Supporting Information

Palladium-Catalyzed Silaborative Carbocyclizations of 1,6-Diynes

Qian Zhang, ${ }^{\dagger}$ Qiu-Ju Liang, ${ }^{\dagger}$ Jian-Lin Xu, ${ }^{\dagger}$ Yun-He Xu* ${ }^{*} \dagger$ and Teck-Peng Loh ${ }^{\dagger}{ }^{\dagger,}, \delta$
${ }^{\dagger}$ Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
${ }^{\ddagger}$ Institute of Advanced Synthesis, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, Jiangsu, 210009, P. R. China
${ }^{\S}$ Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637616

I. General Information 2
II. Experimental Procedures 2
2.1 Typical Procedures for Synthesis of Starting Materials 2
2.2 General Method for the Cyclization Reactions 3
2.3 Typical Procedures for Derivation 4
III. Characterization Data and Spectrum of Starting Materials and Products 5
IV. Stereochemistry Analysis of Products $\mathbf{3 g}$ and 5 g 67
V. References 71

I. General Information:

Experiments involving moisture and/or air sensitive components were performed in oven-dried glassware under a positive pressure of argon using dry solvents. Reagents were commercially purchased and were used as received without further purification for the reactions. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) and carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectroscopy were performed on a Bruker Advance 400 M NMR spectrometers. Chemical shifts ${ }^{1} \mathrm{H}$ NMR spectra are reported as δ in units of parts per million (ppm) downfield from $\mathrm{SiMe}_{4}(0.0)$ and relative to the signal of chloroform- $d(J$ $=7.264$, singlet). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublet of doublets); dt (doublet of triplets); m (multiplets) and etc. The number of protons (n) for a given resonance is indicated by nH . Coupling constants are reported as a J value in Hz . Carbon nuclear magnetic resonance spectra (${ }^{13} \mathrm{C}$ NMR) are reported as δ in units of parts per million (ppm) relative to the signal of chloroform-d ($J=77.16$, triplet). High resolution mass spectral analysis (HRMS) was performed on Water XEVO G2 Q-TOF (Waters Corporation). Flash chromatography was performed using 200-300 mesh silica gel with the indicated solvent system. Preparative high performance liquid chromatography (Preparative HPLC) was performed on Shimadzu LC-20AP.

II. Experimental Procedures:

2.1.1 Procedures for Synthesis of N-protected oxindoles.

N-Benzylindoline-2,3-dione (S2): Isatin (S1) (1.0 equiv.) was dissolved in N, N-dimethylformamide, and the resultant solution was cooled to $0^{\circ} \mathrm{C}$. Sodium hydride (60% dispersion in mineral oil, 1.2 equiv.) was added in resulting in a purple suspension. After 15 min at $0^{\circ} \mathrm{C}$, benzyl bromide (1.2 equiv.) was added dropwise, and the brown solution was maintained at $0{ }^{\circ} \mathrm{C}$ for 15 min . Ice-cooled water was added to the mixture, and a precipitate formed. The precipitate was filtered, washed with water and PE. The resulting solid was recrystallized from hot ethanol, filtered under reduced pressure to afford isatin S2 (94\%) as red-needlelike crystals.
N-Benzylindoline-2-one (S3): A suspension of N-protected isatin $\mathbf{S 2}$ (1.0 equiv.) and hydrazine hydrate (30.0 equiv.) was heated to $130{ }^{\circ} \mathrm{C}$ for 6 h . The solution was then cooled to r.t. and 1 M HCl was added until the $\mathrm{PH}<7$ resulting in a yellow suspension. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with saturated aqueous NaHCO_{3}, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to obtain the product $\mathbf{S 3}(90 \%)$ as yellow oil.

2.1.2 Procedures for synthesis of 1,6-heptadiyne.

Method A: 3-Bromoprop-1-yne (2.5 equiv.) was added dropwise in a mixture of N-protected 2-oxindole $\mathbf{S 3}$ (1.0 equiv.), potassium carbonate (6.0 equiv.) or sodium hydride (60% dispersion in mineral oil, 3.0 equiv.) in dry acetonitrile, and the solution was heated at $70{ }^{\circ} \mathrm{C}$ for 6 h . After cooling to room temperature the solid material was filtered off and the filtrate was evaporated under reduced pressure. Then purification of the crude product on a silica gel column chromatography using PE/EtOAc (10:1) to get the desired 1,6-heptadiyne derivatives.

Method B: 3-Bromoprop-1-yne (3.0 equiv.) was added dropwise in a mixture of $\mathbf{S 4}$ (1.0 equiv.), sodium hydride (60% dispersion in mineral oil, 4.0 equiv.) or cesium carbonate (4.0 equiv.) in dry tetrahydrofuran. After stirring for 9 h at room temperature, the solid material was filtered off and the filtrate was evaporated under reduced pressure. Then purification of the crude product on a silica gel column chromatography using $\mathrm{PE} / \mathrm{EtOAc}$ to get the desired 1,6-heptadiyne derivatives.

All substrates were prepared according to the previously reported procedure ${ }^{1-9}$.

2.2 General Method for the Silaborative Cyclization Reactions.

Procedure A: 1,6-diynes $\mathbf{1}(0.2 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.005 \mathrm{mmol}, 4.6 \mathrm{mg})$ and 1 mL THF were added into an oven dried 15 mL tube equipped with a stirring bar under argon atmosphere. Then $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ $(0.24 \mathrm{mmol}, 62.9 \mathrm{mg})$ were added to the tube. The solution was stirred at $50{ }^{\circ} \mathrm{C}$ for 6 hours. After cooling to the room temperature, the reaction mixture was diluted with water, DCM, and further extracted with DCM (two times). Then the combined aqueous layer was washed with brine, dried over anhydrous MgSO_{4}, filtered, concentrated in vacuo. The residue was purified by Preparative HPLC to get product 3.

2.3 Typical Procedures for Derivation.

2.3.1 Typical Procedures for Oxidation ${ }^{10-11}$.

Procedure B

Procedure B: The alkenyl boronate ester $\mathbf{3}$ was prepared according to the above procedure A from $\mathbf{1}$ without further working up. The mixture was dissolved in THF (1.0 mL) and cooled to $0^{\circ} \mathrm{C}$. Then, aqueous $0.5 \mathrm{M} \mathrm{NaOH}(0.1 \mathrm{~mL})$ was added, followed by 30% aq. $\mathrm{H}_{2} \mathrm{O}_{2}(0.8 \mathrm{~mL})$ was added dropwise via syringe at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was allowed to stir at room temperature for 3 hours. Then saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was added dropwise. The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with DCM. The combined organic layer was dried over MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography on silica gel with PE/EtOAc (8:2) as the eluent to afford product 4.

2.3.2 Typical Procedures for Protonation ${ }^{12}$.

Procedure C

Procedure C: The alkenyl boronate ester $\mathbf{3}$ was prepared according to the above procedure A from $\mathbf{1}$ without further working up. A solution of $\mathbf{3}(0.20 \mathrm{mmol})$ and $\mathrm{TsOH}(68.9 \mathrm{mg}, 0.40 \mathrm{mmol})$ in $\mathrm{MeOH}(1$ mL) was stirred at room temperature for 3 h . The reaction mixture was diluted with water and DCM, and was further extracted with DCM (two times). After washed with brine, saturated aqueous NaHCO_{3}, and dried with MgSO_{4}, filtered, the combined organic layers were concentrated in vacuo. Purification by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EtOAc} / \mathrm{CH}_{3} \mathrm{CN}(100: 6: 6)$ as the eluent to get product 5.

2.3.3 General Procedure for Suzuki-Miyaura cross coupling reaction ${ }^{13}$.

Procedure D: The alkenyl boronate ester $\mathbf{5 g}$ was prepared according to the above procedure C from 3 g . The starting material $\mathbf{5 g}(67.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ was added in a dried tube under argon atmosphere. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(23.2 \mathrm{mg}, 0.02 \mathrm{mmol})$, toluene $1.5 \mathrm{~mL}, \mathrm{EtOH} 0.5 \mathrm{~mL}$ and aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(0.8 \mathrm{M}, 0.5 \mathrm{~mL}, 0.4$ mmol) were then added successively. At last 1-Iodo-4-nitrobenzene ($99.6 \mathrm{mg}, 0.4 \mathrm{mmol}$) was added into the tube. The reaction was allowed to stir at $80{ }^{\circ} \mathrm{C}$. After stirring for 12 hours, the reaction was quenched with water and the aqueous layer was extracted with DCM (two times). The organic layers were combined, dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was subjected to by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EtOAc} / \mathrm{CH}_{3} \mathrm{CN}(100: 6: 6)$ to afford the product $\mathbf{6 g}$ as a yellow oil.

III. Characterization Data and Spectrum of Starting Materials and Products.

According to the method A to get the product $\mathbf{1 a}(1.22 \mathrm{~g}, 27 \%)$ as white solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.87$, 2.62 (ABd, $J=16.8,2.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.90(\mathrm{t}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.96,142.95,130.55,128.82,123.96,122.55$, $108.29,78.94,71.10,49.22,34.94,25.98,12.76$; HRMS (ESI) m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 238.1232, found: 238.1235.

According to above method A to get the product $\mathbf{1 e}(0.66 \mathrm{~g}, 20 \%)$ as yellow solid. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 5 \mathrm{H})$, $7.18(\mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H}), 2.92,2.68$ $(\mathrm{ABd}, J=16.8,2.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.93(\mathrm{t}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 177.07,141.58,135.26,131.91,128.82,128.27,127.93,127.57$, 124.47, 110.21, 100.16, 78.60, 71.74, 49.87, 44.21, 26.13; HRMS (ESI) m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NOCl}[\mathrm{M}+\mathrm{H}]^{+}: 334.0999$, found: 334.0998.

According to above method A to get the product $1 \mathbf{f}(0.50 \mathrm{~g}, 21 \%)$ as yellow solid. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.64(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 6 \mathrm{H})$, $6.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H}), 2.93,2.68(\mathrm{ABd}, J=16.4,2.8 \mathrm{~Hz}, 4 \mathrm{H})$, $1.93(\mathrm{t}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.96,142.06,135.21$, 132.26, 131.72, 128.82, 127.94, 127.57, 127.18, 115.60, 110.73, 78.57, 71.77, 49.86, 44.17, 26.13; HRMS (ESI) m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NOBr}[\mathrm{M}+\mathrm{H}]^{+}$: 378.0494, found: 378.0497 .

According to above method A to get the product $\mathbf{1 j}(1.17 \mathrm{~g}, 52 \%)$ as yellow solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 7.48-7.32(\mathrm{~m}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 2 \mathrm{H}), 2.61,2.52$ (ABd, $J=16.4,2.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.89(\mathrm{t}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 206.29(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 162.48(\mathrm{~d}, J=249.3 \mathrm{~Hz}), 148.65(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 137.52(\mathrm{~d}, J=7.3$ $\mathrm{Hz}), 127.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 123.23(\mathrm{~d}, J=23.8 \mathrm{~Hz}), 110.17(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 79.67,71.01,52.02,36.69$, 26.19; HRMS (ESI) m/z calculated for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{OF}[\mathrm{M}+\mathrm{H}]^{+}: 227.0872$, found: 227.0869; ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR (376 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-114.08 \mathrm{~Hz}(\mathrm{~s}, 1 \mathrm{~F})$.
$\stackrel{\infty}{\stackrel{\sim}{4}}$

[^0]

1h

According to above method A to get the product $\mathbf{1 h}(1.02 \mathrm{~g}, 42 \%)$ as pale yellow solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.37$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 2 \mathrm{H}), 2.61,2.51(\mathrm{ABd}, J=16.8,2.8 \mathrm{~Hz}, 4 \mathrm{H})$, $1.89(\mathrm{t}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205.73,154.67$, $142.04,134.30,128.60,126.78,125.59,79.62,71.08,51.30,36.90,26.18$; HRMS (ESI) m/z calculated for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{OCl}[\mathrm{M}+\mathrm{H}]^{+}: 243.0577$, found: 243.0578.

According to above method A to get the product $\mathbf{1 i}(1.27 \mathrm{~g}, 44 \%)$ as pale yellow solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 7.69-7.54(\mathrm{~m}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 2 \mathrm{H}), 2.62$, 2.53 (ABd, $J=16.4,2.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.90(\mathrm{t}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl} 3): \delta 206.00,154.81,134.71,131.46,130.99,129.90,125.69$,
79.62, 71.11, 51.26, 36.86, 26.19; HRMS (ESI) m/z calculated for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrO}[\mathrm{M}+\mathrm{H}]^{+}: 287.0072$, found: 287.0073 .

According to above method A to get the product $\mathbf{1 k}(1.38 \mathrm{~g}, 62 \%)$ as yellow solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{~s}$, $2 \mathrm{H}), 2.61,2.50(\mathrm{ABd}, J=16.8,2.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{t}, J=2.8$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 207.16,150.55,137.69,136.82,135.92,126.26,124.42$, 80.05, 70.77, 51.33, 36.88, 26.17, 21.23; HRMS (ESI) m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 223.1123$, found: 223.1125 .

According to above method A to get the product $11(1.67 \mathrm{~g}, 70 \%)$ as yellow solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.19(\mathrm{~m}$, $2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~s}, 2 \mathrm{H}), 2.61,2.51$ (ABd, $J=16.8,2.8 \mathrm{~Hz}, 4 \mathrm{H})$, $1.89(\mathrm{t}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 207.07,159.63$, $146.06,136.87,127.28,125.02,105.43,79.96,70.79,55.69,51.82,36.59,26.20$; HRMS (ESI) m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 239.1072$, found: 239.1071.

According to above method A to get the product $1 \mathbf{m}(0.58 \mathrm{~g}, 44 \%)$ as yellow solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.19(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H})$, $3.92(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}, 2 \mathrm{H}), 2.61,2.50(\mathrm{ABd}, J=16.8,2.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.88(\mathrm{t}$, $J=2.8 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205.54,156.22,149.75$, $148.64,128.47,107.38,104.76,80.18,70.65,56.39,56.20,51.34,36.95,26.26$; HRMS (ESI) m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 269.1178$, found: 269.1178 .

-205.539
-156.222
$\mathcal{1 4 9 . 7 5 4}$
148.638
-128.472

[^1]

10

According to above method A to get the product $10(0.67 \mathrm{~g}, 47 \%)$ as yellow solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.01(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=8.0$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.68,2.56$ (ABd, $J=16.4,2.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.38(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{t}, J=2.4 \mathrm{~Hz}$, 2H); ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3): $\delta 197.49,141.31,133.72,133.29,132.52,130.51,128.04,79.70$, $71.79,47.34,30.12,24.72,24.62$; HRMS (ESI) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{OCl}[\mathrm{M}+\mathrm{H}]^{+}: 257.0733$, found: 257.0735 .

According to above procedure A to get the product 3a ($89.9 \mathrm{mg}, 90 \%$) as yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.35(\mathrm{~m}$, $3 \mathrm{H}), 7.19(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.79(\mathrm{~m}$, $2 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{~d}, J=$ $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 12 \mathrm{H}), 0.46(\mathrm{~s}, 3 \mathrm{H}), 0.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.91,160.02$, $154.68,141.69,140.44,137.01,133.98,128.78,127.83,127.66,127.32,122.81,122.39,107.97,83.25$, 48.94, 47.97, 47.29, 34.95, 24.94, 24.74, 12.89, -0.79, -0.90; HRMS (ESI) m/z calculated for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{BNO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 500.2792$, found: 500.2807; ${ }^{11} \mathbf{B}$ NMR (128.4 MHz, CDCl_{3}): $\delta 29.48(\mathrm{~s})$.

15 / 71

According to above procedure A to get the product $\mathbf{3 b}$ ($92.3 \mathrm{mg}, 92 \%$) as yellow solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.19(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.58$ (m, 2H), 7.36-7.36 (m, 3H), $7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J$ $=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}) 2.64-2.56(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 12 \mathrm{H}), 0.47(\mathrm{~s}, 3 \mathrm{H})$, $0.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 181.71,171.05,159.00,153.49,140.22,138.73,135.63$, 133.97, 128.88, 128.17, 128.02, 127.87, 125.52, 122.33, 116.33, 83.37, 50.38, 48.75, 48.44, 26.79, 24.92, 24.80, -0.85, -0.98; HRMS (ESI) m/z calculated for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{BNO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 514.2585$, found: 514.2590; ${ }^{11}$ B NMR ($128.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 29.31$ (s).

According to above procedure A to get the product 3c (103.3 mg, 92\%) as pale yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.35(\mathrm{~m}$, 3H), $7.29-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.66(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 3.17$ $(\mathrm{d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.21(\mathrm{~s}, 12 \mathrm{H}), 0.48(\mathrm{~s}, 3 \mathrm{H}), 0.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 180.52,159.86,154.50$, $141.65,140.40,136.71,136.06,133.98,128.88,128.79,127.84,127.67,127.64,127.48,127.30,122.70$, 122.66, 108.87, 83.26, 49.07, 48.04, 47.39, 43.97, 24.95, 24.74, -0.80, -0.90; HRMS (ESI) m/z calculated for $\mathrm{C}_{35} \mathrm{H}_{41} \mathrm{BNO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 562.2944$, found: 562.2947; ${ }^{11} \mathbf{B} \mathbf{N M R}\left(128.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): δ 29.33 (s).

According to above procedure A to get the product $\mathbf{3 d}$ ($104.2 \mathrm{mg}, 90 \%$) as pale yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.29(\mathrm{~m}$, $5 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.89(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{t}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.57(\mathrm{dd}, J=8.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 4.91$, $4.87(\mathrm{AB}, J=16.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J=15.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 12 \mathrm{H}), 0.47(\mathrm{~s}, 3 \mathrm{H}), 0.45(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 180.13,159.41,159.33(\mathrm{~d}, J=241.9 \mathrm{~Hz}), 153.86,140.13,138.14(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}), 137.50(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 135.76,133.91,128.95,128.86,128.00,127.89,127.79,127.25$, $113.81(\mathrm{~d}, J=23.5 \mathrm{~Hz}), 110.91(\mathrm{~d}, J=25.1 \mathrm{~Hz}), 109.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 83.34,48.54(\mathrm{~d}, J=1.6 \mathrm{~Hz})$, 48.45, 47.71, 44.11, 24.81, -0.72, -0.87; HRMS (ESI) m / z calculated for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{BFNO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 580.2855, found: 580.2851; ${ }^{\mathbf{1 1} \mathbf{B}} \mathbf{\text { NMR }}\left(128.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 27.92(\mathrm{~s}) ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta-120.06 \mathrm{~Hz}(\mathrm{~s}, 1 \mathrm{~F})$.

18 / 71

According to above procedure A to get the product $\mathbf{3 e}(111.9 \mathrm{mg}, 94 \%)$ as pale yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.29(\mathrm{~m}$, $5 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=8.3,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 4.90,4.88$ $(\mathrm{AB}, J=16.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=15.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.62(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 12 \mathrm{H}), 0.46(\mathrm{~s}, 3 \mathrm{H}), 0.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 179.98,159.28,153.86,140.21,140.15,138.27,135.61,133.96,128.99$, $128.84,128.16,128.00,127.92,127.86,127.64,127.24,123.21,109.88,83.36,48.40,48.36,47.79$, 44.09, 24.83, -0.61, -0.74; HRMS (ESI) m/z calculated for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{BClNO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 596.2559$, found: $596.2558 ;{ }^{11} \mathbf{B}$ NMR (128.4 MHz, CDCl $_{3}$): $\delta 30.01$ (s).

19 / 71

According to above procedure A to get the product $\mathbf{3 f}(115.0 \mathrm{mg}, 90 \%)$ as pale yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.27(\mathrm{~m}$, $7 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 3 \mathrm{H}), 6.54(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 5.39(\mathrm{~s}$, $1 \mathrm{H}), 4.92,4.90(\mathrm{AB}, J=16.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.12$ $(\mathrm{d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=15.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.19(\mathrm{~s}, 12 \mathrm{H}), 0.46(\mathrm{~s}, 3 \mathrm{H}), 0.44(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.89,159.25,153.87$, $140.73,140.16,138.69,135.58,133.99,130.59,129.00,128.85,127.98,127.93,127.88,127.24,125.92$, $115.53,110.43,83.37,48.40,48.30,47.84,44.08,24.85,-0.55,-0.68$; HRMS (ESI) m/z calculated for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{BBrNO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 640.2054$, found: 640.2060 , ${ }^{11} \mathbf{B} \mathbf{N M R}\left(128.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 28.79(\mathrm{~s})$.

According to above procedure A to get the product $\mathbf{3 g}(84.8 \mathrm{mg}, 90 \%)$ as pale yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.56$ (m, 3H), $7.41-7.34(\mathrm{~m}, 5 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 2 \mathrm{H})$, $2.98(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~d}, J=14.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 12 \mathrm{H}), 0.41(\mathrm{~s}, 3 \mathrm{H}), 0.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 209.36,160.90,155.60,152.54,140.77,136.27,135.01,133.95,128.69,127.75,127.64$, 126.60, 126.58, 124.32, 83.19, 51.77, 49.97, 48.24, 44.01, 24.89, 24.75, -0.55, -0.80; HRMS (ESI) m/z calculated for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{BO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 471.2527$, found: $471.2529 ;{ }^{11} \mathbf{B} \mathbf{N M R}\left(128.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: δ 28.61 (s).

21 / 71

3h

According to above procedure A to get the product $\mathbf{3 h}(91.8 \mathrm{mg}$, 91\%) as yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-$ $7.55(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 4 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H})$, $5.30(\mathrm{~s}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 2 \mathrm{H}), 2.97(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=$ $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 12 \mathrm{H}), 0.41(\mathrm{~s}, 3 \mathrm{H}), 0.40(\mathrm{~s}$, 3H); ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 207.88,160.49,155.18,153.97,141.55,140.69,134.72,133.94$, $128.75,128.47,127.78,126.93,126.79,125.44,83.24,52.04,49.97,48.14,43.65,24.90,24.76,-0.59$, -0.83 ; HRMS (ESI) m / z calculated for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{BClO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 505.2137$, found: 505.2147; ${ }^{\mathbf{1 1} \mathbf{B}} \mathbf{N M R}$ (128.4 MHz, CDCl_{3}): $\delta 28.26$ (s).

$\begin{array}{ll}\bar{\sim} \\ \stackrel{\rightharpoonup}{n} \\ i & i \\ i\end{array}$

22 / 71

According to above procedure A to get the product $\mathbf{3 i}(54.8 \mathrm{mg}$, 50%) as pale yellow oil.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.62-7.50(\mathrm{~m}, 5 \mathrm{H}), 7.36-7.35$ (m, 3H), 5.72 (s, 1H), $5.30(\mathrm{~s}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 2 \mathrm{H}), 2.97$ (d, J = 15.2 $\mathrm{Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.30(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 12 \mathrm{H}), 0.41(\mathrm{~s}, 3 \mathrm{H}), 0.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 208.11, 160.47, 155.17, 154.12, 140.70, 135.12, 133.95, 131.32, 130.42, 129.89, 128.76, 127.80, 126.96, $125.55,83.25,51.98,49.98,48.11,43.61,24.92,24.77,-0.59,-0.83$; HRMS (ESI) m/z calculated for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{BBrO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]+: 549.1632$, found: 549.1645; ${ }^{11} \mathbf{B} \mathbf{N M R}\left(128.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 29.67(\mathrm{~s})$.

$\underbrace{\text { b. }}$
$\stackrel{\star}{\stackrel{+}{7}}$

According to above procedure A to get the product $\mathbf{3 j}$ (86.9 mg , 89\%) as pale yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.56-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.30$ $(\mathrm{m}, 6 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 2 \mathrm{H}), 2.98(\mathrm{~d}, J=15.6$
$\mathrm{Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 12 \mathrm{H})$, $0.41(\mathrm{~s}, 3 \mathrm{H}), 0.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 208.47(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 162.55(\mathrm{~d}, J=249.1$ $\mathrm{Hz}), 160.56,155.24,147.89,140.72,137.99(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 133.95,128.74,127.94(\mathrm{~d}, J=7.9 \mathrm{~Hz})$, $127.78,126.87,122.65(\mathrm{~d}, J=23.7 \mathrm{~Hz}), 110.13(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 83.24,52.81,49.95,48.20,43.41$, 24.90, 24.76, -0.59, -0.81; HRMS (ESI) m/z calculated for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{FBO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]+: 489.2433$, found: 489.2443; ${ }^{11} \mathbf{B}$ NMR ($128.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 29.65(\mathrm{~s}) ;{ }^{19} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-114.32 \mathrm{~Hz}(\mathrm{~s}$, 1F).

According to above procedure A to get the product $\mathbf{3 k}(93.0 \mathrm{mg}$, 96%) as pale yellow oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.57-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.71$ $(\mathrm{s}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 3.03(\mathrm{~s}, 2 \mathrm{H}), 2.97(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$, $2.33(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 12 \mathrm{H}), 0.40(\mathrm{~s}, 3 \mathrm{H}), 0.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 209.43,161.03,155.74,149.87,140.82,137.58,136.44,136.26,133.97,128.69$, $127.76,126.50,126.27,124.26,83.1,52.14,50.04,48.26,43.70,24.91,24.75,21.22,-0.53,-0.80$; HRMS (ESI) m/z calculated for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{BO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 485.2683, found: 485.2686; ${ }^{\mathbf{1 1} \mathbf{B}} \mathbf{\text { NMR (128.4 }}$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 29.12$ (s).

25 / 71

According to above procedure A to get the product $\mathbf{3 1}(87.0 \mathrm{mg}$, 87%) as pale yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.35-$ $7.34(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.18(\mathrm{~m}, 2 \mathrm{H})$, $5.72(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.01-2.95(\mathrm{~m}, 4 \mathrm{H})$, $2.35(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 12 \mathrm{H}), 0.41(\mathrm{~s}, 3 \mathrm{H}), 0.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 209.36,160.94,159.65,155.68,145.35,140.80,137.38,133.96,128.70,127.76$, $127.29,126.56,124.40,105.49,83.19,55.74,52.64,50.08,48.27,43.41,24.91,24.75,-0.53,-0.81$; HRMS (ESI) m/z calculated for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{BO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 501.2632, found: 501.2636; ${ }^{\mathbf{1 1} \mathbf{B}} \mathbf{N M R}$ (128.4 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 29.66(\mathrm{~s}) ;$

	$\underset{\substack{\text { N} \\ i \\ i}}{\substack{2}}$	$\begin{gathered} \infty \\ \underset{\sim}{n} \\ \underset{n}{2} \end{gathered}$	$\underset{\substack{\infty \\ \underset{\sim}{\infty} \\ i}}{ }$		$\begin{gathered} \text { Nin } \\ \underset{\sim}{m} \underset{\sim}{n} \\ \underset{i}{n} \\ \hline 1 \end{gathered}$	

According to above procedure A to get the product $\mathbf{3 m}$ (96.5 $\mathrm{mg}, 91 \%$) as pale yellow solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.36-$ $7.35(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~s}$, $1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.00-2.96(\mathrm{~m}, 4 \mathrm{H}), 2.34(\mathrm{~d}, ~ J$ $=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 12 \mathrm{H}), 0.41(\mathrm{~s}, 3 \mathrm{H}), 0.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}(101$ $\mathrm{MHz}, \mathrm{CDCl} 3): ~ \delta 207.87,161.13,155.92,155.79,149.66,147.77,140.82,133.95,128.87,128.66$, $127.73,126.36,107.49,104.75,83.16,56.35,56.23,52.13,50.10,48.31,43.90,24.90,24.71,-0.52$, -0.79 ; HRMS (ESI) m/z calculated for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{BO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]+: 531.2738$, found: 531.2745; ${ }^{\mathbf{1 1} \mathbf{B}} \mathbf{N M R}$ (128.4 MHz, CDCl_{3}): $\delta 30.36$ (s).

3n

According to above procedure A to get the product $\mathbf{3 n}$ ($79.4 \mathrm{mg}, 82 \%$) as pale yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.04(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.53$ (m, 2H), $7.45(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-$ $2.92(\mathrm{~m}, 3 \mathrm{H}), 2.44(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.17(\mathrm{~s}$, $12 \mathrm{H}), 0.38(\mathrm{~s}, 3 \mathrm{H}), 0.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.26,160.88,155.07,143.49$, $140.83,133.99,133.25,131.70,128.77,128.61,128.30,127.70,126.78,126.24,83.11,47.22,45.98$, $44.61,34.65,25.66,24.88,24.78,-0.57,-0.81$; HRMS (ESI) m/z calculated for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{BO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 485.2683 , found: $485.2690 ;{ }^{11} \mathbf{B}$ NMR $\left(128.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 28.72$ (s).

30

According to above procedure A to get the product $\mathbf{3 0}(86.0 \mathrm{mg}$, 83%) as pale yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.53(\mathrm{~m}, 2 \mathrm{H})$, $7.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-$ $2.87(\mathrm{~m}, 3 \mathrm{H}), 2.43(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.17(\mathrm{~s}$, $12 \mathrm{H}), 0.38(\mathrm{~s}, 3 \mathrm{H}), 0.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.05,160.48,154.62,141.65$, $140.74,133.98,133.15,133.00,132.95,130.36,128.67,127.99,127.72,126.59,83.16,47.14,45.89$, $44.44,34.43,25.16,24.91,24.77,-0.58,-0.87$; HRMS (ESI) m/z calculated for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{BClO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 519.2294 , found: 519.2295 ; ${ }^{11}$ B NMR ($128.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 30.02$ (s).

$\begin{array}{ll}0 & 0 \\ \\ \stackrel{0}{0} \\ \vdots\end{array}$

3p

According to above procedure A to get the product $\mathbf{3 p}$ (91.5 $\mathrm{mg}, 89 \%$) as yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.02(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55$ - $7.54(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.66(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~d}, J$ $=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.91(\mathrm{~m}, 3 \mathrm{H}), 2.41(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{t}, J=$ $6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.17(\mathrm{~s}, 12 \mathrm{H}), 0.38(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.23,163.52,161.09$, $155.34,145.96,140.90,134.00,130.73,128.61,127.70,126.07,125.34,113.40,112.47,83.10,55.53$, 46.93, 46.13, 44.84, 34.71, 26.07, 24.87, 24.80, -0.58, -0.75; HRMS (ESI) m/z calculated for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{BO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 515.2789$, found: 515.2792; ${ }^{11} \mathbf{B}$ NMR (128.4 MHz, CDCl_{3}): $\delta 29.83(\mathrm{~s})$.

According to above procedure A to get the product $\mathbf{3 q}$ ($84.1 \mathrm{mg}, 88 \%$) as pale yellow oil.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.50-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.15(\mathrm{~m}$, $3 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 2.92(\mathrm{~s}, 2 \mathrm{H}), 2.83(\mathrm{~s}, 2 \mathrm{H}), 2.65,2.55$ (AB, $J=14.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.15(\mathrm{~s}, 12 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 0.34$ $(\mathrm{s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.28,158.61,152.78,140.36,134.04,128.68,127.70,127.26$, 83.15, 65.41, 51.46, 44.86, 39.44, 30.76, 29.11, 27.88, 24.82, -0.82; HRMS (ESI) m/z calculated for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{BO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 479.2789$, found: $479.2801 ;{ }^{11} \mathbf{B}$ NMR (128.4 MHz, CDCl_{3}): $\delta 29.13(\mathrm{~s})$.

3r

According to above procedure A to get the product $\mathbf{3 r}(78.2 \mathrm{mg}, 86 \%)$ as pale yellow oil.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.49-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.30(\mathrm{~m}$, $3 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 4 \mathrm{H}), 2.34(\mathrm{~s}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 2 \mathrm{H})$, $1.41(\mathrm{~s}, 6 \mathrm{H}), 1.16(\mathrm{~s}, 12 \mathrm{H}), 0.34(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.98,155.28,140.80,133.83,128.65,127.74,125.91,97.87,83.11,69.32,45.17,43.71,35.82$, 24.81, 23.96, 23.87, -0.74; HRMS (ESI) m/z calculated for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{BO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 455.2789$, found: $455.2794 ;{ }^{11} \mathbf{B}$ NMR (128.4 MHz, CDCl $_{3}$): $\delta 29.65$ (s).

$$		$\stackrel{+}{\infty}$			

3s

According to above procedure A to get the product $\mathbf{3 s}(83.7 \mathrm{mg}, 89 \%)$ as pale yellow solid.
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.30(\mathrm{~m}, 3 \mathrm{H})$, 5.67 (s, 1H), $5.25(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 6 \mathrm{H}), 3.06(\mathrm{~s}, 2 \mathrm{H}), 3.03(\mathrm{~s}, 2 \mathrm{H}), 1.16(\mathrm{~s}$, $12 \mathrm{H}), 0.34(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.06,158.28,153.05,140.46,133.95,128.67$, 127.69, 127.49, 83.21, 54.91, 52.97, 45.58, 43.21, 24.79, -0.96; HRMS (ESI) m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{BO}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 471.2374$, found: 471.2374; ${ }^{11} \mathbf{B}$ NMR (128.4 MHz, CDCl_{3}): $\delta 28.61(\mathrm{~s})$.

$3 \mathbf{t}$

According to above procedure A to get the product $\mathbf{3 t}(79.1 \mathrm{mg}, 87 \%)$ as pale yellow oil.
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~s}$, $1 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 6 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.26(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 12 \mathrm{H}), 0.41(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.18,152.00,141.02,139.91,133.98,129.29,129.01,128.89$, 127.97, 127.83, 125.79, 124.26, 83.44, 52.02, 50.75, 41.69, 24.90, 24.74, -0.78, -0.97; HRMS (ESI) m / z calculated for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{BNO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 456.2530$, found: $456.2534 ;{ }^{11} \mathbf{B} \mathbf{N M R}\left(128.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 29.49$ (s).

$\begin{array}{cc}\infty & \underset{\sim}{\infty} \\ \infty & \underset{\sim}{n} \\ i & i \\ 1 & i\end{array}$

$\begin{array}{ll}\circ & \hat{O} \\ \underset{\sim}{-} & 0 \\ \underset{1}{-} & 1\end{array}$

[^2] $3.03(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 12 \mathrm{H}), 0.37(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $169.28,155.15,150.13,139.70,133.98,130.15,128.92,127.81,120.55,83.48,53.97,47.62,45.44$, 42.22, 24.82, 24.79, -0.92, -1.00; HRMS (ESI) m/z calculated for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{BNO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 438.2272$, found: $438.2278 ;{ }^{11} \mathbf{B}$ NMR ($128.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 29.13$ (s).

$\begin{array}{cc}\underset{\infty}{N} & \text { N } \\ \text { in } \\ 1 & n \\ 1 & 1\end{array}$

3v

According to above procedure A to get the product $\mathbf{3 v}(79.1 \mathrm{mg}, 81 \%)$ as yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 7 \mathrm{H})$, $7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.51(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 12 \mathrm{H}), 0.37(\mathrm{~s}, 3 \mathrm{H}), 0.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.66$, $160.08,154.65,143.26,140.67,133.95,128.61,128.53,127.69,127.15,127.05,126.53,83.15,53.76$, $52.58,48.49,46.61,24.98,24.58,-0.73,-1.07$; HRMS (ESI) m/z calculated for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{BO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 489.2632, found: 489.2639 ; ${ }^{11}$ B NMR ($128.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.78$ (s).

$\begin{array}{ll}\circ & 0 \\ \text { in } & \text { in } \\ 1 & 1\end{array}$

\qquad
36 / 71

According to above procedure A to get the product $\mathbf{3 w}$ ($94.5 \mathrm{mg}, 84 \%$) as yellow oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 3 \mathrm{H})$, $5.67(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 4.16-4.06(\mathrm{~m}, 6 \mathrm{H}), 3.21(\mathrm{dd}, J=16.2,6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.10(\mathrm{dd}, J=14.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-2.92(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{q}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.20(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.15(\mathrm{~s}, 12 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H}), 0.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.29,158.43(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}), 153.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 140.49,133.89,128.66,127.68,127.03,83.17,63.07(\mathrm{~d}, J=3.03 \mathrm{~Hz})$, $63.01(\mathrm{~d}, J=3.03 \mathrm{~Hz}), 61.98,49.29(\mathrm{~d}, J=140.89 \mathrm{~Hz}), 42.52(\mathrm{~d}, J=210.18 \mathrm{~Hz}), 24.96,24.60,16.53(\mathrm{~d}$, $J=5.8 \mathrm{~Hz}$), 14.14, $-0.69,-1.15$; HRMS (ESI) m/z calculated for $\mathrm{C}_{28} \mathrm{H}_{45} \mathrm{BPO}_{7} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 563.2765$, found: 563.2768; ${ }^{11} \mathbf{B}$ NMR (128.4 MHz, CDCl_{3}): $\delta 29.13$ (s).

According to above procedure A to get the product $\mathbf{3 x}(96.2 \mathrm{mg}, 87 \%)$ as yellow solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.29(\mathrm{~m}$, $3 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.26-3.02(\mathrm{~m}, 3 \mathrm{H}), 3.04(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~s}$, $12 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H}), 0.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.56,156.27,151.02,140.06$, $136.59,134.36$, 133.87, 129.99, 128.99, 128.97, 128.77, 127.74, 83.33, 73.70, 53.41, 43.73, 40.50, 25.00, 24.60, -0.88, -1.30; HRMS (ESI) m/z calculated for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{BSO}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 553.2251$, found: $553.2261 ;{ }^{11} \mathbf{B}$ NMR ($128.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 29.13$ (s).

According to above procedure A to get the product $\mathbf{3 y}(96.5 \mathrm{mg}, 85 \%)$ as yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.28(\mathrm{~m}$, $7 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.11$ ($\mathrm{s}, 12 \mathrm{H}$), $0.29(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.09,147.87,143.64,139.43,133.93,133.81$, $129.85,129.09,128.94,127.80,127.76,83.54,56.98,56.21,24.71,21.66,-1.08$; HRMS (ESI) m/z calculated for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{BSNO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 510.2306$, found: 510.2311 ; ${ }^{11} \mathbf{B} \mathbf{N M R}\left(128.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 28.78 (s).
人
$\begin{array}{cc}\underset{i}{7} & \underset{y}{7} \\ i & i \\ i\end{array}$
~~
$\underset{\substack{7 \\ i \\ i}}{\substack{2 \\ ~}}$

$\stackrel{y y}{\circ}$
$\stackrel{9}{\stackrel{0}{6}} \stackrel{-}{-1}$

According to above procedure A to get the product $\mathbf{3 z}(89.7 \mathrm{mg}, 87 \%)$ as yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.37(\mathrm{~m}$, $3 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{~s}$, $1 \mathrm{H}), 3.11-3.09(\mathrm{~m}, 4 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 12 \mathrm{H}), 0.37(\mathrm{~s}, 6 \mathrm{H}), 0.36(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 206.56,168.79,158.43,153.04,140.13,137.59,133.89,129.17,128.81,127.82,127.80$, $124.75,119.93,83.35,62.72,44.06,42.15,26.86,24.88,24.79,-0.89,-0.99$. HRMS (ESI) m/z calculated for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{BNO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 516.2741$, found: $516.2747 ;{ }^{11} \mathbf{B}$ NMR (128.4 MHz, CDCl_{3}): δ 28.63 (s).

$3 a \mathrm{a}$

According to above procedure A to get the product 3aa (78.4 mg, 78\%) as pale yellow solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.28(\mathrm{~m}$, $3 \mathrm{H}), 7.16$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.09$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H})$, $5.26(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.79(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 12 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H}), 0.34(\mathrm{~s}, 3 \mathrm{H}),{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 175.83,160.24,154.81,140.74,140.33,136.69,133.97,129.23,128.61,127.69,127.05$, $126.42,83.16,53.42,52.57,48.58,46.65,24.99,24.60,21.11,-0.72,-1.03$; HRMS (ESI) m / z calculated for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{BO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 503.2789$, found: $503.2800 ;{ }^{11} \mathbf{B} \mathbf{N M R}\left(128.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: δ 30.01 (s).

4c

According to above procedure B to get the product $\mathbf{4 c}(45.6 \mathrm{mg}, 72 \%)$ as pale yellow solid.
${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.07(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.14(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.94,4.89(\mathrm{AB}, J$ $=15.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J$ $=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 187.34,180.59,158.94,141.83,136.28,135.91,135.86,128.95,128.23,127.79,127.29$, $123.20,121.86,109.29,51.55,50.28,43.94,42.78,14.36$; HRMS (ESI) m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 318.1494$, found: 318.1494.

$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & \stackrel{0}{1} \\ & \hline \end{aligned}$			

$4 g$

According to above procedure B to get the product $\mathbf{4 g}(34.1 \mathrm{mg}, 75 \%)$ as yellow oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.01(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 3.24-3.13(\mathrm{~m}, 3 \mathrm{H}), 3.02(\mathrm{~d}, J=15.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.62(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=18.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.17,187.58,159.47,152.41,136.20$, 135.78, 135.26, 127.87, 126.60, 124.54, 53.41, 51.79, 44.82, 43.23, 14.40; HRMS (ESI) m/z calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 227.1072$, found: 227.1068.

$\stackrel{\infty}{\stackrel{\infty}{+}}$
-187.583
-159.467
-152.405

$\left[\begin{array}{l}136.201 \\ 135.784 \\ 135.258 \\ -127.872 \\ 126.602 \\ 124.537\end{array}\right.$

4n

According to above procedure B to get the product $4 n(34.8 \mathrm{mg}, 72 \%)$ as pale yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.96(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J$ $=18.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.99-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{~d}, J=16.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J=18.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 200.19,187.86,160.15,143.37,134.99,133.55,131.10,128.80,128.32$, 126.91, 50.07, 49.34, 38.85, 34.72, 26.01, 14.34; HRMS (ESI) m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 241.1229 , found: 241.1225.

4s

According to above procedure B to get the product $4 \mathrm{~s}(35.2 \mathrm{mg}, 78 \%)$ as pale yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.93(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.24(\mathrm{~s}, 4 \mathrm{H}), 2.15(\mathrm{~s}$, $3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 187.21,171.92,157.62,135.12,56.71$, 53.20, 47.80, 38.73, 13.98; HRMS (ESI) m/z calculated for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 227.0919, found: 227.0918.

According to above procedure C to get the product $5 \mathbf{c}(64.4 \mathrm{mg}, 75 \%)$ as pale yellow oil.
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.13(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H}), 3.32(\mathrm{dd}, J=16.0$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dt}, J=14.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{t}, J=15.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 179.36,157.78,145.51,141.59,136.06,134.95,128.89,127.76,127.69,127.34,122.84$, 122.73, 113.55, 108.95, 83.51, 50.59, 48.78, 46.20, 43.98, 25.05, 25.00. HRMS (ESI) m/z calculated for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{BNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 428.2397$, found: $428.2402 ;{ }^{11} \mathbf{B}$ NMR (128.4 MHz, CDCl_{3}): $\delta 30.37(\mathrm{~s})$.

5g

According to above procedure C to get the product $5 \mathrm{~g}(41.2 \mathrm{mg}, 61 \%)$ as pale yellow oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.77(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H})$, $5.38(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-3.00(\mathrm{~m}, 3 \mathrm{H})$, $2.34(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $208.75,158.58,152.66,146.12,136.45,135.05,127.59,126.75,124.23,112.80,83.44,53.78,50.03$, 46.86, 41.35, 24.99; HRMS (ESI) m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{BO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 337.1975$, found: 337.1978; ${ }^{11} \mathbf{B}$ NMR ($128.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 30.31$ (s).

5s According to above procedure C to get the product $5 \mathrm{~s}(47.0 \mathrm{mg}, 70 \%)$ as pale yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.17(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H})$, $3.72(\mathrm{~s}, 6 \mathrm{H}), 3.12(\mathrm{~s}, 2 \mathrm{H}), 3.08(\mathrm{~s}, 2 \mathrm{H}), 1.28(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz , CDCl_{3}): $\delta 171.76,156.28,143.99,113.46,83.44,57.07,52.97,45.45,42.81,24.97$; HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{BO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 337.1822$, found: $337.1824 ;{ }^{11} \mathbf{B} \mathbf{N M R}\left(128.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 29.83$ (s).
$\stackrel{n}{\omega}$

$\stackrel{\stackrel{\circ}{1}}{\stackrel{1}{1}}$

According to above procedure D to get the product $\mathbf{6 g}(54.3 \mathrm{mg}$, 82%) as yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.18(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H})$, $3.17-3.12(\mathrm{~m}, 3 \mathrm{H}), 3.04(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 208.53,152.50,146.56,145.02,144.47,142.58,136.32,135.30,129.65$, 127.83 , 126.77, 124.40, 123.91, 122.50, 112.33, 53.64, 47.39, 47.14, 41.43; HRMS (ESI) m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 332.1287$, found: 332.1282 .

${ }^{19}$ F NMR spectrum of $\mathbf{1 j}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$.
 $--114.091$

${ }^{11}$ B NMR spectrum of $3 \mathrm{a}\left(128.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{11} B$ NMR spectrum of $\mathbf{3 b}\left(\mathbf{1 2 8 . 4} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

à
$\stackrel{y}{3}$
1

${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{3 c}\left(\mathbf{1 2 8 . 4} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{11} B$ NMR spectrum of $\mathbf{3 d}\left(\mathbf{1 2 8 . 4} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

$\stackrel{\stackrel{3}{2}}{\stackrel{\rightharpoonup}{2}}$
\rightarrow.
\qquad
${ }^{19}$ F NMR spectrum of $3 \mathrm{~d}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{3 e}\left(\mathbf{1 2 8 . 4} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

\qquad
${ }^{11} \mathrm{~B}$ NMR spectrum of $\left.\mathbf{3 f} \mathbf{(1 2 8 . 4} \mathbf{~ M H z}, \mathrm{CDCl}_{\mathbf{3}}\right)$

${ }^{11} \mathbf{B}$ NMR spectrum of $\mathbf{3 g}\left(\mathbf{1 2 8 . 4} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

-

${ }^{11} \mathrm{~B}$ NMR spectrum of $3 \mathrm{~h}\left(\mathbf{1 2 8 . 4} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{3 i}\left(\mathbf{1 2 8 . 4} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

\qquad
${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{3 j}\left(\mathbf{1 2 8 . 4} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

19F NMR spectrum of $\mathbf{3 j} \mathbf{(3 7 6 ~ M H z , ~ C D C l 3)}$

|n

${ }^{11}$ B NMR spectrum of $3 \mathrm{k}\left(\mathbf{1 2 8 . 4} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{11}$ B NMR spectrum of $31\left(128.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{11}$ B NMR spectrum of $\mathbf{3 m}\left(\mathbf{1 2 8 . 4} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

3m

${ }^{11} B$ NMR spectrum of $\mathbf{3 n}\left(\mathbf{1 2 8 . 4} \mathbf{M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{11} B$ NMR spectrum of $\mathbf{3 o}\left(\mathbf{1 2 8 . 4} \mathbf{M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{11}$ B NMR spectrum of $\mathbf{3 p}\left(\mathbf{1 2 8 . 4} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

3p

${ }^{11}$ B NMR spectrum of $\mathbf{3 q}\left(\mathbf{1 2 8 . 4} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{3 r}\left(\mathbf{1 2 8 . 4} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{11}$ B NMR spectrum of $3 \mathrm{~s}\left(\mathbf{1 2 8 . 4} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{11} \mathrm{~B}$ NMR spectrum of $3 \mathrm{t}\left(\mathbf{1 2 8 . 4} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

8
$\stackrel{8}{4}$
\vdots
1

3t

${ }^{11}$ B NMR spectrum of $\mathbf{3 u}\left(\mathbf{1 2 8 . 4} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{3 v}\left(\mathbf{1 2 8 . 4} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

3v

${ }^{11}$ B NMR spectrum of $3 \mathrm{w}\left(128.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\stackrel{\rightharpoonup}{7}}{\stackrel{\rightharpoonup}{7}}$

${ }^{11}$ B NMR spectrum of $\mathbf{3 x}\left(\mathbf{1 2 8 . 4} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\cong}{\dddot{N}}$

${ }^{11}$ B NMR spectrum of $3 y\left(128.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\text { 区. }}{\substack{\infty \\ \underset{\sim}{\omega} \\ 1}}$

${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{3 z}\left(\mathbf{1 2 8 . 4} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{11} \mathrm{~B}$ NMR spectrum of $3 \mathrm{aa}\left(\mathbf{1 2 8 . 4} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

3aa

${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{5 c}\left(\mathbf{1 2 8 . 4} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

.

${ }^{11}$ B NMR spectrum of $\mathbf{5 g}\left(\mathbf{1 2 8 . 4} \mathbf{M H z}, \mathrm{CDCl}_{\mathbf{3}}\right)$

5g

${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{5 s}\left(\mathbf{1 2 8 . 4} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\infty}{\infty}$

5s

IV. Stereochemistry Analysis of Products.

Relative configuration analysis of $(\boldsymbol{Z}, \boldsymbol{Z}) \mathbf{- 3 g}$: The relative configuration of compound $\mathbf{3 g}$ was determined from ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC 2D NMR and 1D-NOE spectroscopy (Figure S1, S2). Firstly, HMBC correlations from H_{f} and H_{a} to C_{f} help to assign the peak of proton H_{a} in 1 H NMR spectrum. Therefore, the correlation from H_{a} and H_{d} based on 1D-NOE experiment can confirm the relative configuration of vinylsilane fragment. Similarly, the correlation from H_{b} and H_{c} based on 1D-NOE experiment also determines the vinylboronate fragment with a Z-configuration (Figure S2).

Figure S1. HMBC spectroscopy of $\mathbf{3 g}$.

(Z,Z) 3g

Figure S2. 1D-NOE spectroscopy of 3g.

Relative configuration analysis of (Z)-5g: From chemical shift values of vinyl protons $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}$ were assigned at $\delta 6.249,5.378,5.205$, respectively. HSQC correlations from H_{a} and H_{b} to $\mathrm{C}_{\mathrm{a}+\mathrm{b}}$ help to verify the peak of proton H_{c} in ${ }^{1} \mathrm{H}$ NMR spectrum (Figure $\mathbf{S 3}$). In consequence, the 1D-NOE correlation from H_{c} and H_{d} observed could determine the vinylboronate fragment of compound $\mathbf{5 g}$ with a \mathbf{Z}-configuration (Figure S4).

Figure S3. HSQC spectroscope of $\mathbf{5 g}$.

(Z)-5g

(E)-5g

Figure S4. 1D-NOE spectrum of $\mathbf{5 g}$.

V. References

1. F. Zhou, C. Tan, J. Tang, Y.-Y. Zhang, W.-M. Gao, H.-H. Wu, Y.-H. Yu and J. Zhou, J. Am. Chem. Soc., 2013, 135, 10994.
2. H. E. Fried and F. G. Bordwel, J. Org. Chem., 1991, 56, 4218.
3. J. M. Ellis, L. E. Overman, H. R. Tanner and J. Wang, J. Org. Chem., 2008, 73, 9151.
4. A.-C. Cantet, H. Carreyre, J.-P. Gesson, M.-P. Jouannetaud and B. Renoux, J. Org. Chem., 2008, 73, 2875.
5. O. I. Artyushin, S. N. Osipov, G.-V. Röschenthaler and I. L. Odinets, Synthesis 2009, 21, 3579.
6. H. Clavier, L. Giordano and A. Tenaglia, Angew. Chem. Int. Ed., 2012, 51, 8648.
7. J.-M. Yang, X.-Y. Tang, Y. Wei and M. Shi, Adv. synth. catal., 2013, 355, 3545.
8. S. Kotha and R. Ali, Tetrahedron, 2015, 71, 1597.
9. A. S. K. Hashmi, T. Häffner, M. Rudolph and F. Rominger, Chem. Eur. J., 2011, 17, 8195.
10. M. Fujinaga, T. Murafuji, K. Kurotobi and Y. Sugihara, Tetrahedron, 2009, 65, 7115.
11. L.T. Kliman, S. N. Mlynarski, G. E. Ferris and J. P. Morken, Angew. Chem. Int. Ed., 2012, 51, 521.
12. R. R. Singidi, A. M. Kutney, J. C. Gallucci and T. V. RajanBabu, J. Am. Chem. Soc., 2010, 132, 13078.
13. S. E. Korkis, D. J. Burns and H. W. Lam, J. Am. Chem. Soc., 2016, 138, 12252.

[^0]:

[^1]: $\begin{array}{llllllllllllll}2_{210} & 10 & 190 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}_{1}(\mathrm{ppm})\end{array}$

[^2]:

