C6' steric bulk of the Cinchona alkaloid enables an enantioselective Michael addition/annulation sequence toward pyranopyrazoles

Xiaoze Bao, Shiqiang Wei, Jingping Qu and Baomin Wang*

State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China

E-mail: bmwang@dlut.edu.cn

Contents:

1. General information	S1
2. Screening of reaction conditions	S1
3. Experimental procedures and characterization of compounds	S2
4. The X-ray structure of 3ad	\$23
5. Mechanism study	\$24
6. Reference	\$31
7. NMR spectra for compounds	S32

1. General information

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. Column chromatography was performed on silica gel (100~200 mesh). Enantiomeric excesses (*ee*) were determined by HPLC using corresponding commercial chiral columns as stated at 30 °C with UV detector at 254 nm. Optical rotations were reported as follows: $[\alpha]^{T}_{D}$ (*c* g/100 mL, solvent). All ¹H NMR and ¹⁹F NMR spectra were recorded on a Bruker Avance II 400 MHz and Bruker Avance III 370 MHz respectively, ¹³C NMR spectra were recorded on a Bruker Avance II 101 MHz or Bruker Avance III 126 MHz with chemical shifts reported as ppm (in CDCl₃, TMS as internal standard). Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad singlet, dd = double doublet, coupling constants in Hz, integration). HRMS (ESI) was obtained with a HRMS/MS instrument (LTQ Orbitrap XL TM). The absolute configuration of **3ad** was assigned by the X-ray analysis.

Cyclic 2-(1-alkynyl)-2-alken-1-ones **1a-j** were prepared according to the literature.^[1] Pyrazolones **2a-l** were prepared from β -keto esters according to the literature.^[2] The catalysts **Q4-10** were prepared from quinine according to the literature.^[3] The racemic products were synthesized using tetramethyl guanidine (TMG) as the catalyst.

2. Screening of reaction conditions

Table S1. Optimization of reaction conditions.

Entry ^[a]	Solvent	Cat.	<i>t</i> (h)	Yield (%) ^[b]	ee [%] ^[c]
1	CHCl ₃	Q1	1	93	61
2	CHCl ₃	Q2	1	93	-54
3	CHCl ₃	Q3	1	95	30
4	CHCl ₃	Q4	24	66	-47
5	CHCl ₃	Q5	24	57	37
6	CHCl ₃	Q13	24	55	17
7	CHCl ₃	Q14	12	90	56
8	CHCl ₃	Q6	1	93	79
9	CHCl ₃	Q7	1	93	78
10	CHCl ₃	Q8	1	90	75
11	CHCl ₃	Q9	3	93	83
12	CHCl ₃	Q10	3	95	86
13	CHCl ₃	Q11	3	95	86
14	CHCl ₃	Q12	3	95	85
15	DCM	Q10	3	95	81
16	DCE	Q10	3	94	81
17	CCl ₄	Q10	3	92	84
18	toluene	Q10	3	89	76

19	EtOAc	Q10	8	78	71	
20	Et_2O	Q10	8	76	74	
21 ^[d]	CHCl ₃	Q10	12	95	91	
22 ^[e]	CHCl ₃	Q10	24	95	92	
23 ^[e]	CHCl ₃	Q11	24	95	91	

[a] Unless otherwise noted, reactions were conducted with **1a** (0.1 mmol), **cat**. (10 mol %), **2a** (0.12 mmol) in solvent (1.0 mL) at rt. [b] Isolated yield. [c] Determined by chiral HPLC analysis. [d] The reaction was performed at -20 °C for 12 h, and then stirred at rt for 3 h. [e] The reaction was performed at -30 °C for 24 h, and then stirred at rt for 3 h.

3. Experimental procedures and characterization of compounds

Synthesis of catalyst Q11

A Schlenk tube equipped with a magnetic stir bar was charged with cupreine (1.0 mmol) under argon. After the addition of anhydrous DCM (5 mL), the resulting mixture was cooed to 0 °C. TBDMSCI (2.0 mmol) and imidazole (2.0 mmol) were added in sequence. The mixture was then warmed to rt, stirred for 1 h. DCM (15 mL) was added to the mixture, then washed with diluted NaHCO₃ solution and brine, dried over Na₂SO₄, concentrated. The crude mixture was purified by column chromatography (EtOAc/MeOH/NH₃.H₂O = 10:1:0.1) on silica gel to give the product **Q11** as white foam (260 mg, yield 60%). mp 67.3-70.1 °C; $[\alpha]_{D}^{25}$ = -52.4 (*c* 0.43, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, *J* = 4.5 Hz, 1H), 7.88 (d, *J* = 9.0 Hz, 1H), 7.43 (d, *J* = 4.5 Hz, 1H), 7.38 (d, *J* = 2.3 Hz, 1H), 7.21 (dd, *J* = 9.0, 2.3 Hz, 1H), 5.81-5.65 (m, 1H), 5.44 (d, *J* = 4.3 Hz, 1H), 4.92 (dd, *J* = 17.9, 13.8 Hz, 2H), 4.58 (brs, 1H), 3.47 (d, *J* = 13.6 Hz, 1H), 3.18-2.95 (m, 2H), 2.73-2.53 (m, 2H), 2.24 (s, 1H), 1.78 (s, 1H), 1.75-1.65 (m, 2H), 1.58-1.37 (m, 2H), 1.01 (s, 9H), 0.26 (s, 3H), 0.24 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.7, 148.0, 147.7, 144.2, 142.0, 131.3, 126.7, 125.0, 118.6, 114.2, 110.5, 72.3, 60.0, 57.1, 43.2, 40.0, 27.9, 27.7, 25.7, 22.0, 18.3, -4.3; HRMS (ESI) m/z Calcd. for C₂₅H₃₇N₂O₂Si ([M+H]⁺) 425.2619, Found; 425.2613.

Synthesis of catalyst Q12

A Schlenk tube equipped with a magnetic stir bar was charged with cupreine (1.0 mmol) under argon. After the addition of anhydrous DMF (5 mL), TBDPSCl (2.0 mmol) and imidazole (2.0 mmol) were added in sequence. The mixture was then stirred at rt overnight. Water (20 mL) was added to the mixture, the mixture was extracted with EtOAc (20 mL × 2). The combined organic layers were washed with diluted NaHCO₃ solution and brine, dried over Na₂SO₄, concentrated. The crude mixture was purified by column chromatography (EtOAc/MeOH/ NH₃.H₂O = 10:1:0.1) on silica gel to give the product **Q12** as white foam (400 mg, yield 73%). mp 68.3-70.5 °C; $[\alpha]_D^{25} = -50.9$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, *J* = 4.4 Hz, 1H), 7.82 (d, *J* = 8.8 Hz, 1H), 7.74 (dd, *J* = 12.2, 7.1 Hz, 4H), 7.42-7.30 (m, 7H), 7.27-7.22 (m, 2H), 5.80-5.59 (m, 1H), 5.06-4.80 (m, 3H), 3.53 (brs, 1H), 2.99-2.83 (m, 3H), 2.48-2.28 (m, 2H), 2.16 (s, 1H), 1.69 (s, 1H), 1.60-1.28 (m, 4H), 1.14 (s, 9H); ¹³C

NMR (101 MHz, CDCl₃) δ 153.7, 147.8, 147.7, 144.2, 142.1, 135.6, 135.5, 132.6, 132.4, 131.3, 130.1, 128.0, 127.9, 127.0, 124.6, 118.7, 114.2, 110.2, 71.6, 60.1, 56.6, 42.6, 40.0, 27.8, 27.7, 26.6, 23.6, 19.5; HRMS (ESI) m/z Calcd. for C₃₅H₄₁N₂O₂Si ([M+H]⁺) 549.2932, Found 549.2912.

General procedure: synthesis of compounds 3aa-3ja, 3ab-3al

A Schlenk tube equipped with a magnetic stir bar was charged with enynone **1** (0.2 mmol) and Q**10** or Q**11** (0.02 mmol), followed with $CHCl_3$ (2 mL). After cooled to -30 °C or -20 °C for 15 min, the pyrazolone **2** (0.24 mmol) was added in one portion. The reaction was detected by TLC. After 24-120 h, the reaction mixture was warmed to rt, then stirred for 1-5 h. The mixture was purified by column chromatography on silica gel directly to give the product **3**.

Gram scale synthesis of the product 3aa

A solution of **1a** (3.0 mmol, 1.0 eq.) and **Q10** (0.3 mmol, 0.1 eq.) in CHCl₃ (30 mL) was cooled to -30 °C. After 15 min, **2a** (3.6 mmol, 1.2 eq.) was added in one portion. The resulting mixture was stirred at -30 °C for 48 h, and then warmed to rt, stirred for 3 h. The solvent was removed under vacuum, then the crude mixture was purified by column chromatography (EtOAc/petroleum ether = 1/8) to give **3aa** as white solid (1.24 g, 96% yield, 92% ee)

Synthesis of (6*S*,9a*R*)-5-benzyl-1,3-diphenyl-3,6,7,8,9,9a-hexahydroisochromeno[3,4-*c*] pyrazol-6-ol (4)

3aa (0.1 mmol) was suspended in a 1:1 mixture of THF and MeOH (2.0 mL). NaBH₄ (0.2 mmol, 2.0 equiv.) was added in one portion at rt. After 10 min, the mixture turned to be clear (TLC detected the starting material was consumed). The solvent was evaporated, and then the crude mixture was purified by silica gel column chromatography (EtOAc/petroleum ether = 1/4) to give **4** as white solid (42 mg, 98% yield, 92% ee). The absolute configuration was determined by 1D NOE (see page S55). mp 101.9-104.1 °C; $[\alpha]_D^{25} = -142.8$ (*c* 0.41, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.7 Hz, 2H), 7.67 (d, *J* = 8.3 Hz, 2H), 7.44-7.28 (m, 9H), 7.23-7.17 (m, 2H), 4.30 (d, *J* = 9.3 Hz, 1H), 4.11 (s, 2H), 3.53 (dd, *J* = 11.7, 2.4 Hz, 1H), 2.12 (s, 1H), 2.08-2.00 (m, 1H), 1.96-1.88 (m, 1H), 1.82-1.73 (m, 1H), 1.68-1.54 (m, 1H), 1.32-1.22 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 147.4, 146.9, 142.2, 139.4, 138.4, 134.0, 129.0, 128.7, 128.6, 128.5, 127.9, 126.7, 126.3, 125.9, 120.7, 115.5, 97.3, 73.0, 38.0, 36.4, 35.9, 35.1, 24.1; HRMS (ESI) m/z Calcd. for C₂₉H₂₇N₂O₂ ([M+H]⁺) 435.2067, Found

435.2061; Enantiomeric excess was determined to be 92% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.5 mL/min, t_{major} = 13.0 min, t_{minor} = 11.5 min).

Synthesis of (6*R*,9a*R*)-5-benzyl-1,3,6-triphenyl-3,6,7,8,9,9a-hexahydroisochromeno[3,4-*c*] pyrazol-6-ol (5)

3aa (0.1 mmol) was dissolved in anhydrous THF (1.0 mL) under argon. 0.5 mL (5.0 eq.) of PhMgBr (1.0 M) was added dropwise to the solution at rt. After 30 min, another 0.5 mL (5.0 eq.) of PhMgBr (1.0 M) was added. The resulting mixture was stirred overnight. Saturated NH₄Cl aq. (5 mL) was added to quench the mixture, and then extracted with EtOAc (10 mL × 2). The combined organic layers were washed with brine, dried over Na₂SO₄, concentrated. The crude mixture was purified by column chromatography (EtOAc/petroleum ether = 1/15) on silica gel to give the product **5** as white foam (41 mg, yield 80%). The absolute configuration was assigned by analogy to **4**. mp 75.3-78.4 °C $[\alpha]_{D}^{25} = -85.0$ (*c* 0.21, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.70-7.55 (m, 6H), 7.43-7.21 (m, 14H), 4.07 (d, *J* = 15.3 Hz, 1H), 3.97 (d, *J* = 15.2 Hz, 1H), 3.79 (dd, *J* = 11.9, 3.7 Hz, 1H), 2.57-2.44 (m, 1H), 2.03 (brs, 2H), 1.98-1.89 (m, 1H), 1.88-1.78 (m, 1H), 1.72-1.44 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.6, 147.0, 146.6, 145.4, 138.6, 138.2, 133.9, 123.0, 129.0, 128.9, 128.4, 127.9, 127.8, 126.9, 126.4,

126.0, 125.8, 120.8, 117.6, 115.3, 97.6, 40.4, 37.5, 33.6, 32.8, 20.3; HRMS (ESI) m/z Calcd. for $C_{35}H_{31}N_2O_2$ ([M+H]⁺) 511.2380, Found 511.2371; Enantiomeric excess was determined to be 92% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.5 mL/min, t_{major} = 12.7 min, t_{minor} = 9.4 min).

Characterization of products 3aa-3al

(S)-5-benzyl-1,3-diphenyl-7,8,9,9a-tetrahydroisochromeno[3,4-c]pyrazol-6(3H)-one (3aa)

Prepared according to the general procedure at -30 °C for 24 h with **Q10** as the catalyst, then stirred at rt for 3 h, as white solid (82 mg, 95% yield) after silica gel chromatography (EtOAc/petroleum ether). mp 159.8-162.2 °C; $[\alpha]_{D}^{22} = -133.6$ (*c* 0.71, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.70-.63 (m, 2H), 7.61-7.55 (m, 2H), 7.46-7.30 (m, 9H), 7.29-7.20 (m, 2H), 4.10 (dd, J = 11.7, 3.8 Hz, 1H), 3.98 (d, J =

14.7 Hz, 1H), 3.92 (d, J = 14.6 Hz, 1H), 2.65 (dt, J = 15.8, 4.7 Hz, 1H), 2.52-2.39 (m, 1H), 2.24-2.14 (m, 1H), 2.01-1.84 (m, 2H), 1.70-1.58 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 202.1, 153.8, 148.1, 145.4, 137.9, 137.0, 133.7, 129.4, 129.0, 128.7, 128.6, 128.2, 127.1, 126.9, 126.5, 121.0, 114.7, 97.7, 42.3, 36.7, 34.9, 32.0, 23.0; HRMS (ESI) m/z Calcd. for C₂₉H₂₅N₂O₂ ([M+H]⁺) 433.1911, Found 433.1909; Enantiomeric excess was determined to be 92% (determined by HPLC using chiral OD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.6 mL/min, t_{major} = 13.0 min, t_{minor} = 11.5 min).

(S)-5-(4-methoxybenzyl)-1,3-diphenyl-7,8,9,9a-tetrahydroisochromeno[3,4-*c*]pyrazol-6(3*H*)-o ne (3ba)

Prepared according to the general procedure at -30 °C for 48 h with **Q10** as the catalyst, then stirred at rt for 3 h, as white solid (90 mg, 98% yield) after silica gel chromatography (EtOAc/petroleum ether). mp 117.3-119.0 °C; $[\alpha]_{D}^{21} = -104.0$ (*c* 0.90, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 7.5 Hz, 2H), 7.62 (d, *J* = 8.3 Hz, 2H), 7.45-7.29 (m, 7H), 7.24 (d, *J* = 9.7 Hz, 1H), 6.87 (d, *J* = 8.5 Hz, 2H), 4.08 (dd, *J* = 11.7, 3.7 Hz, 1H), 3.92 (d, *J* = 14.6 Hz, 1H), 3.83 (d, *J* = 14.7 Hz, 1H), 3.77 (s, 3H), 2.64 (dt, *J* = 15.8, 4.8 Hz, 1H), 2.52-2.37 (m, 1H), 2.23-2.14 (m, 1H), 2.00-1.85 (m,

2H), 1.70-1.57 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 202.1, 158.6, 154.2, 148.1, 145.4, 137.9, 133.7, 130.4, 129.0, 128.6, 128.2, 127.1, 126.5, 121.0, 114.3, 114.0, 97.7, 55.3, 42.3, 35.9, 34.8, 32.0, 23.0; HRMS (ESI) m/z Calcd. for C₃₀H₂₇N₂O₃ ([M+H]⁺) 463.2016, Found 463.2016; Enantiomeric excess was determined to be 92% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.5 mL/min, t_{major} = 23.3 min, t_{minor} = 13.4 min).

(S)-5-(4-methylbenzyl)-1,3-diphenyl-7,8,9,9a-tetrahydroisochromeno[3,4-*c*]pyrazol-6(3*H*)-on e (3ca)

Prepared according to the general procedure at -30 °C for 48 h with **Q10** as the catalyst, then stirred at rt for 3 h, as light yellow solid (83 mg, 93% yield) after silica gel chromatography (EtOAc/petroleum ether). mp 173.9-175.6 °C; $[\alpha]_{D}^{21} = -113.1$ (*c* 0.82, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 7.7 Hz, 2H), 7.61 (d, J = 8.2 Hz, 2H), 7.44-7.31 (m, 5H), 7.30-7.20 (m, 3H), 7.13 (d, J = 7.8 Hz, 2H), 4.08 (dd, J = 11.7, 3.7 Hz, 1H), 3.93 (d, J = 14.6 Hz, 1H), 3.87 (d, J = 14.6 Hz, 1H), 2.64 (dt, J

= 15.8, 4.8 Hz, 1H), 2.52-2.40 (m, 1H), 2.32 (s, 3H), 2.24-2.14 (m, 1H), 2.01-1.83 (m, 2H), 1.71-1.56 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 202.0, 154.1, 148.1, 145.4, 137.9, 136.47, 133.9, 133.7, 129.3, 129.0, 128.7, 128.2, 127.2, 126.4, 121.0, 114.4, 97.7, 42.3, 36.3, 34.9, 32.0, 23.0, 21.2; HRMS (ESI) m/z Calcd. for C₃₀H₂₇N₂O₂ ([M+H]⁺) 447.2067, Found 447.2064; Enantiomeric excess was determined to be 91% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.5 mL/min, *t*_{major} = 15.9 min, *t*_{minor} = 9.7 min).

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	9.491	PB	0.1826	9750.29297	797.48956	49.8650
2	15.931	BB	0.3344	9803.08398	442.58325	50.1350

(S)-5-(3-methylbenzyl)-1,3-diphenyl-7,8,9,9a-tetrahydroisochromeno[3,4-*c*]pyrazol-6(3*H*)-on e (3da)

Prepared according to the general procedure at -30 °C for 24 h with **Q10** as the catalyst, then stirred at rt for 3 h, as light yellow foam (86 mg, 96% yield) after silica gel chromatography (EtOAc/petroleum ether). $[\alpha]_{D}^{21} = -131.0$ (*c* 0.81, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.70-7.64 (m, 2H), 7.63-7.57 (m, 2H), 7.45-7.31 (m, 5H), 7.27-7.16 (m, 4H), 7.07 (d, *J* = 7.0 Hz, 1H), 4.09 (dd, *J* = 11.8, 3.8 Hz, 1H), 3.95 (d, *J* = 14.4 Hz, 1H), 3.86 (d, *J* = 14.6 Hz, 1H), 2.65 (dt, *J* = 16.1, 4.8 Hz, 1H), 2.52-2.41

(m, 1H), 2.34 (s, 3H), 2.24-2.14 (m, 1H), 2.00-1.85 (m, 2H), 1.70-1.58 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 202.1, 153.9, 148.1, 145.4, 138.2, 137.9, 136.9, 133.7, 130.2, 129.0, 128.7, 128.5, 128.2, 127.7, 127.1, 126.5, 126.4, 121.0, 114.5, 97.7, 42.4, 36.6, 34.9, 32.0, 23.1, 21.5; HRMS (ESI) m/z Calcd. for C₃₀H₂₇N₂O₂ ([M+H]⁺) 447.2067, Found 447.2072; Enantiomeric excess was determined to be 92% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.5 mL/min, *t*_{major} = 11.2 min, *t*_{minor} = 9.0 min).

S 8

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.048	BB	0.1685	776.28271	69.41628	4.0939
2	11.162	BB		1.81858e4	1189.76660	95.9061

(S)-5-(4-chlorobenzyl)-1,3-diphenyl-7,8,9,9a-tetrahydroisochromeno[3,4-*c*]pyrazol-6(3*H*)-one (3ea)

Prepared according to the general procedure at -30 °C for 24 h with **Q10** as the catalyst, then stirred at rt for 3 h, as white solid (85 mg, 91% yield) after silica gel chromatography (EtOAc/petroleum ether). mp 153.1-155.6 °C; $[\alpha]_{D}^{22} = -103.0 (c 0.80, CH_2Cl_2)$; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 7.5 Hz, 2H), 7.57 (d, J = 8.2 Hz, 2H), 7.44-7.21 (m, 10H), 4.08 (dd, J = 11.7, 3.7 Hz, 1H), 3.96 (d, J = 14.6 Hz, 1H), 3.82 (d, J = 14.7 Hz, 1H), 2.64 (dt, J = 15.9, 5.0 Hz, 1H), 2.50-2.36 (m, 1H), 2.24-2.14 (m, 1H), 2.00-1.84 (m, 2H), 1.70-1.55 (m, 1H); ¹³C NMR (101 MHz,

CDCl₃) δ 201.9, 153.3, 148.1, 145.2, 137.8, 135.5, 133.6, 132.8, 130.7, 129.1, 128.7, 128.2, 127.1, 126.6, 121.0, 114.9, 97.7, 42.2, 36.2, 34.8, 31.9, 22.9; HRMS (ESI) m/z Calcd. for C₂₉H₂₄ClN₂O₂ ([M+H]⁺) 467.1521, Found 467.1524; Enantiomeric excess was determined to be 94% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.5 mL/min, t_{major} = 14.0 min, t_{minor} = 10.3 min).

(S)-5-(4-fluorobenzyl)-1,3-diphenyl-7,8,9,9a-tetrahydroisochromeno[3,4-*c*]pyrazol-6(3*H*)-one (3fa)

Prepared according to the general procedure at -30 °C for 24 h with **Q10** as the catalyst, then stirred at rt for 3 h, as white solid (81 mg, 90% yield) after silica gel chromatography (EtOAc/petroleum ether).

mp 146.3-149.0 °C; $[\alpha]_{D}^{21} = -111.4$ (*c* 0.80, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 7.8 Hz, 2H), 7.59 (d, *J* = 8.3 Hz, 2H), 7.45-7.31 (m, 7H), 7.25 (t, *J* = 7.4 Hz, 1H), 7.01 (t, *J* = 8.6 Hz, 2H), 4.09 (dd, *J* = 11.8, 3.8 Hz, 1H), 3.97 (d, *J* = 14.6 Hz, 1H), 3.82 (d, *J* = 14.6 Hz, 1H), 2.64 (dt, *J* = 15.9, 4.9 Hz, 1H), 2.53-2.37 (m, 1H), 2.27-2.14 (m, 1H), 2.03-1.82 (m, 2H), 1.71-1.55 (m, 1H); ¹⁹F NMR (370 MHz, CDCl₃) δ -116.03; ¹³C NMR (101 MHz, CDCl₃) δ 202.0, 162.0 (d, *J* = 246.0 Hz), 153.6, 148.1, 145.3, 137.9, 133.6, 132.7 (d, *J* = 3.3 Hz), 130.9 (d, *J* = 8.1 Hz), 129.1, 128.7, 128.2,

127.1, 126.6, 121.0, 115.3 (d, J = 21.4 Hz), 114.7, 97.7, 42.2, 36.0, 34.8, 31.9, 22.9; HRMS (ESI) m/z Calcd. for C₂₉H₂₄FN₂O₂ ([M+H]⁺) 451.1816, Found 451.1817; Enantiomeric excess was determined to be 93% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.5 mL/min, $t_{major} = 12.8$ min, $t_{minor} = 10.0$ min).

Peak #	[min]	туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.016	PB	0.1964	932.86438	70.48771	3.5168
2	12.843	BB	0.2756	2.55935e4	1397.98523	96.4832

(S)-1,3-diphenyl-5-(thiophen-2-ylmethyl)-7,8,9,9a-tetrahydroisochromeno[3,4-c]pyrazol-6(3 *H*)-one (3ga)

Prepared according to the general procedure at -30 °C for 24 h with **Q10** as the catalyst, then stirred at rt for 1 h, as white solid (79 mg, 91% yield) after silica gel chromatography (EtOAc/petroleum ether). mp 166.0-168.3 °C; $[\alpha]_{D}^{22} = -134.6$ (*c* 0.79, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.7 Hz, 2H), 7.66 (d, *J* = 7.2 Hz, 2H), 7.44-7.38 (m, 4H), 7.38-7.31 (m, 1H), 7.26 (t, *J* = 7.4 Hz, 1H), 7.17 (dd, *J* = 5.1, 1.1 Hz, 1H), 7.03 (d, *J* = 2.6 Hz, 1H), 6.95 (dd, *J* = 5.1, 3.5 Hz, 1H), 4.13 (s, 2H), 4.09

(dd, J = 11.8, 3.9 Hz, 1H), 2.64 (dt, J = 15.9, 4.8 Hz, 1H), 2.51-2.39 (m, 1H), 2.24-2.12 (m, 1H), 1.99-1.83 (m, 2H), 1.70-1.56 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 201.9, 153.1, 148.1, 145.3, 138.7, 137.9, 133.6, 129.1, 128.7, 128.2, 127.2, 126.9, 126.7, 126.5, 124.7, 121.1, 114.5, 97.8, 42.1, 34.7, 31.7, 31.2, 22.8; HRMS (ESI) m/z Calcd. for C₂₇H₂₃N₂O₂S ([M+H]⁺) 439.1475, Found 439.1470; Enantiomeric excess was determined to be 92% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.5 mL/min, t_{major} = 13.5 min, t_{minor} = 10.5 min).

(S)-5-(cyclopropylmethyl)-1,3-diphenyl-7,8,9,9a-tetrahydroisochromeno[3,4-*c*]pyrazol-6(3*H*) -one (3ha)

Prepared according to the general procedure at -30 °C for 72 h with **Q10** as the catalyst, then stirred at rt for 5 h, as light yellow solid (71 mg, 89% yield) after silica gel chromatography (EtOAc/petroleum ether). mp 107.4-109.5 °C; $[\alpha]_{D}^{22} = -96.7$ (*c* 0.71, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.88-7.80 (m, 2H), 7.73-7.67 (m, 2H), 7.49-7.40 (m, 4H), 7.39-7.32 (m, 1H), 7.28 (t, *J* = 7.4 Hz, 1H), 4.09 (dd, *J* = 11.7, 3.8 Hz, 1H), 2.69-2.53 (m, 2H), 2.48-2.33 (m, 2H), 2.27-2.14 (m, 1H), 1.99-1.83 (m, 2H),

1.71-1.58 (m, 1H), 1.15-1.01 (m, 1H), 0.57-0.45 (m, 2H), 0.40-0.29 (m, 1H), 0.25-0.16 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 202.2, 155.4, 148.1, 145.6, 138.1, 133.7, 129.1, 128.6, 128.2, 127.1, 126.5, 121.0, 114.0, 97.8, 42.3, 35.3, 34.8, 32.0, 23.1, 9.4, 4.5; HRMS (ESI) m/z Calcd. for C₂₆H₂₅N₂O₂ ([M+H]⁺) 397.1911, Found 397.1909; Enantiomeric excess was determined to be 90% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.5 mL/min, t_{major} = 10.9 min, t_{minor} = 9.4 min).

(S)-5-hexyl-1,3-diphenyl-7,8,9,9a-tetrahydroisochromeno[3,4-c]pyrazol-6(3H)-one (3ia)

Prepared according to the general procedure at -30 °C for 120 h with **Q10** as the catalyst, then stirred at rt for 5 h, as light yellow solid (76 mg, 89% yield) after silica gel chromatography (EtOAc/petroleum ether). mp 73.3-75.2 °C; $[\alpha]_{D}^{22} = -77.3$ (*c* 0.71, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.77 (m, 2H), 7.74-7.66 (m, 2H), 7.49-7.40 (m, 4H), 7.39-7.32 (m, 1H), 7.28 (t, *J* = 7.5 Hz, 1H), 4.08 (dd, *J* = 11.7, 3.9 Hz, 1H), 2.69-2.54 (m, 3H), 2.45-2.37 (m, 1H), 2.23-2.14 (m, 1H), 1.96-1.85 (m, 2H),

1.72-1.56 (m, 3H), 1.41-27 (m, 6H), 0.93-0.85 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.2, 156.2, 148.1, 145.6, 138.1, 133.7, 129.2, 128.6, 128.2, 127.1, 126.5, 121.0, 114.0, 97.9, 42.2, 34.6, 32.0, 31.5, 30.9, 28.8, 27.5, 22.9, 22.6, 14.1; HRMS (ESI) m/z Calcd. for C₂₈H₃₁N₂O₂ ([M+H]⁺) 427.2380, Found 427.2378; Enantiomeric excess was determined to be 90% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 90/10, λ = 254 nm, 30 °C, 0.5 mL/min, t_{major} = 11.5 min, t_{minor} = 10.4 min).

(S)-compound (3ja)

Prepared according to the general procedure at -30 °C for 24 h with **Q10** as the catalyst, then stirred at rt for 3 h, as white solid (80 mg, 96% yield, 85% ee) after silica gel chromatography (EtOAc/petroleum ether); after recrystallization from Et₂O/hexane (59 mg, 70% yield, 95% ee). mp 142.3-145.8 °C; $[\alpha]_{D}^{22}$ = -132.4 (*c* 0.59, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.8 Hz, 2H), 7.57 (d, *J* = 8.2 Hz,

2H), 7.47-7.22 (m, 11H), 4.32 (d, J = 14.6 Hz, 1H), 4.20-4.10 (m, 2H), 2.66-2.55 (m, 1H), 2.48-2.38 (m, 2H), 1.74-1.58 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 202.0, 154.1, 148.1, 145.4, 137.9, 136.47, 133.9, 133.7, 129.3, 129.0, 128.7, 128.2, 127.2, 126.4, 121.0, 114.4, 97.7, 42.3, 36.3, 34.9, 32.0, 23.0, 21.2; HRMS (ESI) m/z Calcd. for C₂₈H₃₁N₂O₂ ([M+H]⁺) 427.2380, Found 427.2378; Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column, hexane/2-propanol

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.794	BB	0.2052	1.32639e4	959.82703	49.2645
2	14.358	VB	0.3919	1.36599e4	542.33618	50.7355

(S)-5-benzyl-1-(4-methoxyphenyl)-3-phenyl-7,8,9,9a-tetrahydroisochromeno[3,4-*c*]pyrazol-6 (3*H*)-one (3ab)

Prepared according to the general procedure at -30 °C for 36 h with **Q10** as the catalyst, then stirred at rt for 3 h, as white solid (91 mg, 98% yield) after silica gel chromatography (EtOAc/petroleum ether). mp 150.1-152.8 °C; $[\alpha]_{D}^{22} = -110.5$ (*c* 0.87, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.58 (t, *J* = 7.8 Hz, 4H), 7.43-7.17 (m, 8H), 6.94 (d, *J* = 8.5 Hz, 2H), 4.05 (dd, *J* = 11.7, 3.5 Hz, 1H), 3.97 (d, *J* = 14.6 Hz, 1H), 3.91 (d, *J* = 14.6 Hz, 1H), 3.80 (s, 3H), 2.64 (dt, *J* = 15.8, 4.8 Hz, 1H), 2.55-2.39 (m, 1H), 2.27-2.13 (m, 1H), 1.99-1.84 (m, 1H), 1.69-1.55 (m, 1H); ¹³C NMR (101 MHz,

CDCl₃) δ 202.0, 159.7, 153.8, 147.9, 145.3, 137.9, 137.0, 129.4, 129.0, 128.6, 128.4, 126.9, 126.3, 126.2, 120.9, 114.7, 114.1, 97.3, 55.3, 42.3, 36.7, 34.9, 31.9, 23.0; HRMS (ESI) m/z Calcd. for $C_{30}H_{27}N_2O_3$ ([M+H]⁺) 463.2016, Found 463.2017; Enantiomeric excess was determined to be 92% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.5 mL/min, t_{major} = 25.6 min, t_{minor} = 12.1 min).

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	12.149	BB	0.2433	665.61810	40.59055	3.9133
2	25.620	BB	0.5832	1.63435e4	430.21353	96.0867

(S)-5-benzyl-3-phenyl-1-p-tolyl-7,8,9,9a-tetrahydroisochromeno[3,4-*c*]pyrazol-6(3*H*)-one (3a c)

Prepared according to the general procedure at -30 °C for 36 h with **Q10** as the catalyst, then stirred at rt for 3 h, as light yellow solid (87 mg, 98% yield) after silica gel chromatography (EtOAc/petroleum ether). mp 131.2-134.4 °C; $[\alpha]_D^{20}$ = -121.0 (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (t, *J* = 7.6 Hz, 4H), 7.42-7.30 (m, 6H), 7.25 (dd, *J* = 14.9, 7.3 Hz, 4H), 4.10 (dd, *J* = 11.7, 3.7 Hz, 1H), 3.98 (d, *J* = 14.7 Hz, 1H), 3.92 (d, *J* = 14.6 Hz, 1H), 2.66 (dt, *J* = 15.8, 4.8 Hz, 1H), 2.53-2.41 (m, 1H), 2.38 (s, 3H), 2.27-2.17 (m, 1H), 1.02-1.86 (m, 2H), 1.72-1.58 (m,

1H); ¹³C NMR (101 MHz, CDCl₃) δ 202.1, 153.8, 148.1, 145.3, 138.0, 137.9, 137.0, 130.8, 129.3, 129.0, 128.5, 127.0, 126.9, 126.3, 121.0, 114.7, 97.5, 42.3, 36.7, 34.9, 31.9, 23.0, 21.3; HRMS (ESI) m/z Calcd. for C₃₀H₂₇N₂O₂ ([M+H]⁺) 447.2067, Found 447.2062; Enantiomeric excess was determined to be 94% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.5 mL/min, *t*_{major} = 18.2 min, *t*_{minor} = 10.4 min).

(S)-5-benzyl-1-(4-bromophenyl)-3-phenyl-7,8,9,9a-tetrahydroisochromeno[3,4-c]pyrazol-6(3 *H*)-one (3ad)

Prepared according to the general procedure at -30 °C for 40 h with **Q10** as the catalyst, then stirred at rt for 3 h, as white solid (98 mg, 96% yield) after silica gel chromatography (EtOAc/petroleum ether). mp 153.2-156.7 °C; $[\alpha]_{D}^{21} = -93.8$ (*c* 0.98, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.48 (m, 6H), 7.41-7.29 (m, 6H), 7.28-7.20 (m, 2H), 4.03 (dd, *J* = 11.7, 3.6 Hz, 1H), 3.97 (d, *J* = 14.7 Hz, 1H), 3.90 (d, *J* = 14.6 Hz, 1H), 2.64 (dt, *J* = 15.8, 4.8 Hz, 1H), 2.53-2.40 (m, 1H), 2.20-2.08 (m, 1H), 2.03-1.82 (m, 2H), 1.70-1.56 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 201.8,

153.7, 146.9, 145.5, 137.7, 136.9, 132.6, 131.8, 129.4, 129.1, 128.6, 128.6, 127.0, 126.6, 122.3, 121.0, 114.5, 97.7, 42.2, 36.7, 34.8, 32.0, 22.9; HRMS (ESI) m/z Calcd. for $C_{29}H_{24}BrN_2O_2$ ([M+H]⁺) 511.1016, Found 511.1008; Enantiomeric excess was determined to be 92% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.7 mL/min, t_{major} = 16.3 min, t_{minor} = 8.0 min).

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	8.043	BB	0.1656	489.91135	44.79923	3.9945
2	16.348	BB	0.3783	1.17746e4	479.76050	96.0055

(S)-5-benzyl-1-(4-chlorophenyl)-3-phenyl-7,8,9,9a-tetrahydroisochromeno[3,4-c]pyrazol-6(3 *H*)-one (3ae)

Prepared according to the general procedure at -30 °C for 40 h with **Q10** as the catalyst, then stirred at rt for 3 h, as white solid (90 mg, 96% yield) after silica gel chromatography (EtOAc/petroleum ether). mp 152.7-154.0 °C; $[\alpha]_D^{21} = -115.1$ (*c* 0.84, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (dd, J = 11.4, 8.4 Hz, 4H), 7.41 -7.20 (m, 10H), 4.04 (dd, J = 11.7, 3.6 Hz, 1H), 3.97 (d, J = 14.7 Hz, 1H), 3.90 (d, J = 14.6 Hz, 1H), 2.65 (dt, J = 15.9, 4.9 Hz, 1H), 2.52-2.40 (m, 1H), 2.20-2.10 (m, 1H), 2.02-1.83 (m, 2H), 1.72-1.56 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 201.8, 153.8, 146.9, 145.5,

137.7, 136.9, 134.1, 132.2, 129.4, 129.1, 128.9, 128.6, 128.4, 127.0, 126.6, 121.0, 114.5, 97.7, 42.2, 36.7, 34.8, 32.0, 22.9; HRMS (ESI) m/z Calcd. for $C_{29}H_{24}ClN_2O_2$ ([M+H]⁺) 467.1521, Found 467.1528; Enantiomeric excess was determined to be 92% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.5 mL/min, t_{major} = 20.3 min, t_{minor} = 11.1 min).

(S)-5-benzyl-1-(2-fluorophenyl)-3-phenyl-7,8,9,9a-tetrahydroisochromeno[3,4-c]pyrazol-6(3 *H*)-one (3af)

Prepared according to the general procedure at -30 °C for 48 h with **Q10** as the catalyst, then stirred at rt for 3 h, as light yellow solid (87 mg, 96% yield) after silica gel chromatography (EtOAc/petroleum ether). mp 108.0-110.8 °C; $[\alpha]_{D}^{21} = -119.5$ (*c* 0.83, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (t, *J* = 7.2 Hz, 1H), 7.57 (d, *J* = 7.9

Hz, 2H), 7.42-7.29 (m, 7H), 7.28-7.16 (m, 3H), 7.15-7.08 (m, 1H), 4.08-3.90 (m, 3H), 2.67-2.57 (m, 1H), 2.50-2.37 (m, 1H), 1.99-1.82 (m, 3H), 1.67-1.53 (m, 1H); ¹⁹F NMR (370 MHz, CDCl₃) δ -116.18; ¹³C NMR (101 MHz, CDCl₃) δ 201.9, 160.1 (d, J = 248.9 Hz), 154.1, 145.2, 143.7, 137.8, 137.1, 130.7 (d, J = 3.3 Hz), 130.3 (d, J = 8.1 Hz), 129.4, 129.1, 128.6, 126.9, 126.6, 124.5 (d, J = 3.3 Hz), 121.7 (d, J = 14.4 Hz), 121.1, 115.8 (d, J = 21.7 Hz), 114.7, 99.7, 42.4, 36.8, 34.8, 34.7, 31.8, 23.2; HRMS (ESI) m/z Calcd. for C₂₉H₂₄FN₂O₂ ([M+H]⁺) 451.1816, Found 451.1814; Enantiomeric excess was determined to be 90% (determined by HPLC using chiral OD-H column, hexane/2-propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.5 mL/min, $t_{major} = 12.4$ min, $t_{minor} = 13.4$ min).

(S)-5-benzyl-1-(naphthalen-2-yl)-3-phenyl-7,8,9,9a-tetrahydroisochromeno[3,4-c]pyrazol-6(3 *H*)-one (3ag)

Prepared according to the general procedure at -30 °C for 24 h with **Q10** as the catalyst, then stirred at rt for 3 h, as light yellow solid (92 mg, 95% yield) after silica gel chromatography (EtOAc/petroleum ether). mp 159.1-162.2 °C; $[\alpha]_D^{21} = -135.0$ (*c* 0.90, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.90-7.79 (m, 4H), 7.61 (d, J = 8.2 Hz, 2H), 7.50-7.29 (m, 8H), 7.25 (dd, J = 13.2, 7.0 Hz, 2H), 4.14 (dd, J = 11.7, 3.5 Hz, 1H), 3.98 (d, J = 14.6 Hz, 1H), 3.93 (d, J = 14.7 Hz, 1H), 2.64 (dt, J = 15.9, 4.7 Hz, 1H), 2.51-2.39 (m, 1H), 2.25-2.15 (m, 1H), 1.96-1.82 (m, 2H), 1.69-1.56 (m,

1H); ¹³C NMR (101 MHz, CDCl₃) δ 202.0, 153.8, 148.0, 145.5, 137.9, 137.0, 133.4, 133.1, 131.1, 129.4, 129.1, 128.6, 128.3, 128.3, 127.8, 127.0, 126.5, 126.4, 126.3, 126.2, 125.0, 121.1, 114.7, 97.9, 42.3, 36.7, 35.0, 32.1, 23.0; HRMS (ESI) m/z Calcd. for C₃₃H₂₇N₂O₂ ([M+H]⁺) 483.2067, Found 483.2070; Enantiomeric excess was determined to be 93% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.7 mL/min, t_{major} = 47.7 min, t_{minor} = 8.2 min).

(S)-5-benzyl-3-phenyl-1-(thiophen-2-yl)-7,8,9,9a-tetrahydroisochromeno[3,4-c]pyrazol-6(3H) -one (3ah)

Prepared according to the general procedure at -30 °C for 24 h with **Q10** as the catalyst, then stirred at rt for 3 h, as white solid (85 mg, 97% yield) after silica gel chromatography (EtOAc/petroleum ether). mp 142.0-144.7 °C; $[\alpha]_{D}^{21} = -117.6$ (*c* 0.82, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 7.9 Hz, 2H), 7.41-7.18 (m, 10H), 7.09-7.03 (m, 1H), 4.02-3.86 (m, 3H), 2.67 (dt, *J* = 16.1, 5.0 Hz, 1H), 2.54-2.39 (m, 2H), 2.08-1.87 (m, 2H), 1.79-1.64 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 201.9,

153.5, 145.4, 143.1, 137.7, 136.9, 135.8, 129.4, 129.1, 128.6, 127.5, 127.0, 126.5, 125.5, 125.3, 121.0, 114.8, 97.4, 42.2, 36.7, 34.5, 31.9, 22.9; HRMS (ESI) m/z Calcd. for $C_{27}H_{23}N_2O_2S$ ([M+H]⁺) 439.1475, Found 439.1472; Enantiomeric excess was determined to be 90% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.5 mL/min, t_{major} = 13.2 min, t_{minor} = 10.7 min).

(S)-5-benzyl-1-cyclopropyl-3-phenyl-7,8,9,9a-tetrahydroisochromeno[3,4-c]pyrazol-6(3H)-on e (3ai)

Prepared according to the general procedure at -30 °C for 48 h with **Q10** as the catalyst, then stirred at rt for 3 h, as white solid (76 mg, 96% yield) after silica gel chromatography (EtOAc/petroleum ether). mp 81.8-84.9 °C; $[\alpha]_{D}^{25} = -44.1$ (*c* 0.39, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 8.3 Hz, 2H), 7.39-7.29 (m, 6H), 7.25 (t, *J* = 6.0 Hz, 1H), 7.18 (t, *J* = 7.3 Hz, 1H), 4.02-3.80 (m, 3H), 2.66 (dt, *J* = 15.8, 4.8 Hz, 1H), 2.61-2.44 (m, 2H), 2.16-1.94 (m, 2H), 1.94-1.71 (m, 2H),

1.07-0.99 (m, 1H), 0.94-0.80 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.1, 154.4, 150.8, 144.8, 138.0, 137.1, 129.3, 128.9, 128.5, 126.8, 125.9, 120.5, 114.4, 98.7, 42.3, 36.8, 34.1, 32.4, 23.2, 8.6, 7.6, 6.1; HRMS (ESI) m/z Calcd. for C₂₇H₂₃N₂O₂S ([M+H]⁺) 439.1475, Found 439.1472; Enantiomeric excess was determined to be 91% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.5 mL/min, t_{major} = 9.2 min, t_{minor} = 8.5 min).

(S)-5-benzyl-1-isopropyl-3-phenyl-7,8,9,9a-tetrahydroisochromeno[3,4-c]pyrazol-6(3H)-one (3aj)

Prepared according to the general procedure at -30 °C for 48 h with **Q11** as the catalyst, then stirred at rt for 3 h, as light yellow solid (78 mg, 97% yield) after silica gel chromatography (EtOAc/petroleum ether). mp 77.6-79.8 °C; $[\alpha]_D^{25} = -54.1$ (*c* 0.74, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.47 (d, *J* = 8.5, 2H), 7.40-7.28 (m, 6H), 7.26-7.16 (m, 2H), 3.96 (d, *J* = 14.6 Hz, 1H), 3.87 (d, *J* = 14.4 Hz, 1H), 3.81 (dd, *J* =

11.7, 4.1 Hz, 1H), 3.02- 2.90 (m, 1H), 2.64 (dt, J = 15.7, 4.8 Hz, 1H), 2.53-2.37 (m, 2H), 2.15-1.91 (m, 2H), 1.89-1.77 (m, 1H), 1.35 (d, J = 6.9 Hz, 3H), 1.26 (d, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.1, 155.0, 154.3, 144.8, 138.1, 137.1, 129.3, 128.9, 128.5, 126.8, 125.9, 120.8, 114.3, 96.9, 42.1, 36.8, 34.3, 32.4, 28.0, 23.0, 22.3, 21.0; HRMS (ESI) m/z Calcd. for C₂₆H₂₇N₂O₂ ([M+H]⁺) 399.2067, Found 399.2065; Enantiomeric excess was determined to be 93% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 90/10, $\lambda = 254$ nm, 30 °C, 0.5 mL/min, $t_{major} = 10.4$ min, $t_{minor} = 9.5$ min).

(S)-5-benzyl-1-ethyl-3-phenyl-7,8,9,9a-tetrahydroisochromeno[3,4-c]pyrazol-6(3H)-one (3a k)

Prepared according to the general procedure at -20 °C for 48 h with **Q11** as the catalyst, then stirred at rt for 5 h, as light yellow solid (70 mg, 92% yield) after silica gel chromatography (EtOAc/petroleum ether). mp 70.9-72.9 °C; $[\alpha]_{D}^{23} = -60.9$ (*c* 0.64, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.2 Hz, 2H), 7.39-7.27 (m, 6H), 7.27-7.17 (m, 2H), 3.97 (d, J = 14.6 Hz, 1H), 3.88 (d, J = 14.6 Hz, 1H), 3.79 (dd, J = 5.2 Hz, 2H), 7.39-7.27 (m, 6H),

11.7, 4.0 Hz, 1H), 2.69-2.58 (m, 3H), 2.53-2.44 (m, 1H), 2.41-2.31 (m, 1H), 2.12 -1.93 (m, 2H), 1.88-1.76 (m, 1H), 1.26 (t, J = 7.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 201.9, 154.5, 151.2, 144.9, 138.0, 137.1, 129.3, 129.0, 128.5, 126.8, 125.9, 120.7, 114.3, 97.5, 42.2, 36.8, 34.1, 32.2, 23.1, 21.8, 13.1; HRMS (ESI) m/z Calcd. for C₂₅H₂₅N₂O₂ ([M+H]⁺) 385.1911, Found 385.1905; Enantiomeric excess was determined to be 93% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 90/10, $\lambda = 254$ nm, 30 °C, 0.5 mL/min, $t_{major} = 12.7$ min, $t_{minor} = 11.5$ min).

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	11.454	VB	0.1995	769.77026	57.75057	3.6543
2	12.703	PB	0.2303	2.02951e4	1328.25208	96.3457

(S)-5-benzyl-1-methyl-3-phenyl-7,8,9,9a-tetrahydroisochromeno[3,4-c]pyrazol-6(3H)-one (3 al)

Photon P

4. The X-ray structure of 3ad

Figure S1. The X-ray structure of 3ad.

5. Mechanism study

The capture of the intermediate with acetic anhydride

A solution of **1a** (0.2 mmol, 1.0 eq.) and **Q10** (0.02 mmol, 0.1 eq.) in EtOAc (2.0 mL) was cooled to -20 °C. After 10 min, 2a (0.24 mmol, 1.2 eq.) was added in one portion. The resulting mixture was stirred at -20 °C for 14 h. Ac₂O (0.3 mmol, 1.5 eq.) was added dropwise, followed with the dropwise addition of a solution of Et₃N (0.3 mmol, 1.5 eq.) in EtOAc (0.5 mL) at -20 °C. After 1 h, the solvent was removed under vacuum. The crude mixture was purified by column chromatography (EtOAc/petroleum ether = 1/15 to 1/4) on silica gel to give **3aa** (32 mg, yield 38%, 77% ee), **6** as light yellow oil (47 mg, yield 49%, dr = 1.5:1, 74%/74% ee) and 1a (3.9 mg, 10% recovered). The following is the data of the intermediate 6 (the dr value was determined by 1 H NMR, the racemic product was prepared using a 1:1 mixture of quinine and quinidine as the catalyst). ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.51 (m, 4H), 7.43 (t, J = 7.7 Hz, 2H), 7.39-7.33 (m, 4H), 7.29-7.24 (m, 2H), 7.24-7.17 (m, 3H), 6.55 (d, J = 3.9 Hz, 1H), 4.27-4.18 (m, 1H), 2.63 (dt, J = 17.1, 5.5 Hz, 1H), 2.56-2.46 (m, 1H), 2.17 (s, 3H), 2.09-1.80 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 211.9, 198.8, 167.3, 150.2, 142.2, 138.0, 133.4, 131.8, 129.2, 128.7, 128.5, 128.4, 128.2, 127.8, 127.7, 127.5, 123.1, 111.4, 110.6, 100.0, 40.4, 35.2, 30.0, 21.4, 20.4; HRMS (ESI) m/z Calcd. for $C_{31}H_{27}N_2O_3$ ([M+H]⁺) 475.2016, Found 475.2022; Enantiomeric excess was determined to be 74% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 90/10, λ = 254 nm, 30 °C, 0.7 mL/min, t_{major} = 24.7 and 32.7 min, t_{minor} = 18.2 and 16.2 min).

The preparation of the deuterated pyrazolone D-2a

To a solution of **2a** (200 mg) in DMSO (2 mL) was added D₂O (1 mL). The resulting mixture was heated to 50 °C, and then stirred for 12 h. After cooled to rt, the mixture was kept overnight. The crystals were filtrated, then dried to give deuterated pyrazolone **2a** (100 mg, yield 50%, 65% deuteration). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.2 Hz, 2H), 7.81-7.75 (m, 2H), 7.49-7.39 (m, 5H), 7.22 (t, *J* = 7.4 Hz, 1H), 3.87-3.81 (m, 0.7H).

Deuterium-labeling experiment (Table 3, entry 1)

To a solution of **1a** (0.1 mmol, 1.0 eq.) and **Q10** (0.01 mmol, 0.1 eq.) in anhydrous DCM (1.0 mL) was added **2a** (0.12 mmol, 1.2 eq.). The resulting mixture was stirred at rt for 3 h. The solvent was removed under vacuum, then the crude mixture was purified by column chromatography (EtOAc/petroleum ether = 1/8) to give **3aa** as white solid (41 mg, 95% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 7.7 Hz, 2H), 7.59 (d, J = 7.9 Hz, 2H), 7.39 (qd, J = 15.6, 7.5 Hz, 9H), 7.26 (dd, J = 7.3, 5.2 Hz, 2H), 4.12 (dd, J = 11.8, 3.8 Hz, 1H), 4.02-3.88 (m, 1.12 H), 2.67 (dt, J = 15.8, 4.8 Hz, 1H), 2.54-2.43 (m, 0.85 H), 2.26-2.15 (m, 1H), 2.03-1.87 (m, 2H), 1.73-1.60 (m, 1H).

Figure S2. The NOESY (1D) spectrum of the product 3aa.

Deuterium-labeling experiment (Table 3, entry 2)

To a solution of **1a** (0.1 mmol, 1.0 eq.) and **Q10** (0.01 mmol, 0.1 eq.) in a mixture of DCM (1.0 mL) and D₂O (0.1 mL) was added **2a** (0.12 mmol, 1.2 eq.). The resulting mixture was stirred at rt for 3 h. The solvent was removed under vacuum, then the crude mixture was purified by column chromatography (EtOAc/petroleum ether = 1/8) to give **3aa** as white solid (40 mg, 93% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 7.7 Hz, 2H), 7.59 (d, J = 8.0 Hz, 2H), 7.45-7.31 (m, 9H), 7.29-7.22 (m, 2H), 4.11 (dd, J = 11.7, 3.6 Hz, 1H), 4.02-3.87 (m, 0.47 H), 2.66 (dt, J = 15.4, 4.6 Hz, 1H), 2.53-2.41 (m, 0.79H), 2.25-2.16 (m, 1H), 2.01-1.87 (m, 2H), 1.72-1.62 (m, 1H).

Deuterium-labeling experiment (Table 3, entry 3)

A solution of **1a** (0.1 mmol, 1.0 eq.) and **Q10** (0.01 mol, 0.1 eq.) in EtOAc (1.0 mL) was cooled to -20 °C. After 10 min, **2a** (0.12 mmol, 1.2 eq.) was added in one portion. The resulting mixture was stirred at -20 °C for 14 h. After the addition of D₂O (0.1 mL), the mixture was warmed to rt, and then stirred for 6 h. The solvent was removed under vacuum and the crude mixture was purified by column chromatography (EtOAc/petroleum ether = 1/8) on silica gel to give **3aa** 35 mg (yield 81%). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 7.5 Hz, 2H), 7.58 (d, *J* = 8.0 Hz, 2H), 7.45-7.30 (m, 9H), 7.29-7.22 (m, 2H), 4.11 (dd, *J* = 11.7, 3.3 Hz, 1H), 4.01-3.88 (m, 1.21 H), 2.67 (dt, *J* = 15.3, 4.6 Hz, 1H), 2.54-2.40 (m, 0.67 H), 2.26-2.15 (m, 1H), 2.02-1.87 (m, 2H), 1.70-1.61 (m, 1H).

Deuterium-labeling experiment (Table 3, entry 4)

To a solution of **1a** (0.1 mmol, 1.0 eq.) and **Q10** (0.01 mmol, 0.1 eq.) in a mixture of EtOAc (1.0 mL) and D₂O (0.1 mL) was added **2a** (0.12 mmol, 1.2 eq.). The resulting mixture was stirred at rt for 6 h. The solvent was removed under vacuum, then the crude mixture was purified by column chromatography (EtOAc/petroleum ether = 1/8) to give **3aa** as white solid (33 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 7.5 Hz, 2H), 7.59 (d, J = 7.8 Hz, 2H), 7.45-7.31 (m, 9H), 7.29-7.24 (m, 2H), 4.11 (dd, J = 11.7, 3.7 Hz, 1H), 4.00-3.87 (m, 0.54H), 2.71-2.60 (m, 1H), 2.54-2.41 (m, 0.64 H), 2.26-2.16 (m, 1H), 2.02-1.87 (m, 2H), 1.72-1.60 (m, 1H).

Deuterium-labeling experiment (eq. a)

A solution of **6** (12.0 mg, 1.0 eq., dr = 10:1) and **Q10** (1.2 mg, 0.1 eq.) in a mixture of EtOAc (0.3 mL) and D₂O (30 µL) was stirred at rt for 6 h. The solvent was removed under vacuum, then the crude mixture was purified by column chromatography (EtOAc/petroleum ether = 1/4) to give the deuterated **6** (12 mg, yield 99%, dr = 1.6:1). ¹H NMR (400 MHz, CDCl₃) δ 7.62-7.52 (m, 4.9H), 7.47-7.41 (m, 3.3H), 7.39-7.31 (m, 4.9H), 7.30-7.24 (m, 6.6H), 7.23-7.10 (m, 4.9H), 6.58-6.51 (m, 0.63H), 4.27-4.18 (m, 1H), 4.10-4.02 (m, 0.63H), 2.77-2.41 (m, 3.0 H), 2.17 (s, 4.9H), 2.11-1.80 (m, 6.4H).

Deuterium-labeling experiment for 1a and 3aa

A solution of **1a** (0.1 mmol, 1.0 eq.) and **Q10** (0.01 mmol, 0.1 eq.) or a solution of **3aa** (0.1 mmol, 1.0 eq.) and **Q10** (0.01 mmol, 0.1 eq.) in a mixture of DCM (1.0 mL) and D_2O (0.1 mL) was stirred at rt for 3 h. The solvent was removed under vacuum, then the crude mixture was purified by column chromatography (EtOAc/petroleum ether = 1/8). No deuteration of **1a** and **3aa** was detected by ¹H NMR.

6. Reference

- [1] Yao, T.; Zhang, X.; Larock, R. C. J. Org. Chem. 2005, 70, 7679.
- [2] Li, F.; Sun, L.; Teng, Y.; Yu, P.; Zhao, J. C.; Ma, J. Chem. Eur. J. 2012, 18, 14255.
- [3] a) Du, T.; Du, F.; Ning, Y.; Peng, Y. Org. Lett. 2015, 17, 1308; b) Zhang, T.; He, W.; Zhao, X.; Jin, Y. Tetrahedron 2013, 69, 7416; c) Li, H.; Wang, B.; Deng, L. J. Am. Chem. Soc. 2006, 128, 732.

7. NMR spectra for compounds

