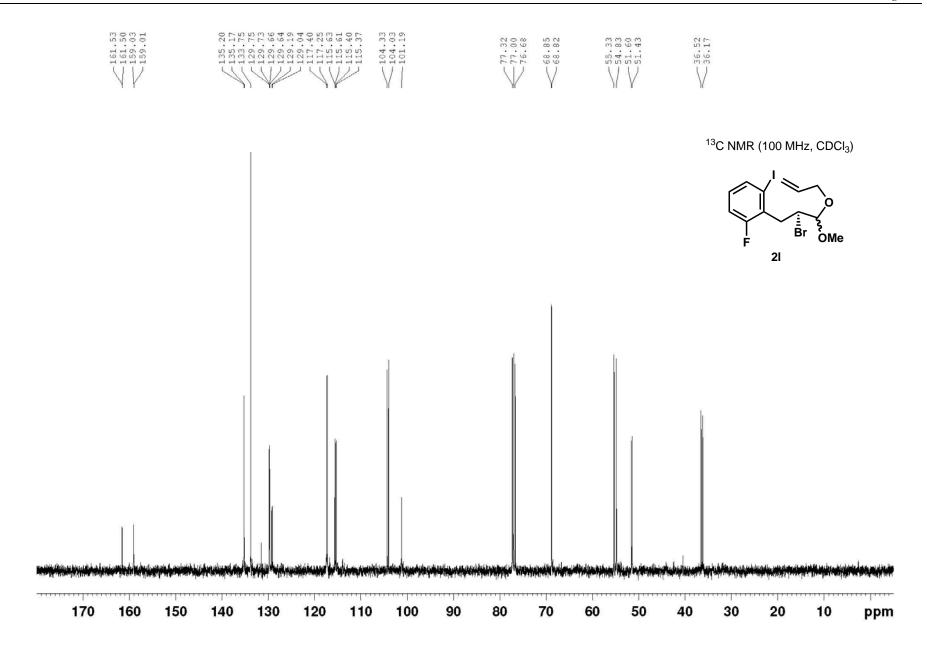


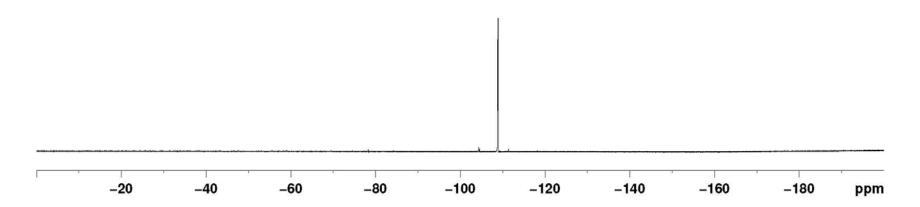



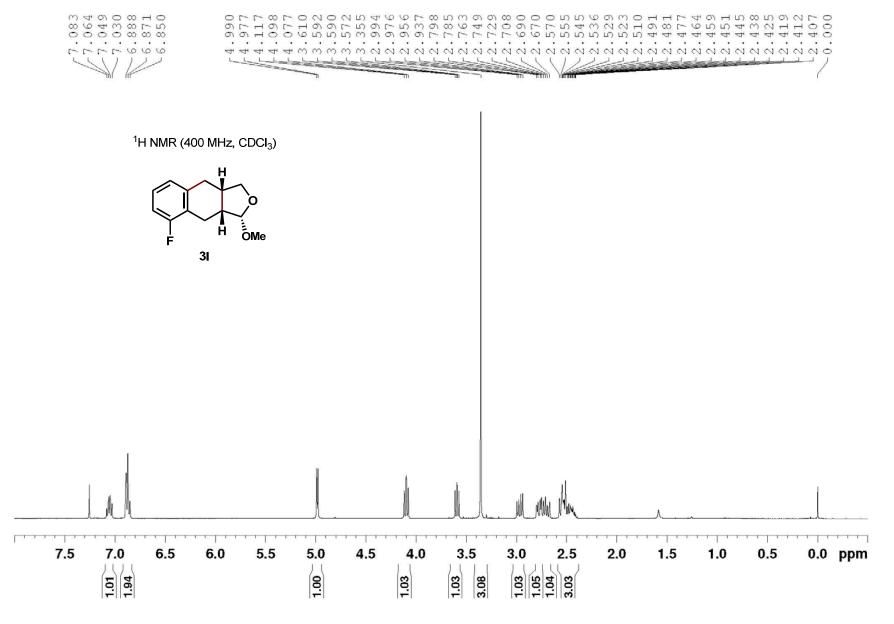


| 2  | $\sim$      | r 00     | -            | 9 5               |         |         |      |         |              |
|----|-------------|----------|--------------|-------------------|---------|---------|------|---------|--------------|
| 4  | 4           | 4 4      | 9            | 20                | m 0 m 4 | 0 4     | 1    | 0000    | 9            |
| •  | (*)         | (*) *    | •            | 9€1 €             | 4000    | $\circ$ | 0 7  | 7 0 2 7 | $\leftarrow$ |
| 00 | $\vdash$    | 00       | 9            | 00 LO             |         |         | •    |         | •            |
| 4  | 4           | W 0      | -            | 0 0               | 7 6 9 0 | 7       | m 00 | 9919    | 4            |
| -  | <del></del> | $\vdash$ | $\leftarrow$ | $\dashv$ $\dashv$ |         | 2       | 4 0  | 1 2 2 2 |              |
| ĺ  |             | { }      |              |                   |         | $\vee$  |      |         |              |

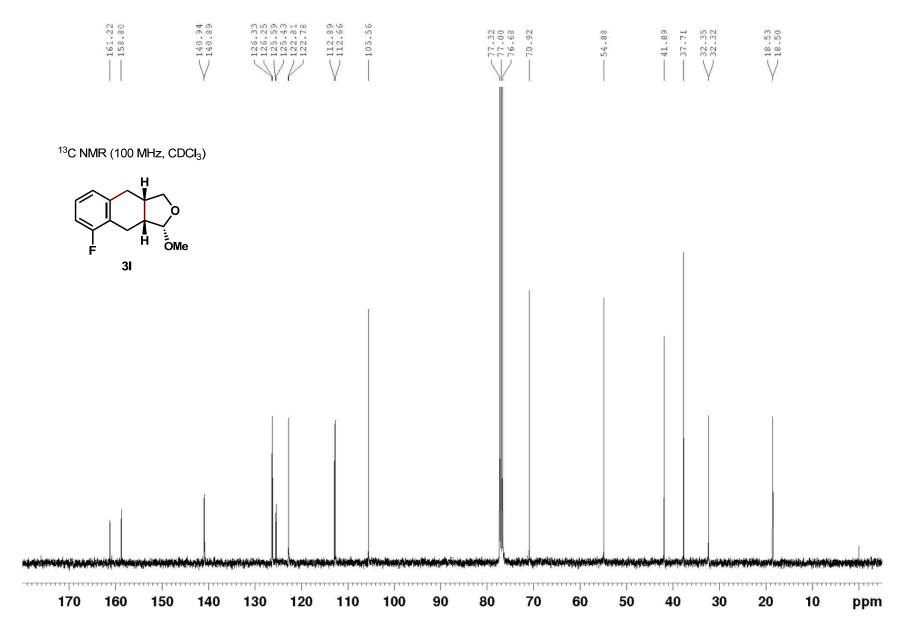

<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)





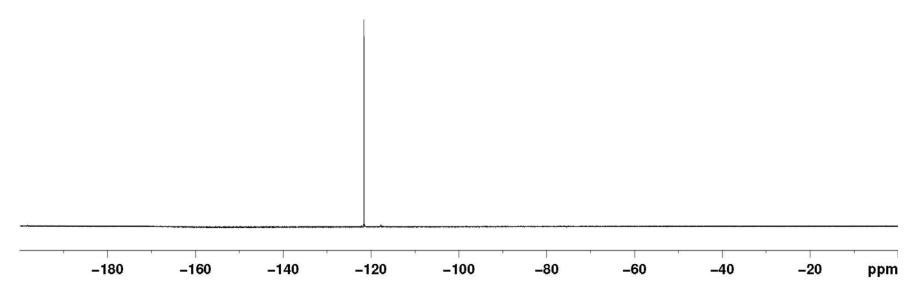


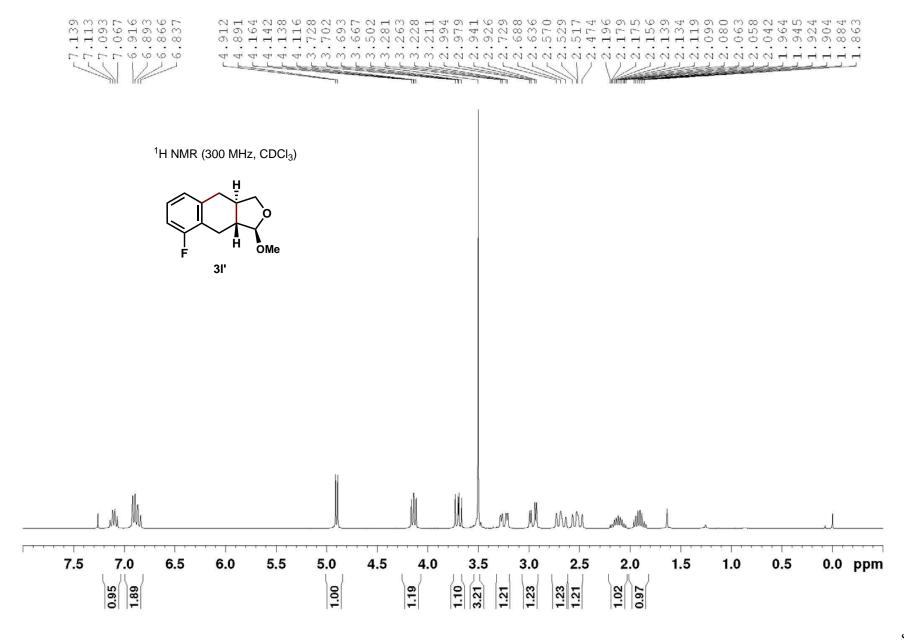



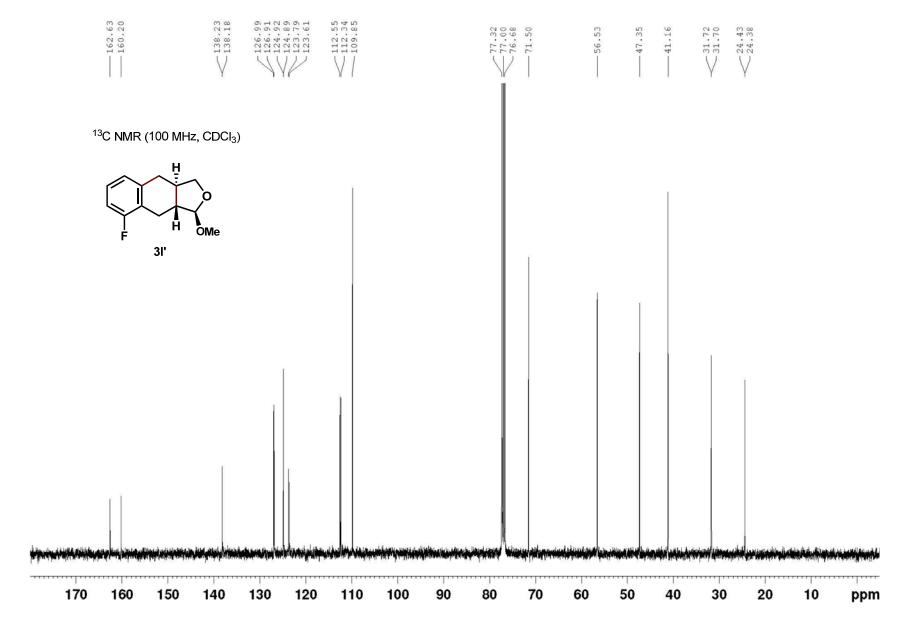






<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)

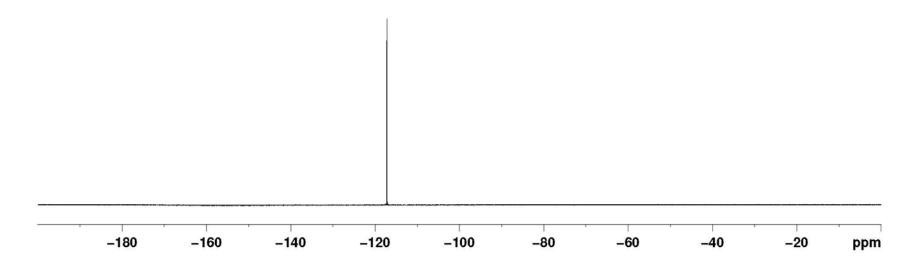


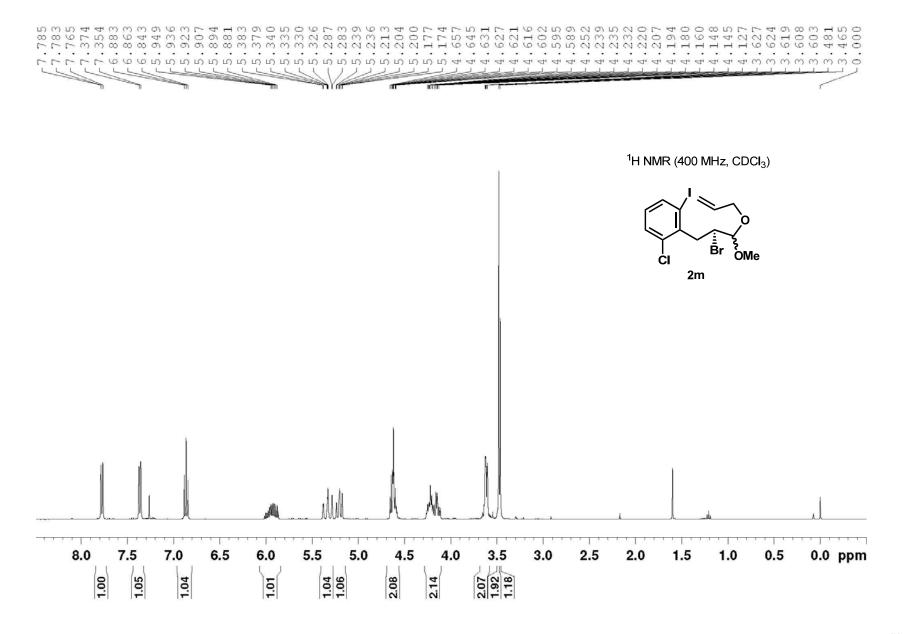





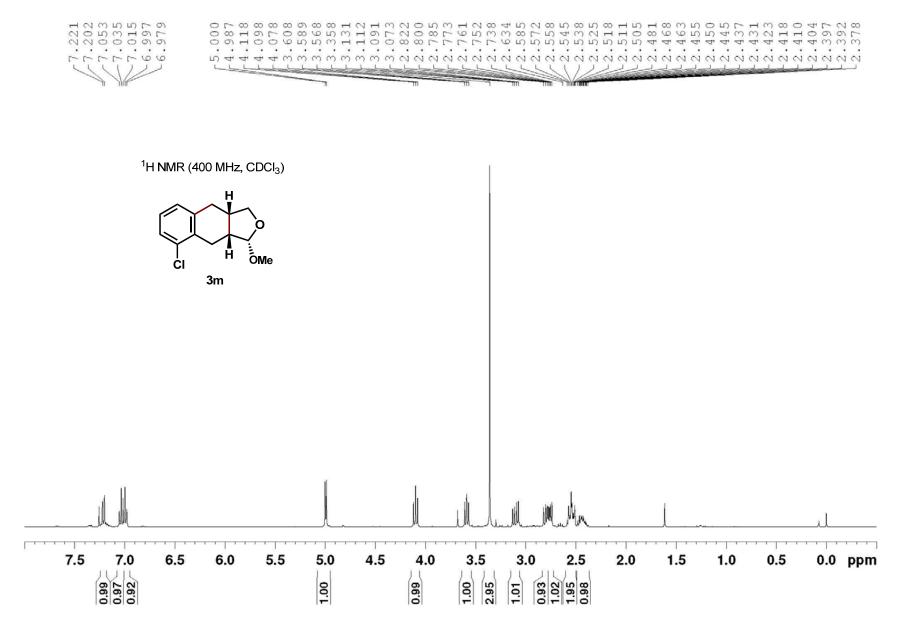

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)



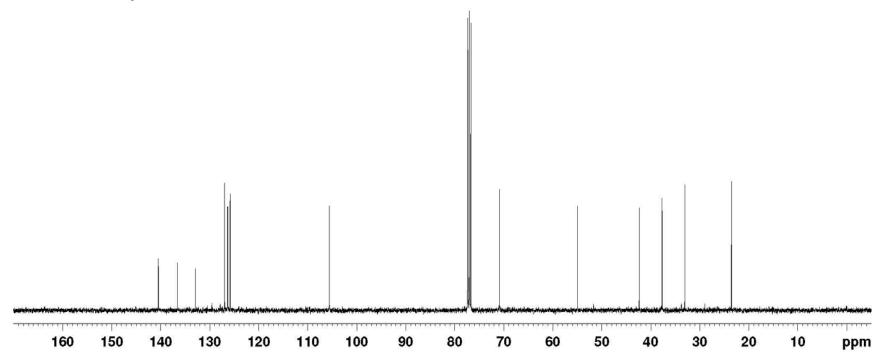


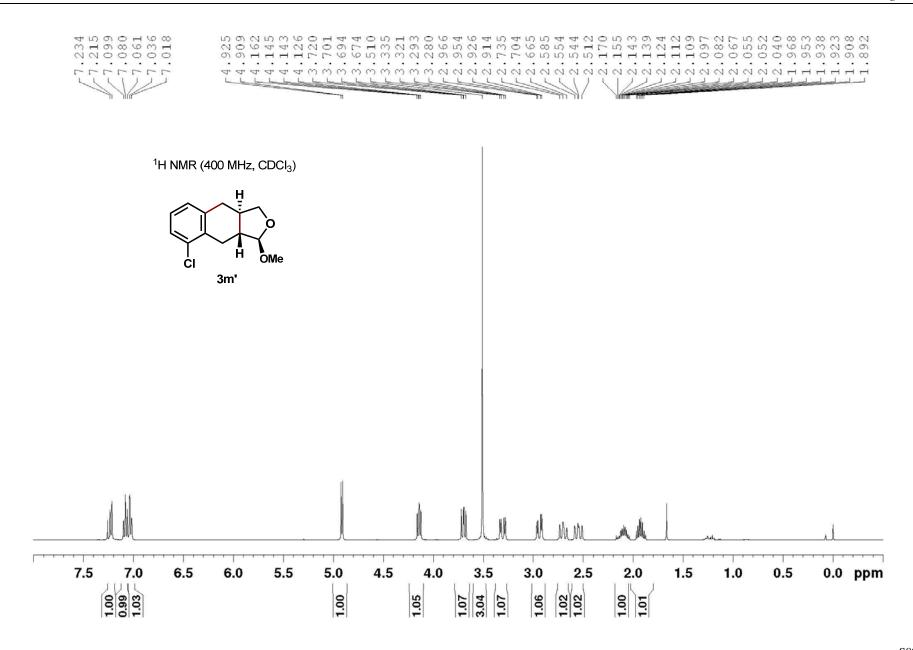


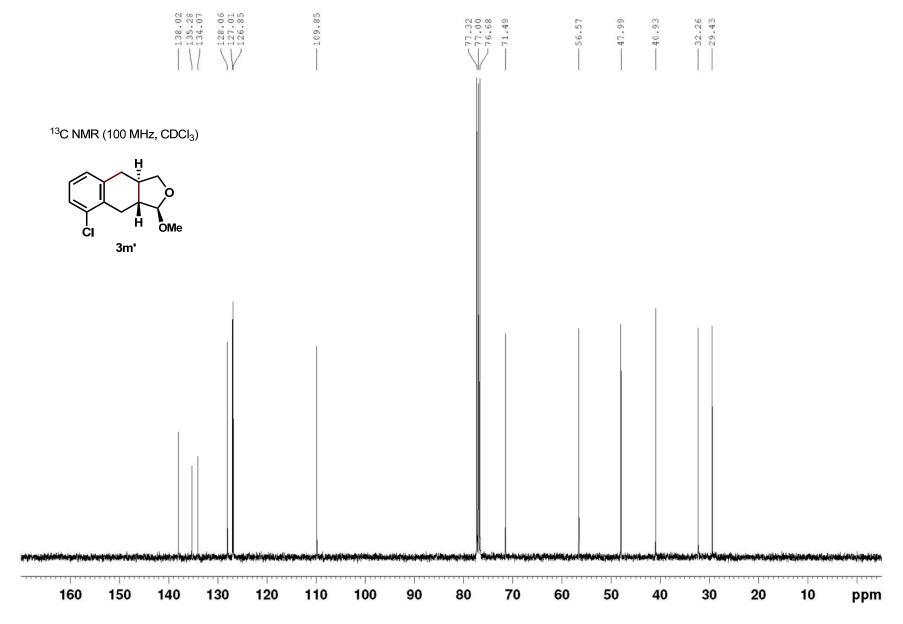


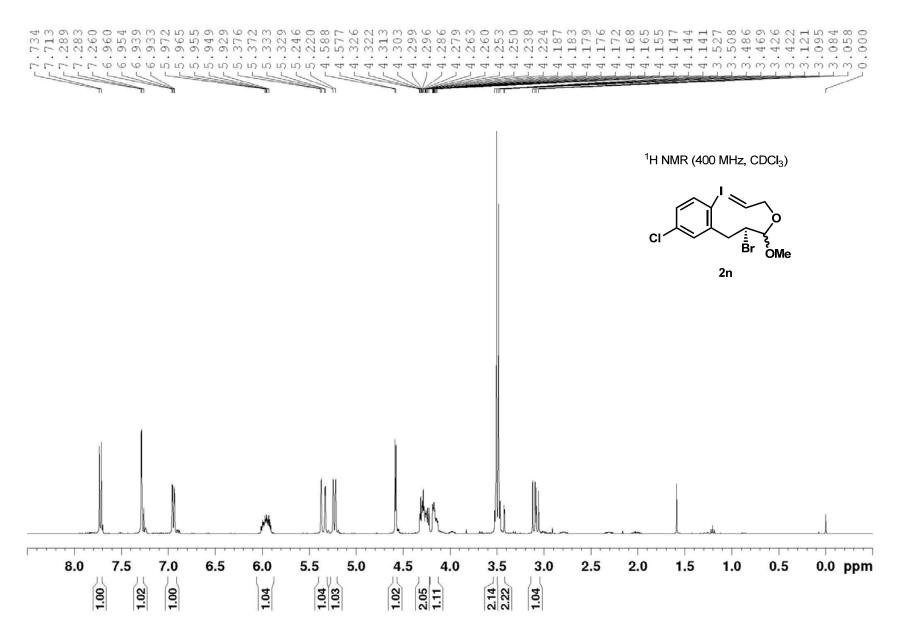

 $^{19}$ F NMR (376 MHz, CDCl $_3$ )

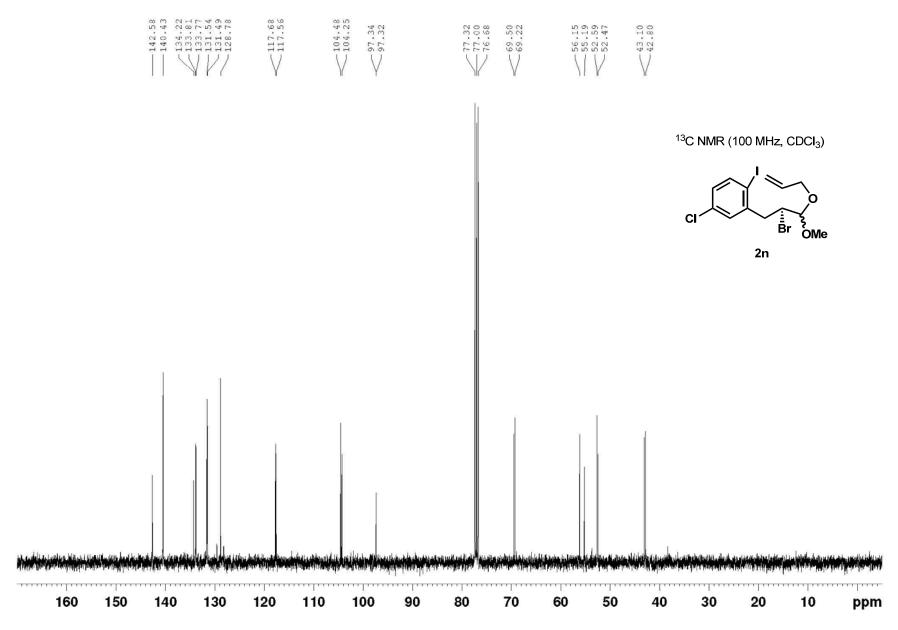


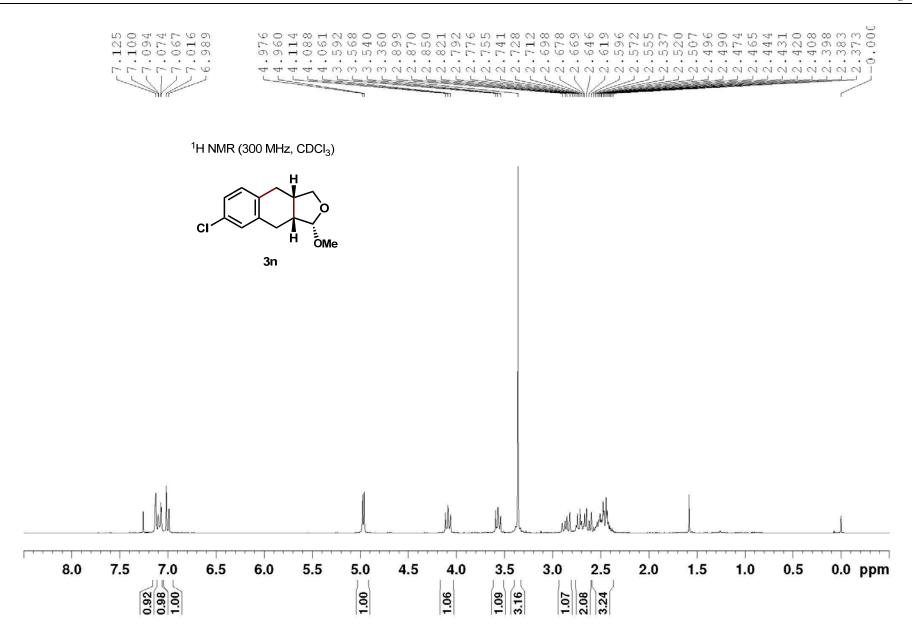


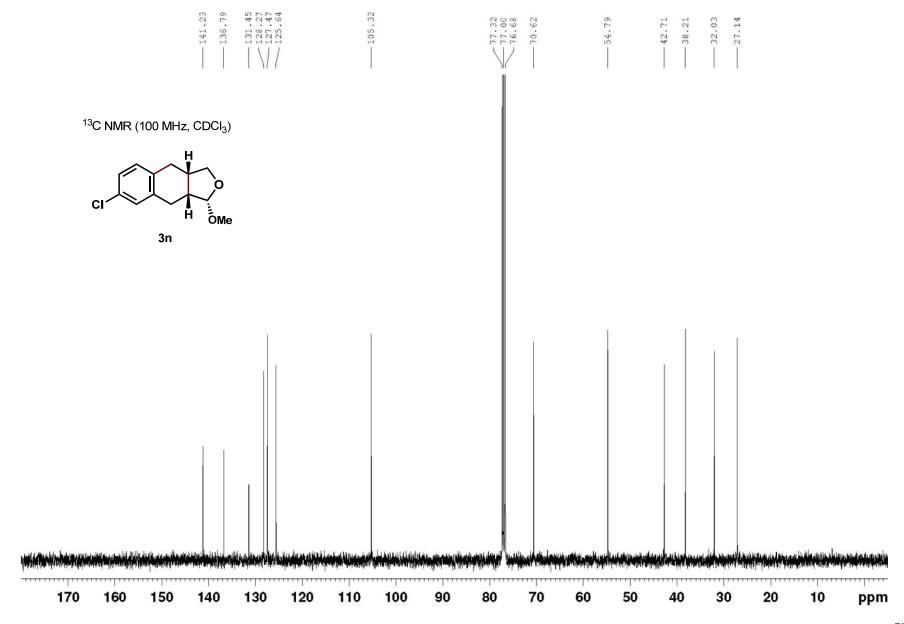



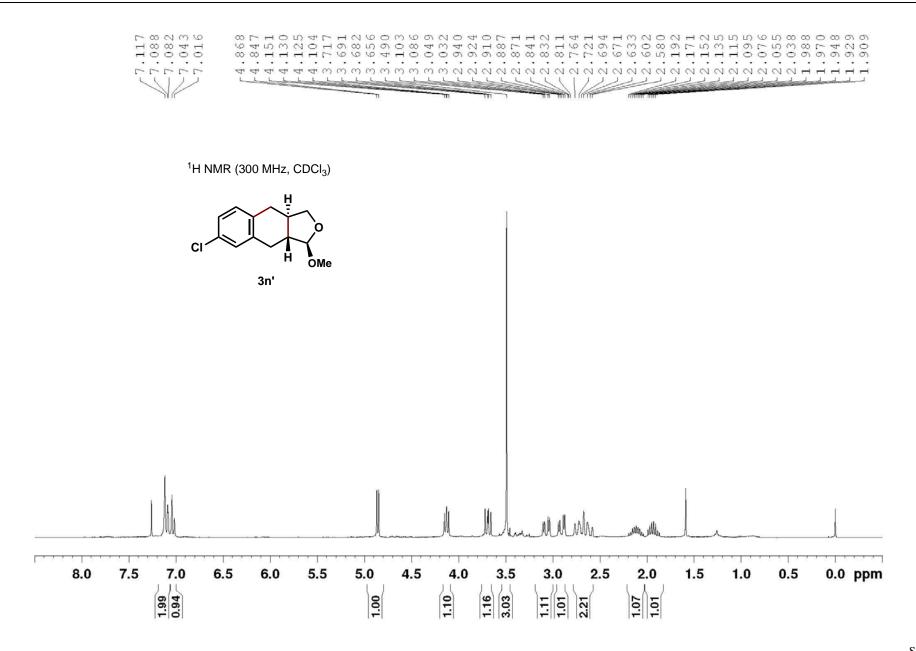



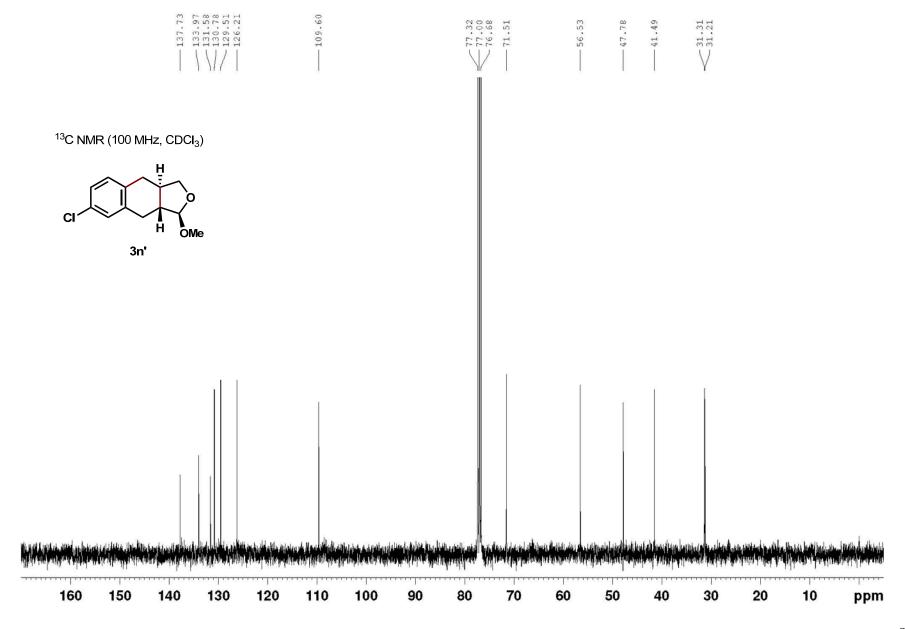



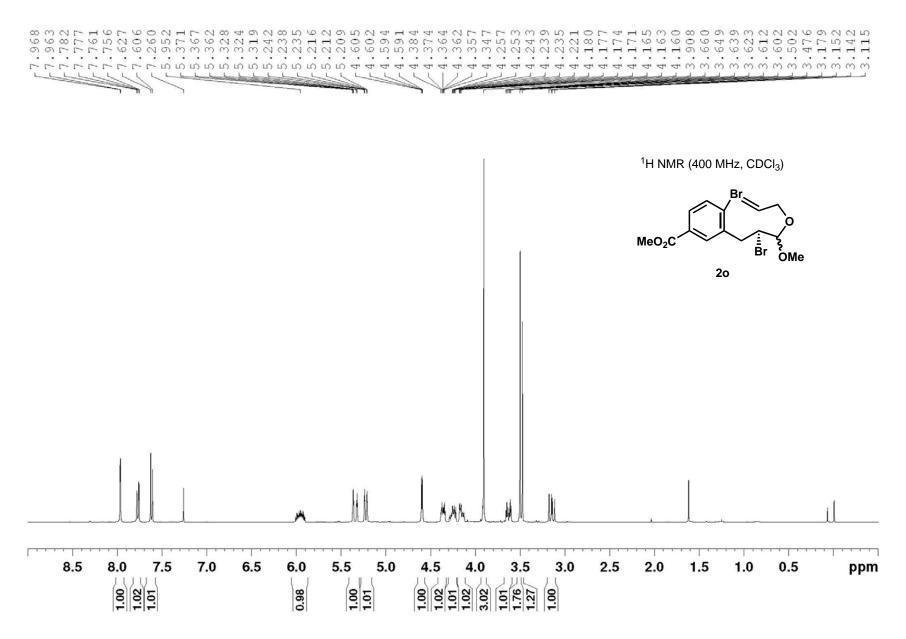


<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)

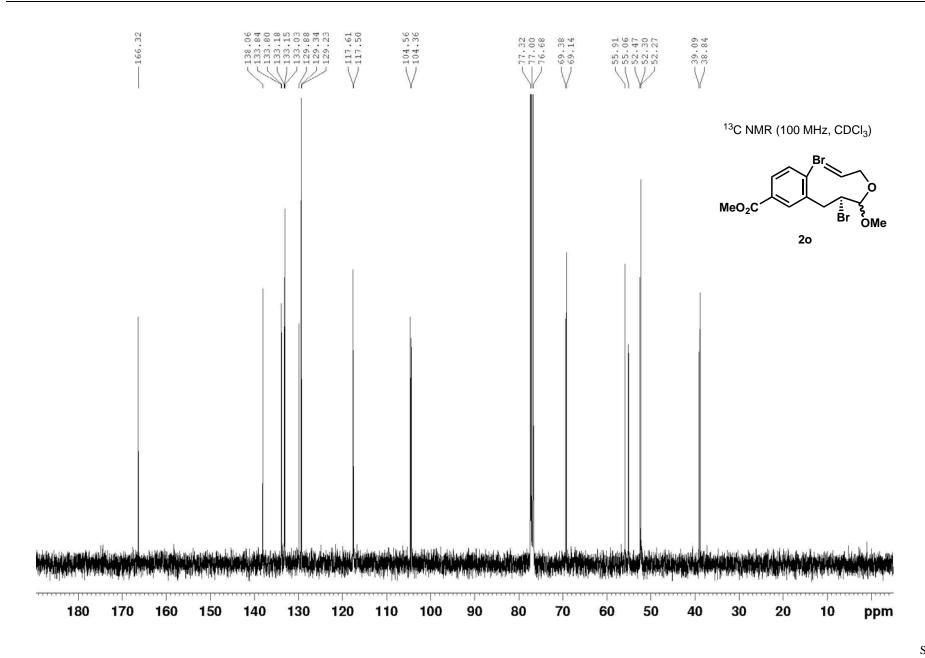


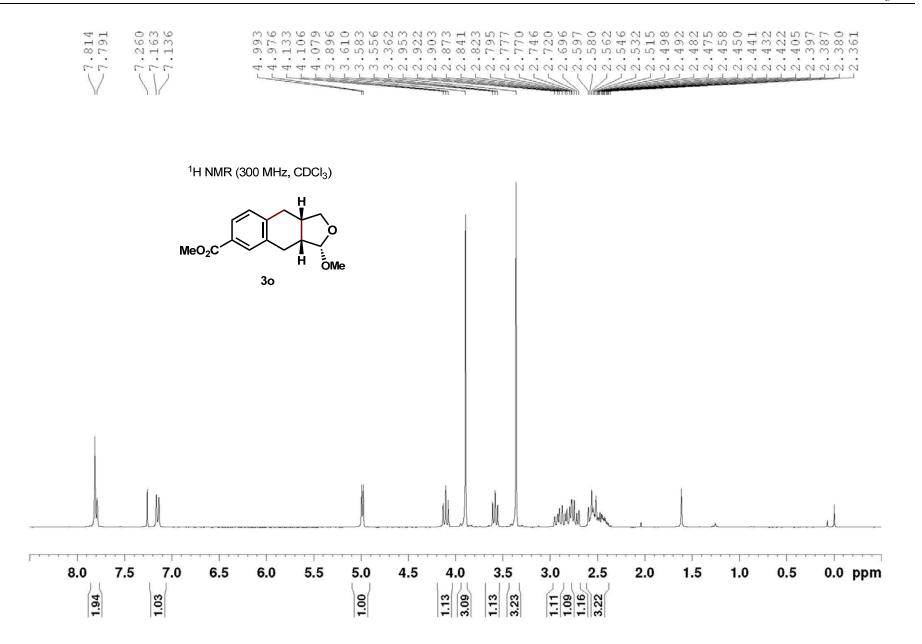



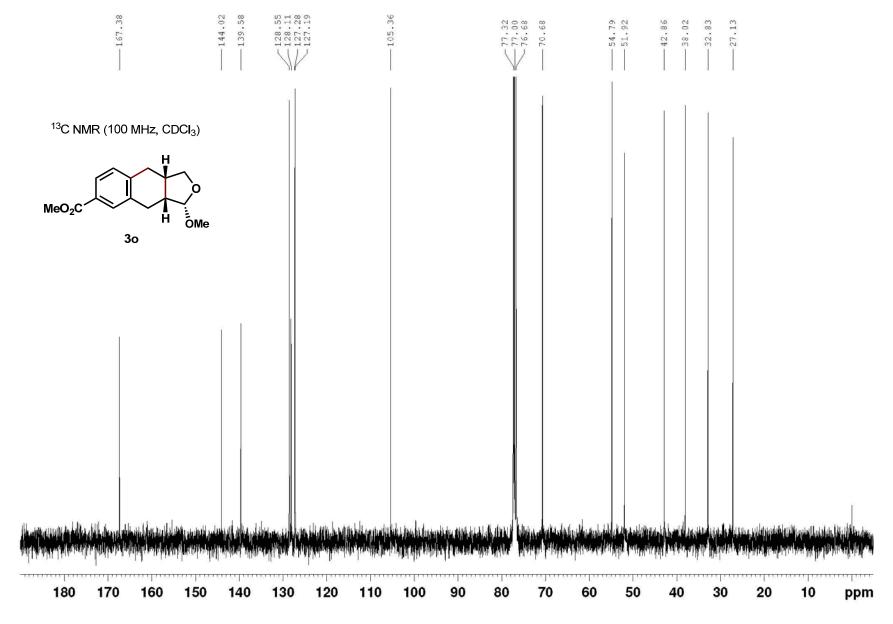



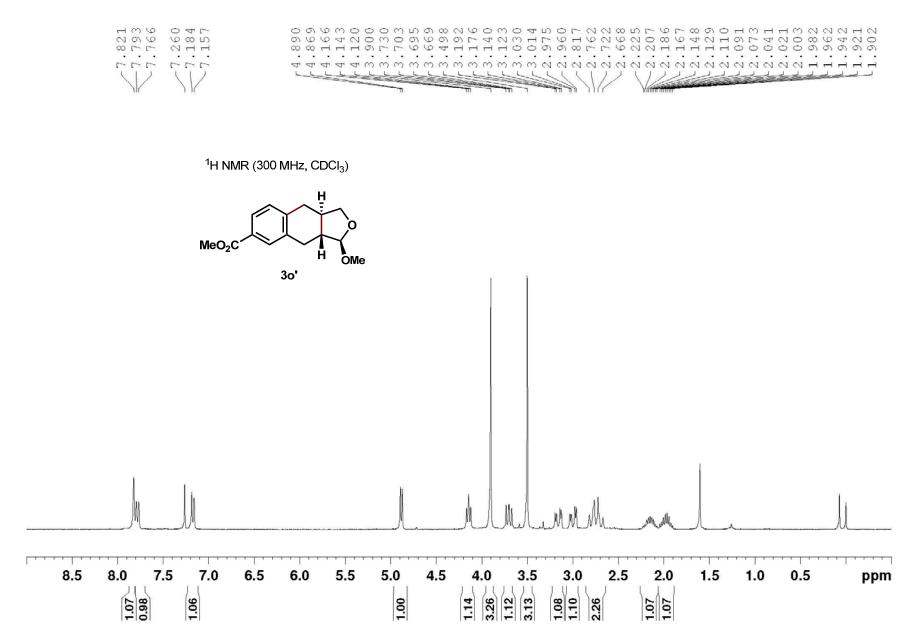



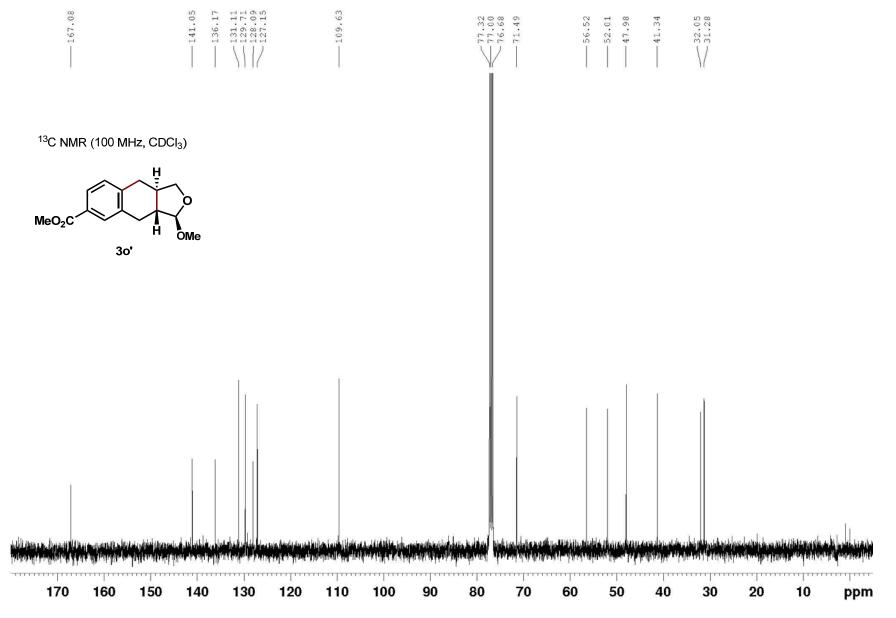



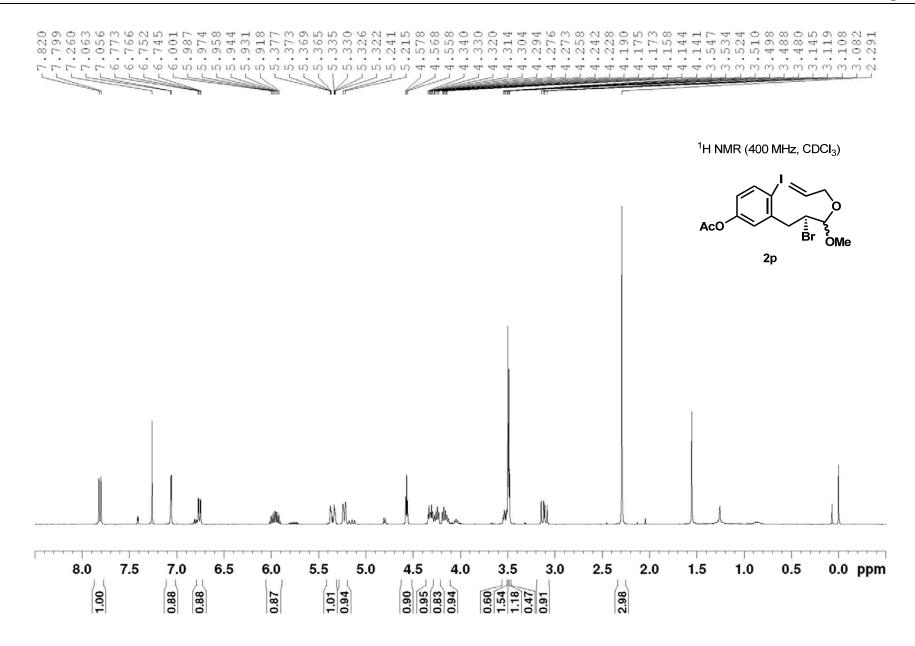



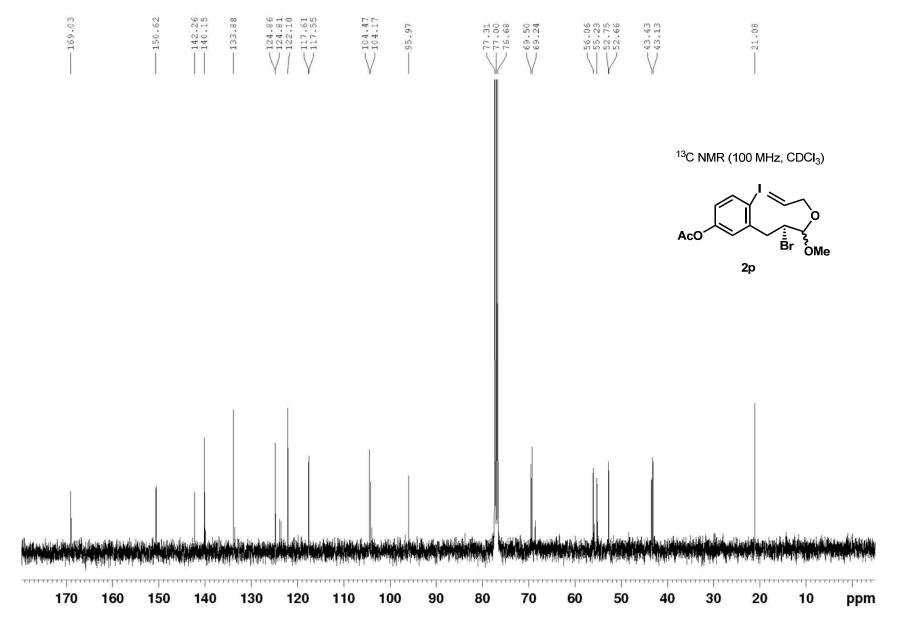



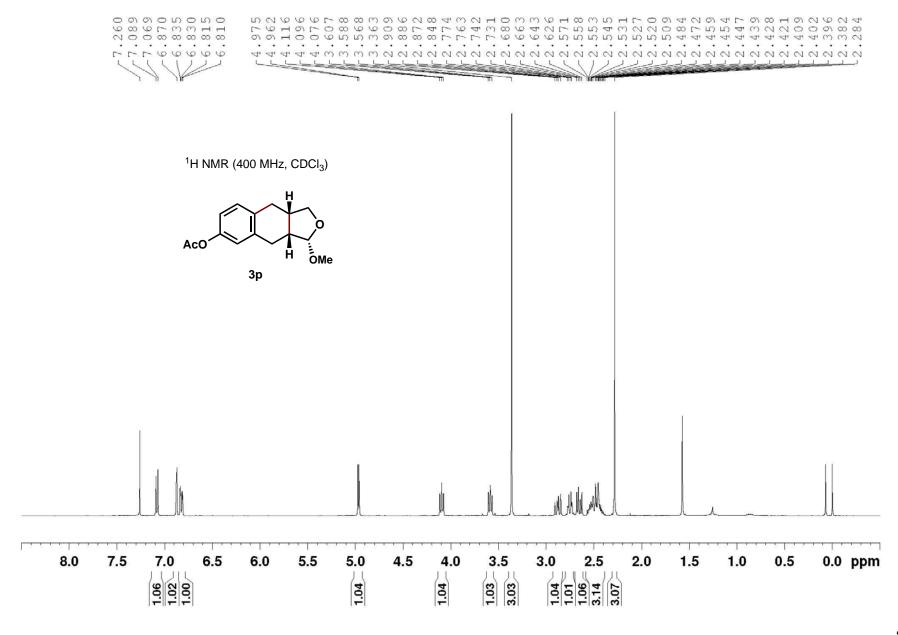



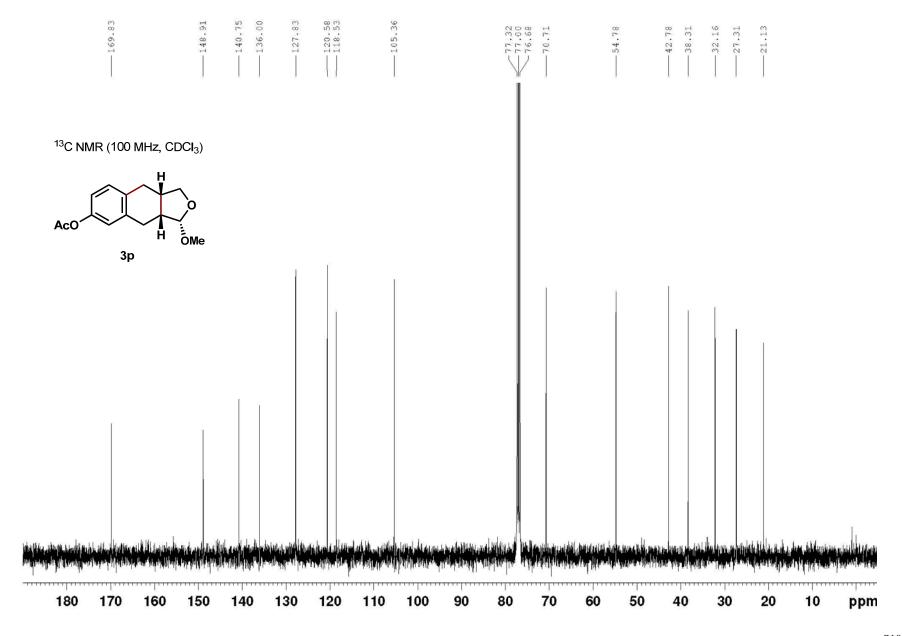



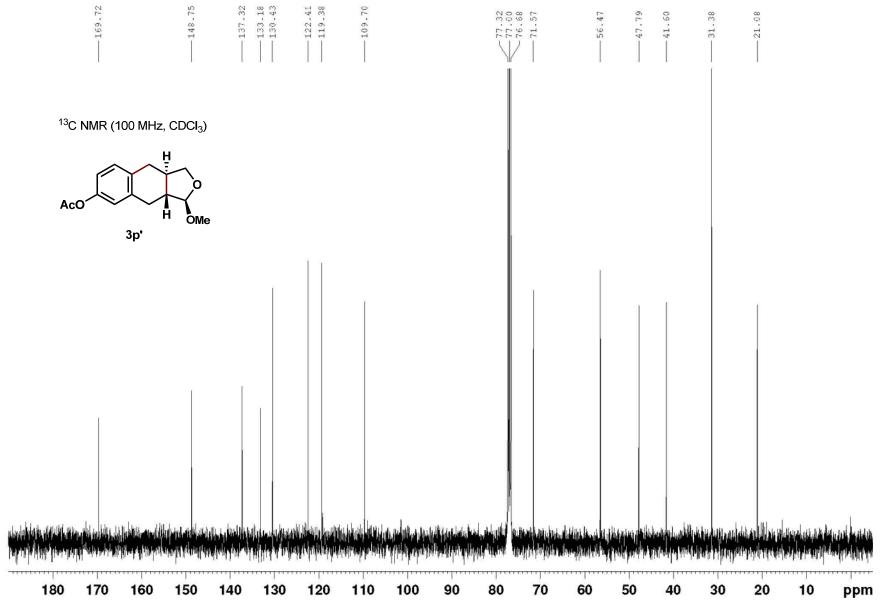



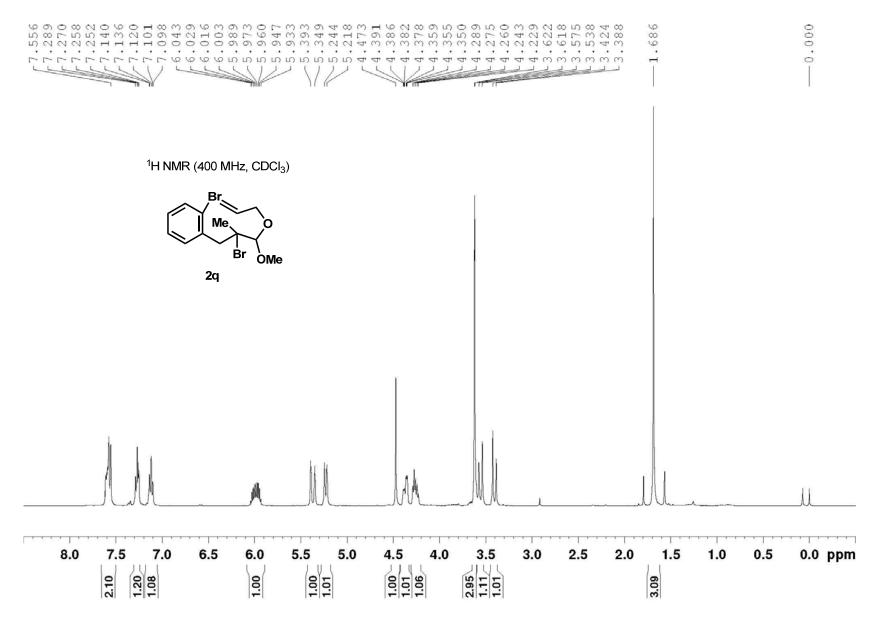



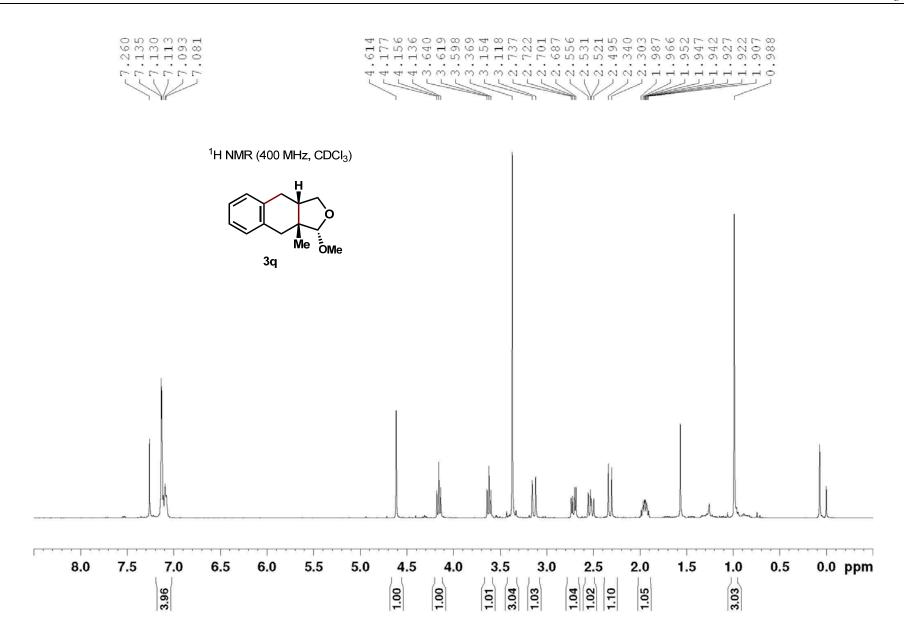



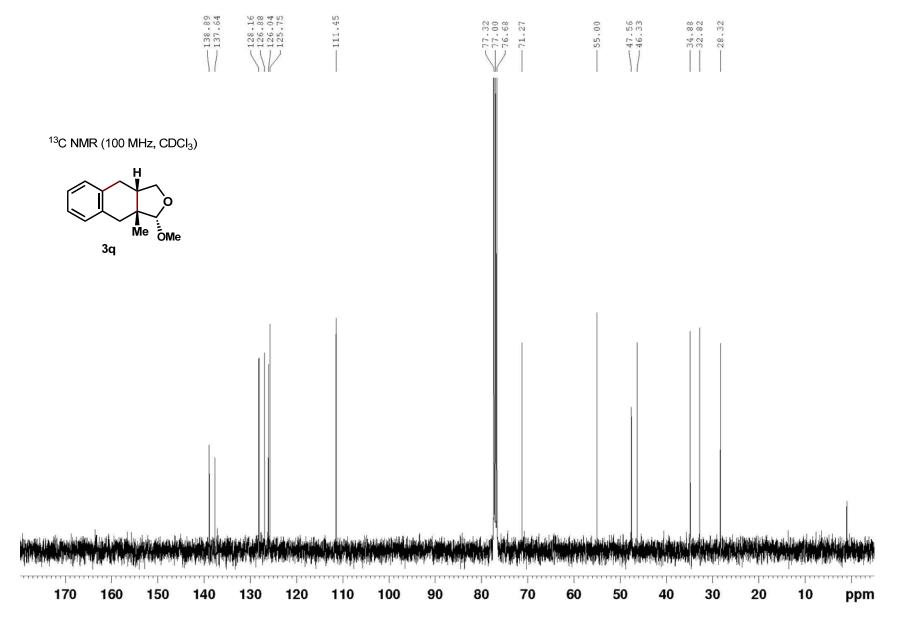


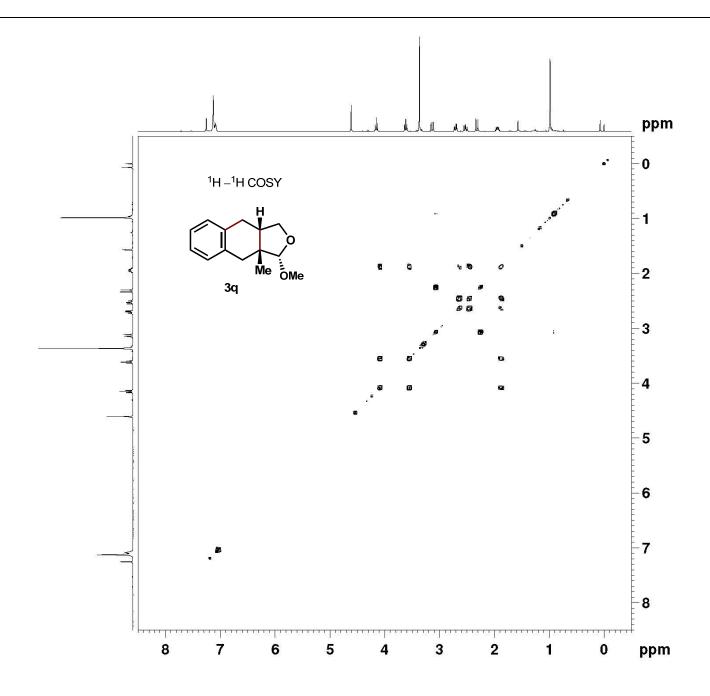



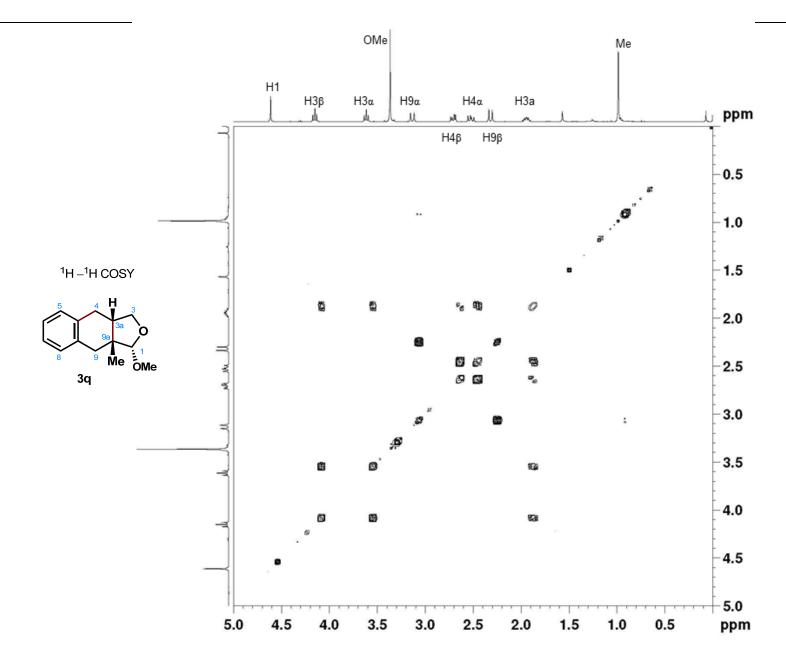



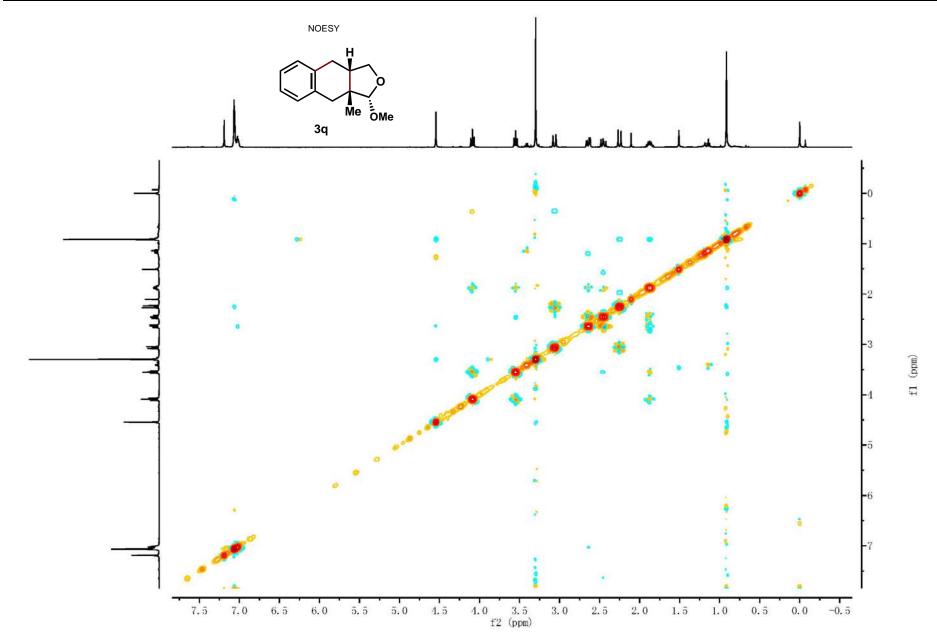


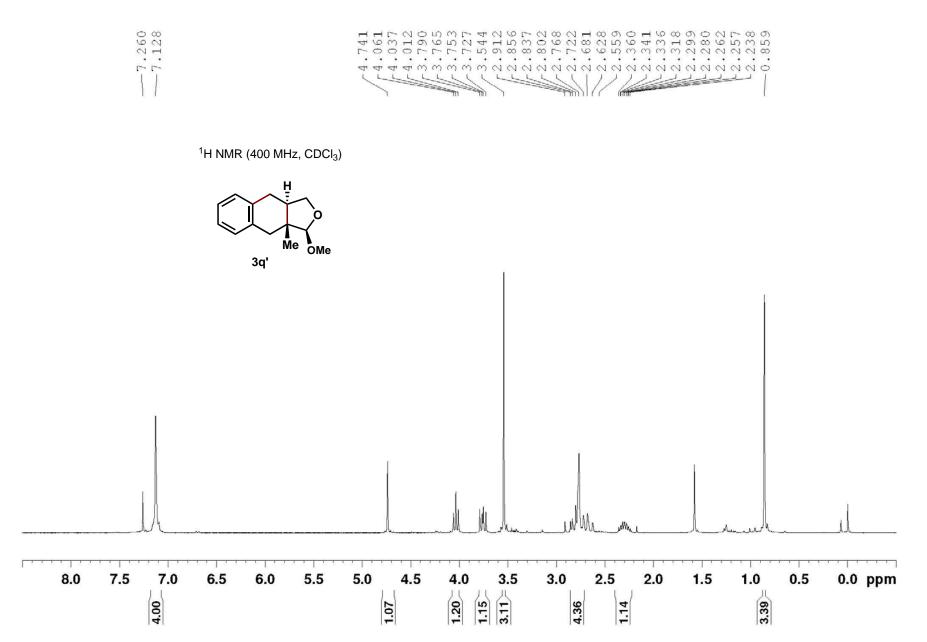



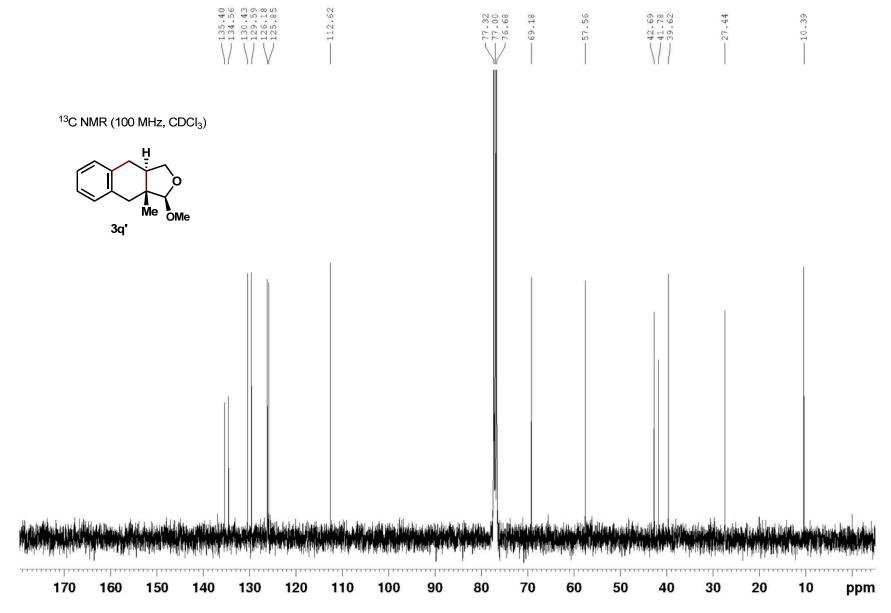



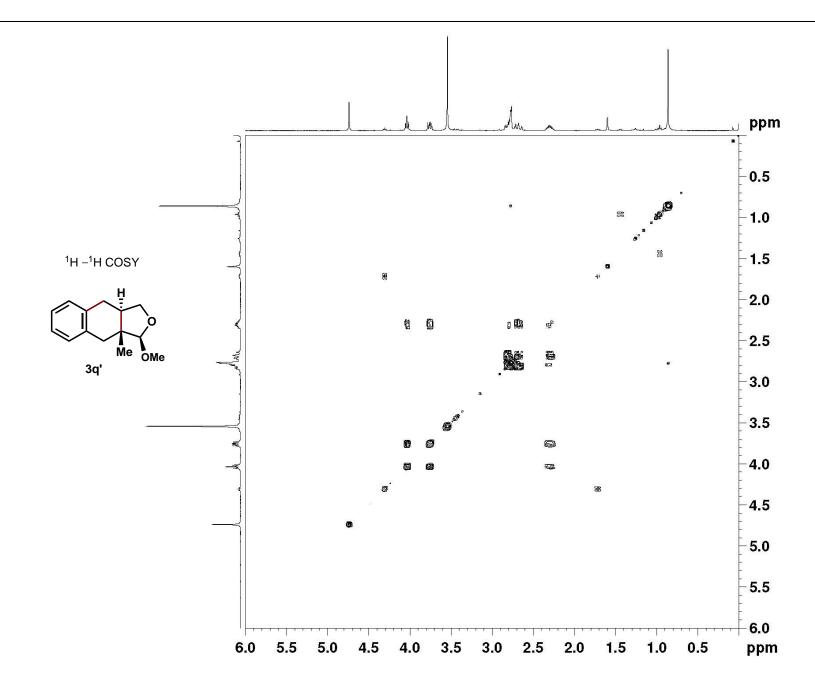



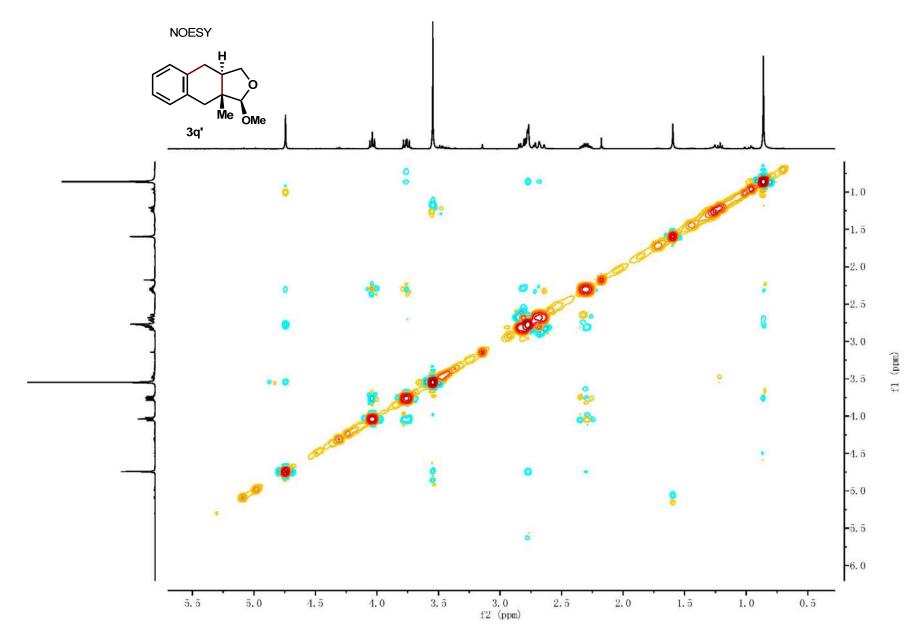



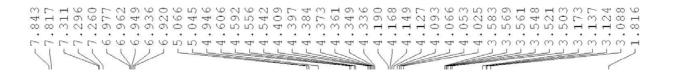



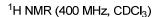



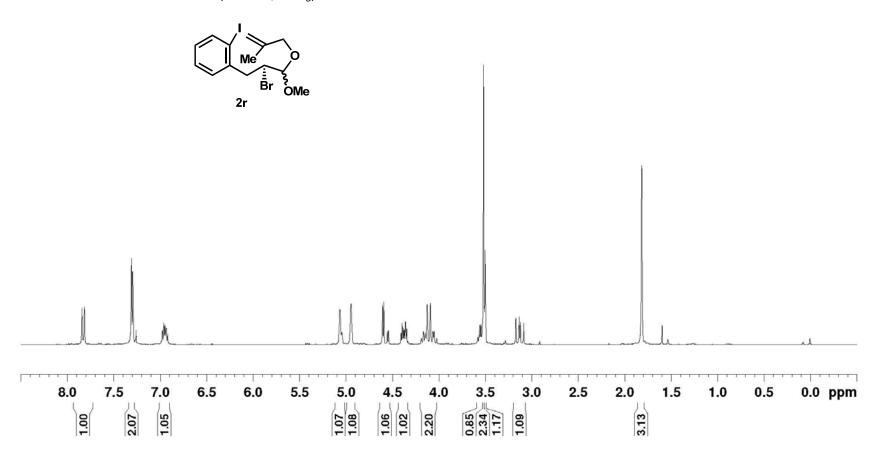



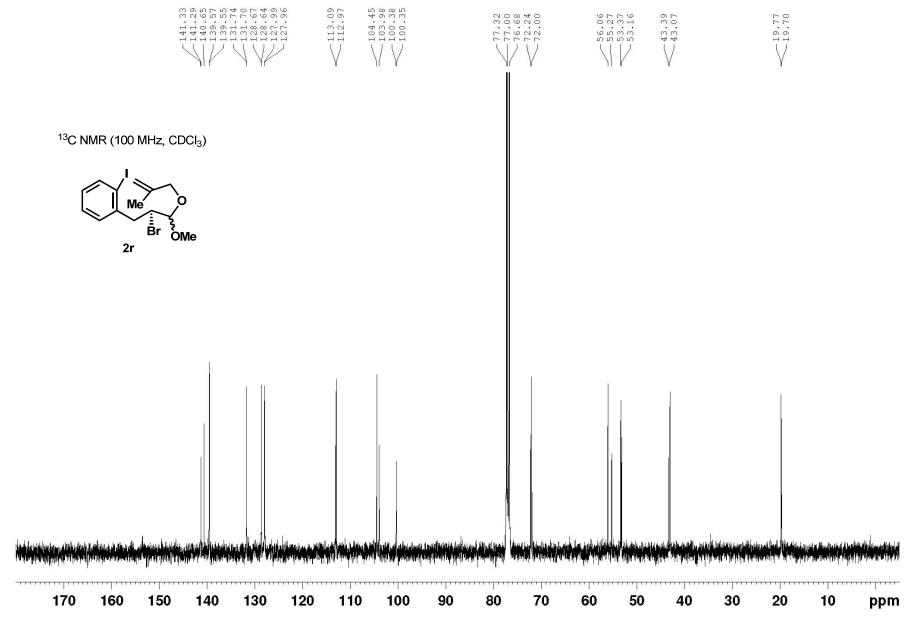



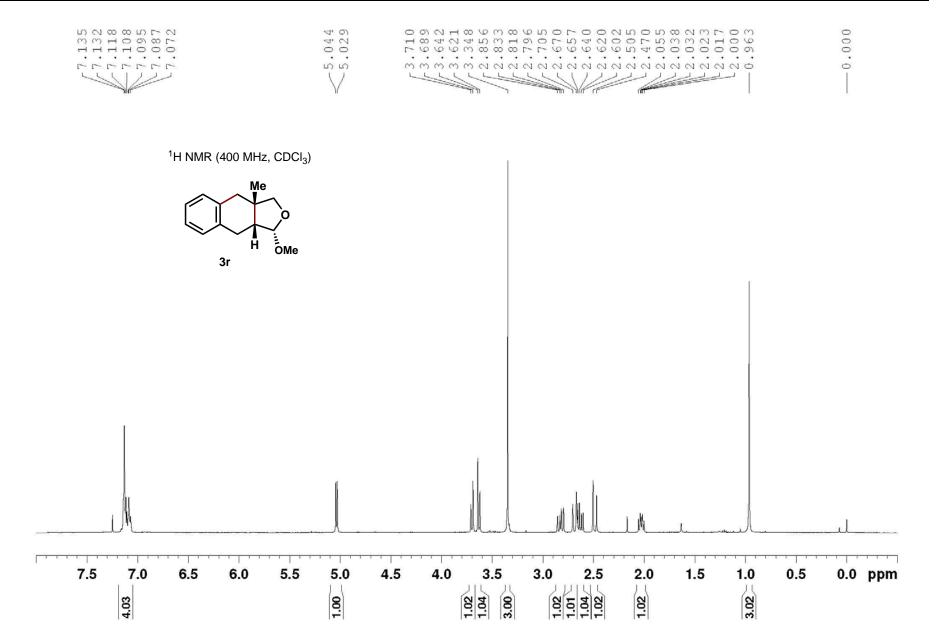



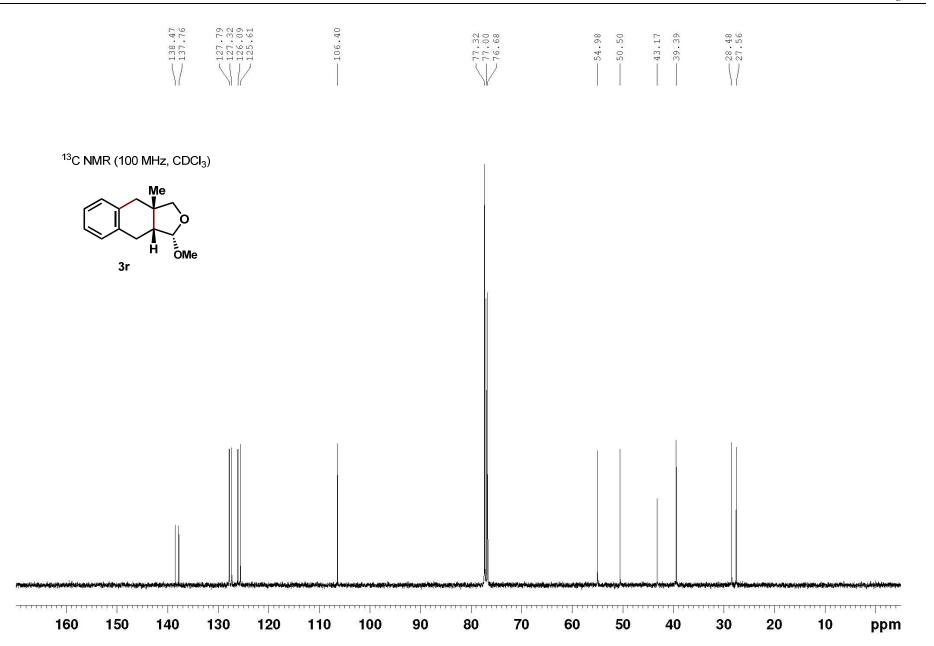



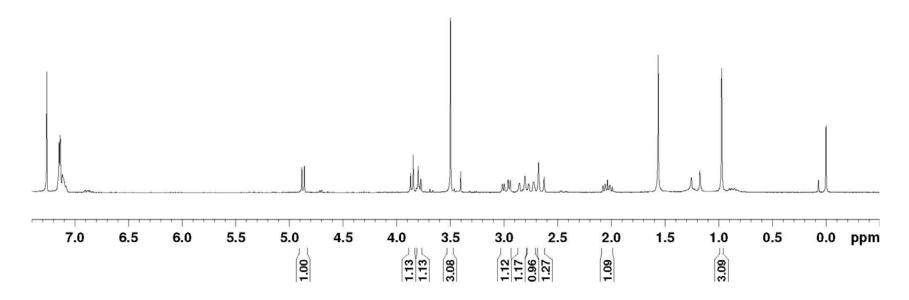



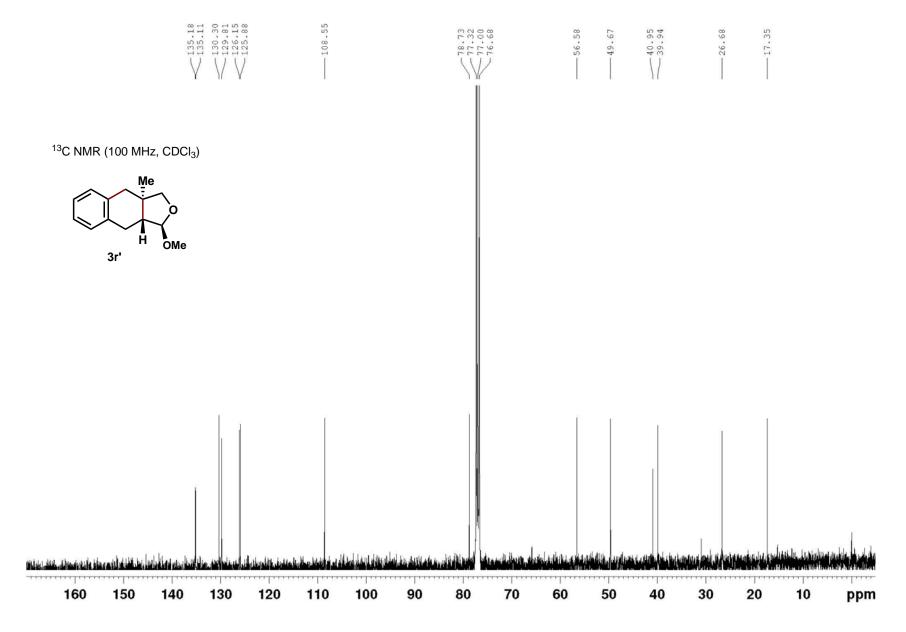



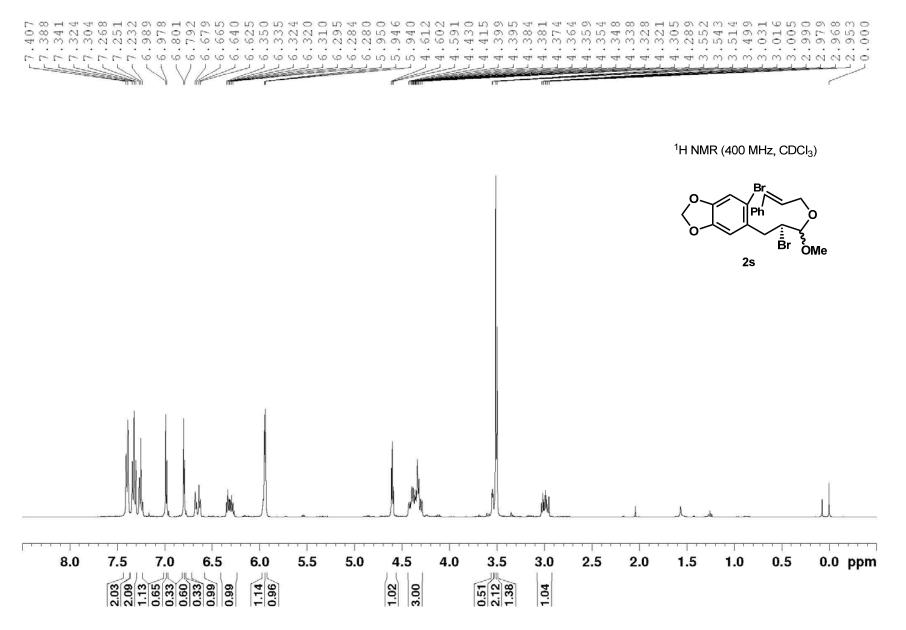


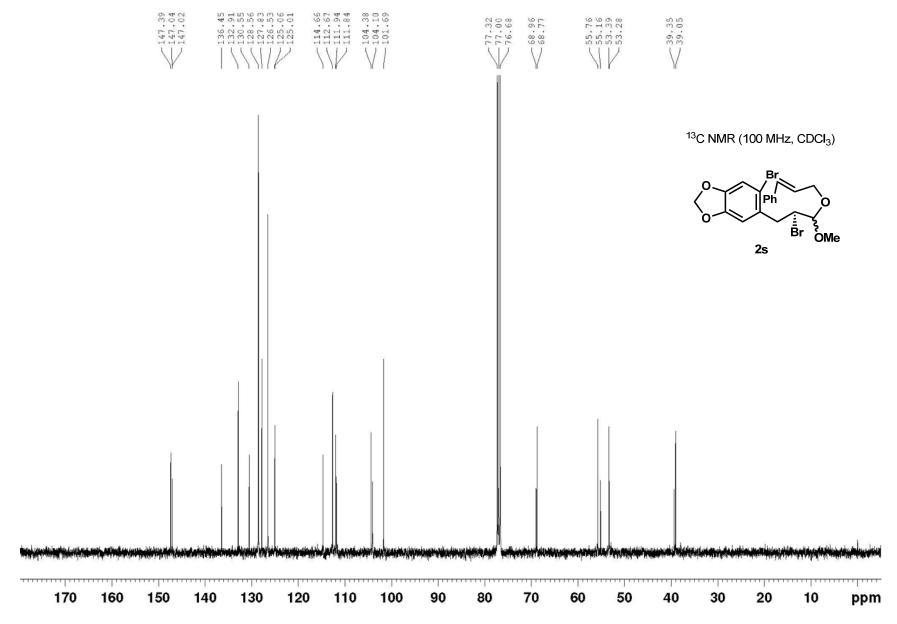


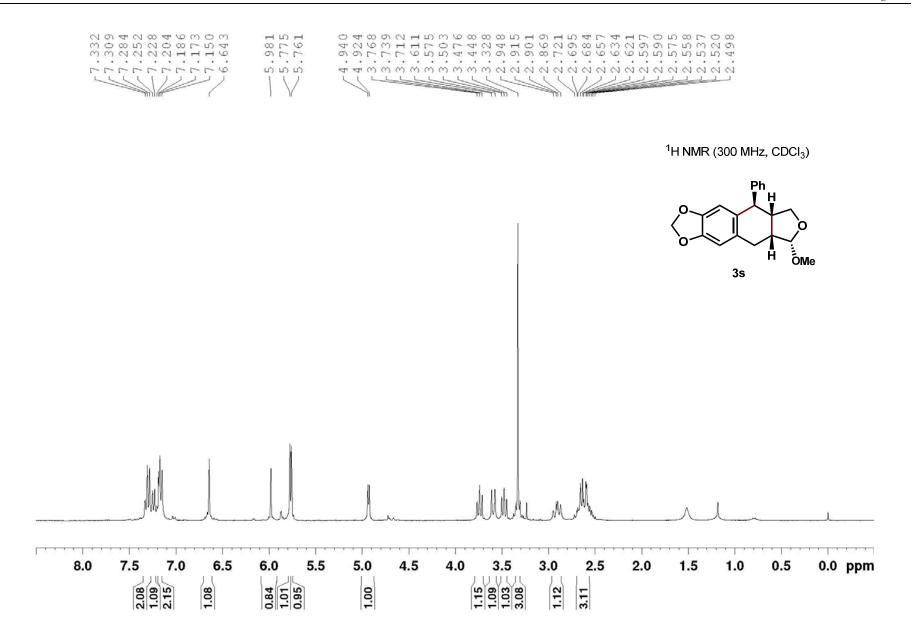






<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)

