Electronic Supplementary Information to an article:

Dynamic Charge Acceptance And Hydrogen Evolution Of New MXene Additive In Advanced Lead-Acid Batteries Via A Rapid Screening Three-Electrode Method

Shuai Kang,^{ab} Mingwei Shang,^a Matthew A Spence,^c Michael Andrew,^c Shuangyi Liu,^b Junjie Niu*^a

^aDepartment of Materials Science and Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA

^bChongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China ^cJohnson Controls, Inc. Milwaukee, WI 53209, USA

* Corresponding author. Email address: <u>niu@uwm.edu</u> (J. Niu)

Experimental

1. MXene preparation

The 1.0 g Ti₃AlC₂ MAX powder (< 74 μ m particle size, Forsman Scientific Co., Ltd.) was immersed in aqueous 50 mL 10% HF solution (ACS, Sigma-Aldrich) and stirred under a magnetic stirring hot plate for 150 h at room temperature. The Ti₃C₂ MXene sample was finally collected after thoroughly washing with deionized water and dry in vacuum oven at 40 °C.

2. Structure characterizations

Low-magnification morphology of the electrode materials was collected on a Hitachi S4800 ultra-high resolution field emission scanning electron microscopy (FESEM) equipped with energy-dispersive X-ray spectroscopy (EDX). Transmission electron microscopy (TEM) images were captured at 300 kV on a Hitachi H-9000NAR electron transmission microscope with an attached Noran energy dispersive spectrometer and a Gatan multi scan CCD camera controlled by an Emispec Vision 2 data acquisition system.

3. Electrochemical measurements

The electrochemical measurement was conducted on a Potentiostat/Galvanostat/ZRA (Reference 600+, Gamry Instruments) using a thermostat-controlled standard three-electrode cell with Ag/AgCl electrode as reference and a graphite rod as counter electrode. The porous graphite plate (PGP, Sur-Seal Inc.) was pealed to remove the inside metal net and then was used as working electrode. In typical experiments, lead slurry was prepared with a mixture of lead powder (~70% PbO), Vanisperse

A (0.3 wt%), BaSO₄ (0.75 wt%), MXene or monolayer graphene (Acros Organics) and/or CB (Johnson Controls, Inc.), and H₂SO₄ (1.28 g/mL, ACS, Sigma-Aldrich). The received slurry was then coated on the PGP electrode and dried at room temperature. The loading of electrode materials is \sim 2 g/cm². The H₂SO₄ solution was used as electrolyte during the measurement. The CV curve was tested from -0.8 to 0 V with a scanning rate of 0.3 mV/s at room temperature.