Supporting Information for

Alkane guest packing drives switching between multimeric deep-cavity cavitand host assembly states

J. Wesley Barnett^a, Du Tang^a, Bruce C. Gibb,^b and Henry S. Ashbaugh^{*b}

^aDepartment of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA, 70118 ^bDepartment of Chemistry, Tulane University, New Orleans, LA, 70118

In this supplement we provide full details for the simulations of alkane transfer into multimeric TEMOA complexes and present the simulation results for guest transfer into octameric cavitands.

Molecular Simulation and Computational Methods. Molecular dynamics simulations of linear alkane guests encapsulated within multimeric TEMOA complexes in water were performed using GROMACS 5.05.¹ Water was modeled using the TIP4P/EW force-field², which provides an excellent description of the structure and thermodynamics of liquid properties of liquid water near ambient conditions. TEMOA Lennard-Jones and intramolecular interactions were modeled using the General Amber Force Field (GAFF).³ ACPYPE⁴ was used to assign AM1-BCC⁵ partial charges. Following previously reported calculations, the net charge on each host was set to -6*e* at neutral pH.⁶ Specifically, the four carboxcylic acid coating groups ringing each host's hydrophobic pocket and two acids diagonal to one another at the foot of OA were deprotonated. Six sodium counter cations, modeled using the GAFF potential, were added for each host to neutralize the host/guest complexes. Figure S1 shows a snapshot of a single octaacid host rendered using the coordinates reported in Table S1 in standard Protein Data Bank format. Table S2 lists the partial charges and non-bonded GAFF atom types used to model the

host electrostatic and Lennard-Jones interactions. Alkane guests were modeled using the L-OPLS force-field.⁷ The L-OPLS force-field for the alkanes was chosen over the GAFF or OPLS force-fields because L-OPLS provides a more accurate representation of the conformational equilibrium of the alkanes of increasing length. This is especially important here for the range of guest sizes considered here. This model for cavitands in water conforms to that we previously used successfully to examine conformational equilibrium of alkanes within dimeric OA capsules and the non-monotonic assembly of monomeric and dimeric cavitand complexes with alkanes, giving us confidence in the simulations reported here. Lennard-Jones cross interactions were evaluated using Lorentz-Berthelot combining rules.⁸ Lennard-Jones interactions were cut-off beyond 9 Å with a mean-field correction for longer-range contributions. Long-range electrostatic interactions were evaluated using particle-mesh Ewald summation with a real-space cut-off beyond 9 Å.⁹ Host-guest complexes were hydrated by anywhere from 3,500 to 12,500 waters depending on the size of the complex (dimer, tetramer, hexamer, or octamer). The number of alkane guests within the TEMOA complex was one, two, three, or four for the dimeric, tetrameric, hexameric, octameric complexes, respectively, to maintain a two-to-one host/guest ratio as determined experimentally. Simulations were performed in the isothermal-isobaric ensemble at 25°C and 1 bar. The temperature and pressure were maintained using the Nosé-Hoover thermostat¹⁰ and Parinello-Rahman barostat,¹¹ respectively. Bonds involving hydrogens for the hosts and guests were constrained using the LINCS algorithm,¹² while water was held rigid using SETTLE.¹³ The equations-of-motion were integrated with a time step of 2 fs.

We assessed the impact of alkane guest packing on the relative stability of multimeric TEMOA complexes from the free energy of transferring guests from vacuum into the complex interior. Transfer free energies were evaluated for alkanes C_1 to C_{18} into dimeric complexes, C_1

S2

to C_{26} into tetrameric complexes, C_1 to C_{32} into hexameric complexes, and C_1 to C_{32} into octameric complexes. One, two, three, or four guests were simultaneously grown into each complex to maintain a two-to-one host/guest ratio. Incremental free energy differences between guests with n-1 to n carbon units were evaluated using the Multistate Bennett Acceptance Ratio technique.¹⁴ Free energy increments were evaluated using a coupling-parameter approach to evaluate Lennard-Jones and electrostatic contributions to the free energy over four simulation phases. In the first phase, the charges on a terminal methyl of the n-1 carbon alkane were turned off in 0.25 λ increments from 1 to 0, were 1 indicates full interactions and 0 indicates no interactions. In the second phase, the new terminal methyl group van der Waals interactions of the *n* alkane were turned on in 0.05 λ increments. In the third phase, the electrostatic interactions of the methylene adjacent to the new terminal methyl unit were turned on in 0.25 λ increments, while in the fourth phase the electrostatic interactions of the methyl unit were turned on in 0.25 λ increments. Each intermediate state in the growth process was simulated for 5 ns to evaluate averages following 1 ns for equilibration. Since the host complexes are only stable experimentally over specific ranges of guest lengths, it was necessary to stabilize the simulated complexes using harmonic restraints to keep them from falling apart during the guest growth process. To this end, host complexes were assembled to form a dimer, tetramer, hexamer, or octamer with restraints applied between the carbons touching neighboring hosts in the complexes were applied with a spring constant of 150 kJ/mol and bond length of 3.4 Å. The constituent host portals for the tetrameric, hexameric, and octameric complexes were placed on the faces of a tetrahedral, cubic, or octahedral Platonic solid.

The internal volumes of the empty complexes and van der Waals volumes of the guests was determined using Monte Carlo integration. The internalized volume was evaluated by randomly inserting 10⁵ points into a box bounding the empty multimer complexes averaged over 25,000 simulation snapshots. The volume from a single simulation snapshot was determined by the fraction of points inside the complex's internal guest-hosting cavity bound by the van der Waals volume of the cavitands. The van der Waals volumes of the *n*-alkanes was determined by performing 10⁵ insertions over a bounding box containing the guest in the fully extended all trans conformation. The van der Waals radii of the hydrogen, carbon, and oxygen units were assumed to be 1.2 Å, 1.7 Å, and 1.5 Å, respectively, as reported by Bondi. In the case of the octamer, the host complex collapsed as the guest length decreased and retreated to single host pockets making determination of the internalized volume difficult. We therefore used a geometric model to evaluate the volume of the octamer as described below.

Guest Transfer into Octameric Host Complexes. In Figure S2 we compare the free energies of transferring alkanes from vacuum into the interiors of a hexameric and octameric TEMOA complexes. For short chains the transfer free energy into the octamer closely tracks that of the hexamer, and by extension the dimer and tetramer (Figure 2). The transfer free energy into the hexamer drops significantly below that of the octamer beginning around C_{16} , soon after which transfer into the hexamer is favored over than of the dimer and tetramer beginning with C_{19} (Figure 2). The hexamer transfer free energy reaches a minimum for C_{26} , after which it increases with increasing guest length. The hexamer transfer free energy crosses that for the octamer for alkanes between C_{28} and C_{29} , after which the octamer has the lowest free energy. We therefore anticipate the octamer would be stabilized by guests transfer for alkanes C_{29} and longer.

We note that while the empty dimer, tetramer, and hexamer complexes were stable and rigid, the empty octameric complex was unstable and collapsed even though the touching edges

of the complex were harmonically restrained. As a result the excess volume of the empty octamer was negligible, on the order of ~ 100 Å³. The internalized volume of the octamer swelled considerably as the guests were added, while those of the other, more rigid, complexes were not as sensitive to guest addition. This makes unambiguous determination of the octamer volume difficult following the Monte Carlo procedure described above. Progress can be made, however, if we consider the shapes of the excess volumes of the hexamer and octamer. In the case of the hexamer the excess volume is a cube with side length D, the diameter of the circular projection of TEMOA onto the face of excess volume. For a cubic excess volume of V_{ex} (hexamer) = D^3 = 2259 Å³, we determine the effective circular diameter of the TEMOA to be $D = (2259 \text{ Å}^3)^{1/3} =$ 13.1 Å. In the case of the octamer, the excess volume is an octahedron with equilateral triangular faces. The side length of an equilateral triangle within which a circle of diameter D can be inscribed is $\sqrt{3}D$. The corresponding volume of an octahedron with edges of length $\sqrt{3}D$ is $V_{ex}(\text{octamer}) = \sqrt{6}D^3 = \sqrt{6}V_{ex}(\text{hexamer}) = 5533 \text{ Å}^3$. The total internalized volume of the octamer is subsequently $V_{tot}(\text{octamer}) = V_{ex}(\text{octamer}) + 4V_{tot}(\text{dimer}) = 7881 \text{ Å}^3$. In Figure S3 we plot the guest packing fraction for four alkanes within the interior of the octamer as a function of the number of carbons in a single chain. This line crosses a packing fraction of $\eta = 0.25$ between C₂₈ and C₂₉, leading us to anticipate from the empirical correlation described in the paper that guests prefer transfer into the octamer for guests C_{29} and longer. This prediction is in good agreement with the simulation results determined from the guest transfer free energies reported in Figure S2. Extrapolating the octamer packing fraction beyond the range of guests simulated, we find it crosses $\eta = 0.30$ between C₃₄ and C₃₅ (Figure S3). We anticipate from this comparison then that we would not expect octamers to be observed experimentally until the guests C₃₅ and longer. The melting point of C₃₅ is 75°C, challenging preparation of these host/guest complexes following the previously used experimental procedures as a result of the increased volatility of the aqueous solution.

Figure S1. Snapshot of a single TEMOA cavitand from the simulations performed here. Protein data bank structure reported in Table S1. Partial charges and GAFF atom types reported in Table S2.

Figure S2. Vacuum-to-complex transfer free energies into the hexameric and octameric complexes for alkane guests as a function of the number of guest carbons. Error bars are smaller than the figure symbols. While $n_g = 3 \text{ or } 4$ guests were transferred into the hexamer and octamer complexes, respectively, the transfer free energies are reported on a per guest basis to affect a proper comparison. The octamer transfer free energy crosses that for the hexamer between C₂₈ and C₂₉.

Figure S3. Packing fraction of alkane guests within octameric complex as a function of the number of guest carbons. The yellow star indicates the guest size at which $\eta = 0.25$, where we anticipate the vacuum-to-complex transfer free energy would favor the octameric complex. The red star indicates at which $\eta = 0.30$, where we anticipate the complex would be stabilized in solution following the correlation developed for the smaller complexes in the paper.

TITLE	ΤE	MOA									
AUTHOR	J.	W.BA	RNETT								
CRYST1	17.	968	17.485		13.147	90.00	90.00	90.00	P 1		1
MODEL		1									
ATOM	1	01	MOL	1	-1.	740 ·	-4.920	7.500	1.00	0.00	
ATOM	2	C1	MOL	1	-1.	360 .	-4.170	6.650	1.00	0.00	
ATOM	3	02	MOL	1	-1.	630 ·	-2.890	6.590	1.00	0.00	
АТОМ	4	н1	MOT	1	-2.1	370 .	-2.560	7.140	1.00	0.00	
АТОМ	5	C2	MOL	1	-0	550 ·	-4 650	5 450	1 00	0 00	
ATOM	6	02 Н2	MOL	1	-0	120 ·	-5 610	5 720	1 00	0 00	
ATOM	7	н3	MOT.	1	-1	310 .	-4 860	4 700	1 00	0 00	
ATOM	, Q	C 3	MOL	1	⊥ • ·	510 .	-3 700	1 880	1 00	0.00	
ATOM ATOM	q	цЛ	MOL	1	1	јап.	-4 010	5 230	1 00	0.00	
	10	11-1 11-5	MOT	1	1 · ·	350 .	-2 710	5 280	1 00	0.00	
ATOM ATOM	11	115 C 4	MOL	1	0.	540	-2.710	2.200	1 00	0.00	
ATOM ATOM	10	U4 116	MOL	1	0.	540 ·	-3.000	2 000	1 00	0.00	
ATOM	12	по СБ	MOL	1	0.	070 ·	-4.700	2.000	1 00	0.00	
ATOM	14	C5	MOL	1	1.	730 ·	-2.890	2.760	1.00	0.00	
ATOM	14	06	MOL	1	۷.,	270 ·	-1.760	3.380	1.00	0.00	
ATOM	15	H/	MOL	1	1.	880 .	-1.460	4.330	1.00	0.00	
ATOM	16	C/	MOL	1	-0.	/60 ·	-3.170	2./10	1.00	0.00	
ATOM	17	C8	MOL	1	-1.	550 .	-2.200	3.330	1.00	0.00	
ATOM	18	Н8	MOL	1	-1.2	240 .	-1.840	4.280	1.00	0.00	
ATOM	19	C9	MOL	1	-2.	730 ·	-1.710	2.790	1.00	0.00	
ATOM	20	C10	MOL	1	-3.	570 ·	-0.650	3.530	1.00	0.00	
ATOM	21	C11	MOL	1	-3.	500 .	-0.900	5.050	1.00	0.00	
ATOM	22	C12	MOL	1	-4.	550 .	-0.230	5.930	1.00	0.00	
ATOM	23	C13	MOL	1	-4.	540 ·	-0.760	7.390	1.00	0.00	
ATOM	24	03	MOL	1	-5.	370 ·	-0.250	8.130	1.00	0.00	
ATOM	25	04	MOL	1	-3.	710 ·	-1.650	7.680	1.00	0.00	
ATOM	26	Н9	MOL	1	-5.	550 ·	-0.390	5.540	1.00	0.00	
ATOM	27	H10	MOL	1	-4.	410	0.850	5.970	1.00	0.00	
ATOM	28	H11	MOL	1	-3.	610 ·	-1.970	5.180	1.00	0.00	
ATOM	29	H12	MOL	1	-2.	520 ·	-0.670	5.440	1.00	0.00	
ATOM	30	H13	MOL	1	-4.	590 ·	-0.800	3.210	1.00	0.00	
ATOM	31	C14	MOL	1	-3.	150	0.730	3.020	1.00	0.00	
ATOM	32	C15	MOL	1	-2.1	140	1.480	3.610	1.00	0.00	
ATOM	33	H14	MOL	1	-1.	700	1.100	4.510	1.00	0.00	
ATOM	34	C16	MOL	1	-1.	640	2.660	3.070	1.00	0.00	
ATOM	35	C17	MOL	1	-0.	420	3.400	3.660	1.00	0.00	
ATOM	36	H15	MOL	1	-0.	540	4.440	3.390	1.00	0.00	
ATOM	37	C18	MOL	1	-0.1	380	3.320	5.200	1.00	0.00	
АТОМ	38	H16	MOL	1	-1.	270	3.830	5.560	1.00	0.00	
АТОМ	39	C19	MOT	1	0.	880	3.920	5.860	1.00	0.00	
АТОМ	40	H17	MOT	1	0.	590	4.660	6.620	1.00	0.00	
АТОМ	41	H18	MOT	1	1.	510	4.450	5.160	1.00	0.00	
ΑΤΟΜ	42	C20	MOT.	1	1	730	2 880	6 590	1 00	0 00	
	43	05	MOT.	1	1	280	1 830	6 950	1 00	0.00	
	4 J 4 A	05	MOT.	1	2	200 960	3 270	6 780	1 00	0.00	
ATOM	45 45	н1 Q	MOT.	⊥ 1	2.	550	2 540	7 070	1 00	0 00	
	45 46	H 2U	MOT.	⊥ 1	_0	460	2 310	5 550	1 00	0 00	
	- U / 7	C 2 1	MOT	⊥ 1	0.	100 850	2 030	2 010	1 00	0.00	
	7 / 10	C21	MOT	⊥ 1	0.0	660	1 010	2,240	1 00	0.00	
ATOM ATOM	40 10	U22	MOT	⊥ 1	1	370	1 //O	J.44U A 260	1 00	0.00	
	マッ 50	C 2 2	MOL	⊥ 1	±•• 2	820	1 /QA	2 200	1 00	0.00	
AIUM	JU	- L J	тот	L	۷. ۱	020	+ • 1 0U	2.000	1 . UU	0.00	

Table S1. Protein data bank structure of a single TEMOA host illustrated in Figure S1.

ATOM	51	C24	MOL	1	3.700	0.380	3.390	1.00	0.00
ATOM	52	H22	MOL	1	4.700	0.560	3.000	1.00	0.00
ATOM	53	C25	MOL	1	3.800	0.520	4.920	1.00	0.00
ATOM	54	Н23	MOL	1	3.890	1.570	5.110	1.00	0.00
ATOM	55	C26	MOL	1	4.990	-0.150	5.600	1.00	0.00
ATOM	56	H24	MOL	1	5,900	0.030	5.030	1.00	0.00
ATOM	57	H2.5	MOT	1	4.880	-1.230	5.660	1.00	0.00
ATOM	58	C27	MOL	1	5 270	0 370	7 040	1 00	0 00
ATOM	59 59	07	MOT.	1	4 730	1 440	7 390	1 00	0.00
	60	08	MOT.	1	4.750 6.060	-0 310	7.690	1 00	0.00
	61	н26	MOT.	1	2 880	0.010	5 410	1 00	0.00
ATOM	62	C28	MOL	1	3 250	-0.960	2 800	1 00	0.00
	63	C20	MOT	1	3 720	-1 340	1 550	1 00	0.00
	64	00	MOL	1	1 620	-1.540	1.550	1 00	0.00
ATOM	64	C 2 0	MOL	1	4.020	-0.380	0.000	1 00	0.00
ATOM	65	1127	MOL	1	3.230	-2.400	0.930	1.00	0.00
ATOM	00	ПZ / С 2 1	MOL	1	3.030	-2.770	-0.030	1.00	0.00
ATOM	67	C31	MOL	1	2.250	-3.240	1.520	1.00	0.00
ATOM	68	010	MOL	1	1./80	-4.310	0.810	1.00	0.00
A'I'OM	69	C32	MOL	1	0.610	-4.090	0.070	1.00	0.00
ATOM	70	H28	MOL	1	0.490	-3.030	-0.070	1.00	0.00
ATOM	71	011	MOL	1	-0.500	-4.580	0.770	1.00	0.00
ATOM	72	C33	MOL	1	-1.210	-3.650	1.480	1.00	0.00
ATOM	73	C34	MOL	1	-2.370	-3.170	0.910	1.00	0.00
ATOM	74	H29	MOL	1	-2.690	-3.550	-0.040	1.00	0.00
ATOM	75	C35	MOL	1	-3.120	-2.200	1.550	1.00	0.00
ATOM	76	012	MOL	1	-4.240	-1.740	0.920	1.00	0.00
ATOM	77	C36	MOL	1	-4.130	-0.500	0.290	1.00	0.00
ATOM	78	Н3О	MOL	1	-3.080	-0.310	0.110	1.00	0.00
ATOM	79	013	MOL	1	-4.620	0.510	1.110	1.00	0.00
ATOM	80	C37	MOL	1	-3.680	1.220	1.830	1.00	0.00
ATOM	81	C38	MOL	1	-3.250	2.410	1.290	1.00	0.00
ATOM	82	Н31	MOL	1	-3.670	2.770	0.380	1.00	0.00
ATOM	83	C39	MOL	1	-2.220	3.110	1.890	1.00	0.00
ATOM	84	014	MOL	1	-1.780	4.250	1.250	1.00	0.00
ATOM	85	C40	MOL	1	-0.640	4.090	0.460	1.00	0.00
ATOM	86	Н32	MOL	1	-0.530	3.040	0.220	1.00	0.00
ATOM	87	015	MOL	1	0.490	4.510	1.150	1.00	0.00
ATOM	88	C41	MOL	1	1.230	3.520	1.740	1.00	0.00
ATOM	89	C42	MOL	1	2.370	3.100	1.080	1.00	0.00
ATOM	90	Н33	MOL	1	2.650	3.560	0.150	1.00	0.00
ATOM	91	C43	MOL	1	3.140	2.080	1.600	1.00	0.00
ATOM	92	016	MOT	1	4.230	1.680	0.870	1.00	0.00
ATOM	93	C44	MOT	1	4 090	0 500	0 140	1 00	0 00
ATOM	94	н34	MOL	1	3 030	0 320	-0 010	1 00	0 00
ATOM	95	C45	MOT.	1	4 730	0 640	-1 230	1 00	0 00
ΔTOM	96	C46	MOT.	1	4 710	1 880	-1 850	1 00	0.00
	90	U35	MOL	1	4.710	2 750	-1 320	1 00	0.00
ATOM	97	C17	MOL	1	5 150	-0 500	_1 900	1 00	0.00
	90	U36	MOT	1	5 1 9 0	-1 450	-1 400	1 00	0.00
	100	C10	MOL	1	5 5 20	-0.300	-3 330	1 00	0.00
ATOM ATOM	101	017	тот	⊥ 1	5.050	-0.390 _1 /20	-3.230	1 00	0.00
AIOM		OT /	иот мот	1	J. 93U 5 510	-1.430	-3.330	1 00	0.00
	102	U49 1127	MOT	1	5.51U	0.040	-3.0/0	1 00	0.00
AIUM	104	п3/ СЕО	MOT	1	J./9U E 100	U.91U	-4.900	1 00	0.00
ATOM	104		MOT	1	5.LUU E 100	1.9/U	-3.100	1.00	0.00
ATOM	100	OT A	MOT	1	J.LUU	3.110	-3.91U	1 00	0.00
ATOM	100	C2T	MOL	1	4.510	4.290	-3.490	1.00	0.00
A'I'OM	T 0./	C52	MOL	T	5.340	5.330	-3.12U	Τ.00	υ.υυ

ATOM	108	C53	MOL	1	4.830	6.590	-2.870	1.00	0.00
ATOM	109	C54	MOL	1	3.450	6.780	-2.980	1.00	0.00
ATOM	110	Н38	MOL	1	3.040	7.760	-2.810	1.00	0.00
ATOM	111	C55	MOL	1	5.770	7.790	-2.570	1.00	0.00
ATOM	112	019	MOL	1	5.200	8.870	-2.400	1.00	0.00
ATOM	113	020	MOL	1	6.970	7.520	-2.560	1.00	0.00
ATOM	114	Н39	MOL	1	6.400	5.170	-3.060	1.00	0.00
ATOM	115	C56	MOL	1	3.130	4.460	-3.640	1.00	0.00
ATOM	116	C57	MOL	1	2.240	3.360	-4.150	1.00	0.00
ATOM	117	H40	MOL	1	2.800	2.690	-4.800	1.00	0.00
ATOM	118	H41	MOL	1	1.400	3.770	-4.710	1.00	0.00
ATOM	119	H42	MOL	1	1.830	2.760	-3.340	1.00	0.00
ATOM	120	C58	MOL	1	2.630	5.740	-3.350	1.00	0.00
ATOM	121	021	MOL	1	1.310	6.030	-3.630	1.00	0.00
ATOM	122	C59	MOL	1	0.260	5.670	-2.850	1.00	0.00
ATOM	123	C60	MOL	1	-0.980	5.800	-3.440	1.00	0.00
ATOM	124	Н4З	MOL	1	-1.060	6.160	-4.450	1.00	0.00
ATOM	125	C61	MOL	1	0.380	5.200	-1.550	1.00	0.00
ATOM	126	H44	MOL	1	1.340	5.110	-1.080	1.00	0.00
ATOM	127	C62	MOL	1	-0.780	4.840	-0.860	1.00	0.00
ATOM	128	C63	MOL	1	-2.030	4.970	-1.440	1.00	0.00
ATOM	129	Н45	MOL	1	-2.920	4.710	-0.900	1.00	0.00
ATOM	130	C64	MOL	1	-2.120	5.450	-2.740	1.00	0.00
ATOM	131	022	MOL	1	-3.290	5.610	-3.410	1.00	0.00
ATOM	132	C65	MOL	1	-4.470	4.970	-3.090	1.00	0.00
ATOM	133	C66	MOL	1	-5.510	5.750	-2.620	1.00	0.00
ATOM	134	C67	MOL	1	-6.770	5.200	-2.440	1.00	0.00
ATOM	135	C68	MOL	1	-6.940	3.850	-2.700	1.00	0.00
ATOM	136	H46	MOL	1	-7.920	3.410	-2.570	1.00	0.00
ATOM	137	C69	MOL	1	-7.970	6.090	-2.030	1.00	0.00
ATOM	138	023	MOL	1	-7.700	7.280	-1.860	1.00	0.00
ATOM	139	024	MOL	1	-9.050	5.510	-1.950	1.00	0.00
ATOM	140	H47	MOL	1	-5.360	6.790	-2.430	1.00	0.00
ATOM	141	C70	MOL	1	-4.630	3.620	-3.400	1.00	0.00
ATOM	142	C71	MOL	1	-3.520	2.810	-4.020	1.00	0.00
ATOM	143	H48	MOL	1	-3.930	2.040	-4.660	1.00	0.00
ATOM	144	H49	MOL	1	-2.900	2.320	-3.270	1.00	0.00
ATOM	145	Н50	MOL	1	-2.870	3.440	-4.610	1.00	0.00
ATOM	146	C72	MOL	1	-5.890	3.080	-3.160	1.00	0.00
ATOM	147	025	MOL	1	-6.170	1.790	-3.560	1.00	0.00
ATOM	148	C73	MOL	1	-5.720	0.680	-2.920	1.00	0.00
ATOM	149	C74	MOL	1	-5.720	-0.480	-3.670	1.00	0.00
ATOM	150	Н51	MOL	1	-6.050	-0.460	-4.690	1.00	0.00
ATOM	151	C75	MOL	1	-5.280	0.680	-1.600	1.00	0.00
ATOM	152	Н52	MOL	1	-5.290	1.580	-1.020	1.00	0.00
ATOM	153	C76	MOL	1	-4.830	-0.520	-1.050	1.00	0.00
ATOM	154	C77	MOL	1	-4.840	-1.700	-1.790	1.00	0.00
ATOM	155	H53	MOL	1	-4.510	-2.620	-1.350	1.00	0.00
ATOM	156	C'/8	MOL	1	-5.280	-1.670	-3.100	1.00	0.00
ATOM	157	026	MOL	1	-5.310	-2.740	-3.930	1.00	0.00
ATOM	158	C'/9	MOL	1	-4.700	-3.950	-3.650	1.00	0.00
ATOM	159	C80	MOL	1	-5.520	-5.020	-3.330	1.00	0.00
A'I'OM	160 161	C81	MOL	1	-5.000	-6.300	-3.210	1.00	0.00
A'I'UM	161 162	C82	MOL	1	-3.640	-6.4/0	-3.400	1.00	0.00
ATOM	162	н54	MOL	1	-3.220	-/.460	-3.330	1.00	0.00
	103	U83	MOT	1	-5.930	-1.520	-2.980	1 00	0.00
AIOM	工104	027	МОГ	Ť	-/.I3U	-/.200	-2.090	Τ.ΟΟ	0.00

ATOM	165	028	MOL	1	-5.360	-8.610	-2.940	1.00	0.00
ATOM	166	H55	MOL	1	-6.580	-4.870	-3.210	1.00	0.00
ATOM	167	C84	MOL	1	-3.340	-4.110	-3.870	1.00	0.00
ATOM	168	C85	MOL	1	-2.470	-2.960	-4.320	1.00	0.00
ATOM	169	H56	MOL	1	-1.660	-3.320	-4.950	1.00	0.00
ATOM	170	H57	MOL	1	-2.020	-2.440	-3.480	1.00	0.00
ATOM	171	H58	MOL	1	-3.050	-2.240	-4.880	1.00	0.00
ATOM	172	C86	MOL	1	-2.830	-5.400	-3.720	1.00	0.00
ATOM	173	029	MOL	1	-1.520	-5.670	-4.080	1.00	0.00
ATOM	174	C87	MOL	1	-0.440	-5.380	-3.310	1.00	0.00
ATOM	175	C88	MOL	1	0.780	-5.450	-3.970	1.00	0.00
ATOM	176	Н59	MOL	1	0.810	-5.720	-5.010	1.00	0.00
ATOM	177	C89	MOL	1	-0.490	-5.020	-1.970	1.00	0.00
ATOM	178	H60	MOL	1	-1.430	-4.980	-1.460	1.00	0.00
ATOM	179	C90	MOL	1	0.690	-4.720	-1.310	1.00	0.00
ATOM	180	C91	MOL	1	1.920	-4.800	-1.950	1.00	0.00
ATOM	181	H61	MOL	1	2.830	-4.590	-1.430	1.00	0.00
ATOM	182	C92	MOL	1	1.950	-5.160	-3.290	1.00	0.00
ATOM	183	030	MOL	1	3.080	-5.270	-4.030	1.00	0.00
ATOM	184	C93	MOL	1	4.280	-4.650	-3.710	1.00	0.00
ATOM	185	C94	MOL	1	5.340	-5.460	-3.360	1.00	0.00
ATOM	186	H62	MOL	1	5.200	-6.520	-3.260	1.00	0.00
ATOM	187	C95	MOL	1	4.420	-3.280	-3.910	1.00	0.00
ATOM	188	C96	MOL	1	3.280	-2.420	-4.400	1.00	0.00
ATOM	189	H63	MOL	1	2.600	-3.000	-5.010	1.00	0.00
ATOM	190	H64	MOL	1	3.660	-1.590	-4.990	1.00	0.00
ATOM	191	H65	MOL	1	2.700	-2.000	-3.580	1.00	0.00
ATOM	192	C97	MOL	1	5.690	-2.760	-3.690	1.00	0.00
ATOM	193	C98	MOL	1	6.770	-3.560	-3.350	1.00	0.00
ATOM	194	H66	MOL	1	7.750	-3.130	-3.240	1.00	0.00
ATOM	195	C99	MOL	1	6.610	-4.920	-3.200	1.00	0.00
ATOM	196	0C10	MOL	1	7.830	-5.850	-2.940	1.00	0.00
ATOM	197	031	MOL	1	7.570	-7.050	-2.860	1.00	0.00
ATOM	198	032	MOL	1	8.910	-5.270	-2.870	1.00	0.00
TER									

ENDMDL

Table S2. Partial charges and GAFF atom type for evaluation of electrostatic, Lennard-Jones, and intramolecular interactions. Intramolecular bond, bond-angle, and torsional interactions were taken from the GAFF potential. Atom numbers listed in column 1 follow Table S1.

а	tom	partial	GAFF
		charge (e)	atom type
1	01	-0.581001	0
2	C1	0.632601	С
3	02	-0.622601	oh
4	H1	0.514501	ho
5	C2	-0.133400	c3
6	H2	0.070950	hc
7	HЗ	0.070950	hc
8	С3	-0.073400	c3
9	H4	0.064700	hc
10	Н5	0.064700	hc
11	C4	0.026400	c3
12	НG	0.086700	hc
13	C5	-0.085550	са
14	C6	-0.100250	са
15	H7	0.163500	ha
16	С7	-0.085550	са
17	C8	-0.100250	са
18	H8	0.163500	ha
19	С9	-0.062050	са
20	C10	0.011900	c3
21	C11	-0.062900	c3
22	C12	-0.187400	c3
23	C13	0.917602	С
24	03	-0.869051	0
25	04	-0.869051	0
26	Н9	0.032700	hc
27	H10	0.032700	hc
28	H11	0.055450	hc
29	H12	0.055450	hc
30	H13	0.096200	hc
31	C14	-0.062050	са
32	C15	-0.100250	са
33	H14	0.163500	ha
34	C16	-0.085550	са
35	C17	0.026400	с3
36	H15	0.086700	hc
37	C18	-0.073400	с3
38	H16	0.064700	hc
39	C19	-0.133400	с3
40	H17	0.070950	hc
41	H18	0.070950	hc
42	C20	0.632601	С
43	05	-0.581001	0
44	06	-0.622601	oh
45	H19	0.514501	ho
46	H20	0.064700	hc
47	C21	-0.085550	са

48	C22	-0.100250	са
49	H21	0.163500	ha
50	C23	-0.062050	са
51	C24	0.011900	с3
52	H22	0.096200	hc
53	C25	-0.062900	с3
54	Н23	0.055450	hc
55	C26	-0.187400	с3
56	H24	0.032700	hc
57	Н25	0.032700	hc
58	C27	0.917602	С
59	07	-0.869051	0
60	08	-0.869051	0
61	Н26	0.055450	hc
62	C28	-0.062050	ca
6.3	C29	0.081600	ca
64	09	-0.332900	0.5
65	C30	-0 153500	ca
66	U90 Н27	0 157000	ha
67	C31	0 077850	ca
68	010	-0 338400	05
69	C32	0 370200	C3
70	U32 H28	0.069700	b2
70	011	-0.338400	0.5
71	C33	0.077850	05
72	C37	-0 153500	Ca
73	U20	-0.153500	Ca ha
74	ПД Э С 2 Б	0.157000	na
75	012	-0.332000	Ca
70	C36	0.370200	03
70	п30 СЭ0	0.066700	65 h2
70	л30 012	0.000700	112
/9	015	-0.332900	os
00	C37	0.001000	Ca
01	1121	-0.153500	Ca
0Z	HSI G20	0.157000	Па
01	014	0.077850	Ca
04	014	-0.338400	os a2
80	C40	0.370200	C3 20
00	H3Z	0.069700	112
0 /	OIJ C41	-0.336400	0S
00	041	0.077850	Ca
89	C4Z	-0.153500	ca
90	H33	0.157000	na
91	010	0.081600	Ca
92	016	-0.332900	os
93	C44	0.370200	C3
94	HJ4	0.066/00	n2
95	C45	-0.032300	са
96	C46	-0.190250	ca
97	HJ5	0.164500	ha
98	C47	-0.190250	ca
99	H36	0.164500	ha
100	C48	0.147600	са
101	017	-0.262450	OS

102	C49	-0.196000	са
103	Н37	0.150000	ha
104	C50	0.147600	са
105	018	-0.262450	OS
106	C51	0.062350	са
107	C52	-0.099000	са
108	C53	-0.119600	ca
109	C54	-0.100500	ca
110	H38	0.166500	ha
111	C55	0 911451	C
112	019	-0 837926	0
113	020	-0 837926	0
114	н39	0 167250	ha
115	C56	-0 114050	c a
116	C57	-0 050800	ca c3
117	U10	0.030800	ba
110	1140 11/1	0.046367	ha
110	ПЧТ 11/2	0.046367	ha
120	П42 С50	0.040307	
120 121	001	0.061600	Ca
121	0ZI QE 0	-0.262700	os
122	059	0.148350	ca
123	060	-0.196500	ca
124	H43	0.151000	ha
125	C61	-0.191000	ca
126	H44	0.163750	ha
127	C62	-0.034800	са
128	C63	-0.191000	са
129	H45	0.163750	ha
130	C64	0.148350	са
131	022	-0.262700	OS
132	C65	0.061600	са
133	C66	-0.100500	са
134	C67	-0.119600	са
135	C68	-0.099000	са
136	H46	0.167250	ha
137	C69	0.911451	С
138	023	-0.837926	0
139	024	-0.837926	0
140	H47	0.166500	ha
141	C70	-0.114050	са
142	C71	-0.050800	с3
143	H48	0.046367	hc
144	H49	0.046367	hc
145	Н50	0.046367	hc
146	C72	0.062350	са
147	025	-0.262450	OS
148	C73	0.147600	са
149	C74	-0.196000	са
150	H51	0.150000	ha
151	C75	-0.190250	са
152	Н52	0.164500	ha
153	C76	-0.032300	са
154	C77	-0.190250	са
155	Н5З	0.164500	ha

156	C78	0.147600	са
157	026	-0.262450	OS
158	C79	0.062350	са
159	C80	-0.099000	са
160	C81	-0.119600	са
161	C82	-0.100500	са
162	Н54	0.166500	ha
163	C83	0.911451	С
164	027	-0.837926	0
165	028	-0.837926	0
166	H55	0.167250	ha
167	C84	-0.114050	са
168	C85	-0.050800	с3
169	H56	0.046367	hc
170	Н57	0.046367	hc
171	H58	0.046367	hc
172	C86	0.061600	са
173	029	-0.262700	OS
174	C87	0.148350	са
175	C88	-0.196500	ca
176	H59	0.151000	ha
1//	C89	-0.191000	ca
178	H60	0.163/50	ha
1/9	C90	-0.034800	са
101	C91	-0.191000	ca
101	HOL	0.163/50	na
102	020	0.148350	са
104	030	-0.262700	os
105	C93	0.061600	Ca
106	094	-0.100500	Ca
100	П02 С05	0.100500	na
10/ 188	C95 C96	-0.050800	Ca c3
180	ц63 Ц63	0.030800	bc
100	поз чел	0.046367	hc
1 0 1	1104 1165	0.046367	hc
192	C97	0.040307	Ca
193	C98	-0.099000	ca
194	н66	0 167250	ha
195	C99	-0.119600	ca
196	0C10	0.911451	Cu C
197	031	-0.837926	0
198	032	-0.837926	0
			-

References

- M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess and E. Lindahl, SoftwareX, 2015, 1-2, 19-25.
- H. W. Horn, W. C. Swope, J. W. Pitera, J. D. Madura, T. J. Dick, G. L. Hura and T. Head-Gordon, *J. Chem. Phys.*, 2004, **120**, 9665-9678.
- J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman and D. A. Case, *J. Comput. Chem.*, 2004, 25, 1157-1174.
- 4. A. W. Sousa da Silva and W. F. Vranken, *BMC Research Notes*, 2012, 5, 367.
- 5. A. Jakalian, D. B. Jack and C. I. Bayly, J. Comput. Chem., 2002, 23, 1623-1641.
- 6. J. Ewell, B. C. Gibb and S. W. Rick, J. Phys. Chem. B, 2008, 112, 10272-10279.
- S. W. I. Siu, K. Pluhackova and R. A. Bockmann, J. Chem. Theory Comput., 2012, 8, 1459-1470.
- M. P. Allen and D. J. Tildesley, *Computer simulation of liquids*, Oxford University Press, Oxford, UK, 1987.
- 9. T. Darden, D. York and L. Pedersen, J. Chem. Phys., 1993, 98, 10089-10092.
- S. Nosé, J. Chem. Phys., 1984, 81, 511-519; W. G. Hoover, Phys. Rev. A, 1985, 31, 1695-1697.
- 11. M. Parrinello and A. Rahman, J. Appl. Phys., 1981, 52, 7182-7190.
- B. Hess, H. Bekker, H. J. C. Berendsen and J. Fraaije, *J. Comput. Chem.*, 1997, 18, 1463-1472.
- 13. S. Miyamoto and P. A. Kollman, J. Comput. Chem., 1992, 13, 952-962.
- 14. M. R. Shirts and J. D. Chodera, J. Chem. Phys., 2008, **129**, 10.