Supporting Information

Silver-mediated direct C–H amination of BODIPYs for screening endoplasmic reticulum-targeting reagents

Huaxing Zhang, Xingyu Chen, Jingbo Lan, * Yanhong Liu, Fulin Zhou, Di Wu, *

Jingsong You*

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China

Fax: 86-28-85412203; E-mail: jingbolan@scu.edu.cn; wood@scu.edu.cn;

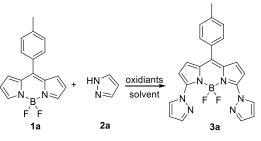
jsyou@scu.edu.cn.

Table of contents

I. General remarks	S1
II. Synthesis and compounds characterization	S2
III. Single crystal X-ray structures	S22
IV. Mechanistic study	S22
V. Photophysical data of BODIPYs	S23
VI. Cell imaging experiments and cytotoxicity assays	S29
VII. References	S31
VIII. Copies of ¹ H and ¹³ C NMR spectra	S32

I. General remarks

NMR spectra were obtained on a Bruker AV II-400 MHz or a Varian Inova 400 MHz spectrometer. The ¹H NMR (400 MHz) chemical shifts were measured relative to CDCl₃ or DMSO- d_6 as the internal reference (CDCl₃: $\delta = 7.26$ ppm; DMSO- d_6 : $\delta =$ 2.50 ppm). The ¹³C NMR (100 MHz) chemical shifts were given using CDCl₃ or DMSO- d_6 as the internal standard (CDCl₃: $\delta = 77.16$ ppm; DMSO- d_6 : $\delta = 39.52$ ppm). High resolution mass spectra (HR-MS) were obtained with a Waters-Q-TOF-Premier (ESI⁺). X-Ray single-crystal diffraction data were collected on an Agilent Technologies Gemini single crystal diffractometer. Melting points were determined with XRC-1 and are uncorrected. Absorption spectra were obtained on a HITACHI U-2910 spectrometer. Fluorescence spectra and absolute quantum yields were collected on a Horiba Jobin Yvon-Edison Fluoromax-4 fluorescence spectrometer with a calibrated integrating sphere system. To reduce the fluctuation in the excitation intensity, the lamp was kept on for 1 h prior to the experiment. The confocal living cell imaging was performed on a Leica TCS SP8 confocal fluorescent microscope. Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. $8-(p-Tolyl)-4, 4-difluoro-4-bora-3a, 4a-diaza-s-indacene (8-(p-tolyl)-BODIPY)^1$ (1a), 8-phenyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (8-phenyl-BODIPY)¹ (**1b**). 8-(p-cyano-phenyl)-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (8-(p-cyano-phenyl)-BODIPY)² (**1**c), 8-(3,5-bis(trifluoromethyl)phenyl)-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene $(8-(3,5-bis(trifluoromethyl)phenyl)-BODIPY)^3$ (**1d**), 8-(thiophen-2-yl)-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (8-(thiophen-2-yl)-BODIPY)⁴ (1e), 2-bromo-8-(p-Tolyl)-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene $(2-bromo-8-(p-tolyl)-BODIPY)^1$ (1g), 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene

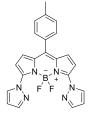

 $(BODIPY)^5$ (1h) and 8-(4-nitrophenyl)-4,4-difluoro-4-bora-*3a*,4*a*-diaza-*s*-indacene (8-(4-nitrophenyl)-BODIPY)¹ (1i) were prepared according to the literatures.

II. Synthesis and compounds characterization

(1) Optimization of direct C–H amination

A dried Schlenk tube with a magnetic stir bar was charged with 8-(*p*-tolyl)-BODIPY (**1a**, 0.05 mmol), pyrazole (**2a**, 0.20 mmol, 4.0 equiv) and additives. The system was evacuated thrice and back filled with N₂. Next, the solvent was added *via* a syringe and the rubber septum was replaced with a polytetrafluoroethylene stopper under N₂. Then the reaction mixture was stirred at the indicated temperature for 2-24 h in an oil bath. After the reaction mixture was cooled to ambient temperature, the solvent was removed under reduced pressure. The residue was dissolved in 10 mL of CH₂Cl₂, filtered through a celite pad, and then washed with 20-30 mL of CH₂Cl₂. The combined filtrates were concentrated and purified *via* column chromatography on silica gel (100-200 mesh) to provide the desired products.

Table S1. Optimization of the direct C–H amination of BODIPY with pyrazole^a


Entry	1a	2a	oxidants	Solvent	Temp. (°C)	Time (h)	Yield ^b (%)
1	0.05 mol	0.2 mol	Ag ₂ O	DMSO	120	12	67
2	0.05 mol	0.2 mol	MnO ₂	DMSO	120	12	48
3	0.05 mol	0.2 mol	BQ	DMSO	120	12	trace
4	0.05 mol	0.2 mol	AgOAc	DMSO	120	12	80
5	0.05 mol	0.2 mol	Cu(OAc) ₂	DMSO	120	12	trace
6	0.05 mol	0.2 mol	$K_2S_2O_8$	DMSO	120	12	trace
7^c	0.05 mol	0.2 mol	O_2	DMSO	120	12	none
8	0.05 mol	0.2 mol	PhI(OAc) ₂	DMSO	120	12	none
9^d	0.05 mol	0.2 mol	AgOAc/O ₂	DMSO	120	12	13
10 ^e	0.05 mol	0.2 mol	AgOAc/MnO ₂	DMSO	120	12	48

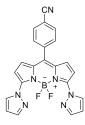
1.1f	0.05 1	0.0 1		DIGO	120	10	ND
11 ^f	0.05 mol	0.2 mol	AgOAc/K ₂ CO ₃	DMSO	120	12	N.D.
12^{f}	0.05 mol	0.2 mol	AgOAc/PivOH	DMSO	120	12	60
13 ^f	0.05 mol	0.2 mol	Ag ₂ CO ₃ / Phenanthroline	DMSO	120	12	58
14^{f}	0.05 mol	0.2 mol	AgOAc/PPh ₃	DMSO	120	12	60
15	0.05 mol	0.2 mol	AgOAc	DCE	120	12	N.D.
16	0.05 mol	0.2 mol	AgOAc	DMF	120	12	24
17	0.05 mol	0.2 mol	AgOAc	MeCN	120	12	20
18	0.05 mol	0.2 mol	AgOAc	Toluene	120	12	N.D.
19	0.05 mol	0.2 mol	AgOAc	THF	120	12	N.D.
20	0.05 mol	0.2 mol	AgOAc	Dioxane	120	12	N.D.
21	0.05 mol	0.2 mol	AgOAc	2-Methyl-2- butanol	120	12	N.D.
22	0.05 mol	0.2 mol	AgOAc	DMSO/ MeCN(1:1)	120	12	62
23	0.05 mol	0.2 mol	AgOAc	DMSO/ MeCN(1:10)	120	12	67
24	0.05 mol	0.2 mol	AgOAc	DMSO/ MeCN(10:1)	120	12	67
25	0.05 mol	0.05 mol	AgOAc	DMSO	120	12	42
26	0.05 mol	0.1 mol	AgOAc	DMSO	120	12	64
27	0.05 mol	0.4 mol	AgOAc	DMSO	120	12	81
28	0.05 mol	0.2 mol	AgOAc	DMSO	120	2	59
29	0.05 mol	0.2 mol	AgOAc	DMSO	120	6	71
30	0.05 mol	0.2 mol	AgOAc	DMSO	120	12	81
31	0.05 mol	0.2 mol	AgOAc	DMSO	120	24	55
32^g	0.05mol	0.2mol	AgOAc	DMSO	120	12	75
33 ^{<i>h</i>}	0.05mol	0.2mol	AgOAc	DMSO	120	12	40
34 ^{<i>i</i>}	0.05mol	0.2mol	AgOAc	DMSO	120	12	72
35	0.05 mol	0.2 mol	AgOAc	DMSO	rt	12	71
36	0.05 mol	0.2 mol	AgOAc	DMSO	60	12	69
37	0.05 mol	0.2 mol	AgOAc	DMSO	80	12	88
38	0.05 mol	0.2 mol	AgOAc	DMSO	100	12	72
39	0.05 mol	0.2 mol	AgOAc	DMSO	140	12	55

^{*a*}Reaction conditions: 8-(*p*-Tolyl)-BODIPY (**1a**, 0.05 mmol), pyrazole (**2a**, 4.0 equiv), oxidant (4.0 equiv) and solvent (1.0 mL) at 120 °C for 12 h under N₂ atmosphere. ^{*b*}Isolated yields. ^{*c*}Under O₂ atmosphere. ^{*d*}AgOAc (20 mol%) and under O₂ atmosphere. ^{*e*}AgOAc (20 mol%) and MnO₂ (4.0 equiv). ^{*f*}AgOAc (4.0 equiv) and additives (2.0 equiv). ^{*g*}AgOAc (3.0 equiv). ^{*h*}AgOAc (2.0 equiv). ^{*i*}AgOAc (3.0 equiv) and in the dark condition. PivOH = pivalic acid, BQ = 1,4-benzoquinone, DMSO = dimethylsulfoxide, DMF = *N*,*N*-dimethylformamide, DCE = 1,2-dichloroethane, THF = tetrahydrofuran, and N.D. = no detection.

(2) General procedure for direct C-H amination of BODIPYs

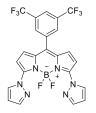
A dried Schlenk tube with a magnetic stir bar was charged with BODIPY (0.05 mmol), amine (0.20 mmol, 4.0 equiv) and AgOAc (4.0 equiv). The system was evacuated thrice and back filled with N₂. Next, the solvent DMSO was added *via* a syringe and the rubber septum was replaced with a polytetrafluoroethylene stopper under N₂. Then the reaction mixture was stirred at the 80 °C for 12 h in an oil bath. After the reaction mixture was cooled to ambient temperature, the solvent was removed under reduced pressure. The residue was dissolved in 10 mL of CH₂Cl₂, filtered through a celite pad, and then washed with 20-30 mL of CH₂Cl₂. The combined filtrates were concentrated and purified *via* column chromatography on silica gel (100-200 mesh) to provide the desired products.

3,5-Di(1H-pyrazol-1-yl)-8-(p-tolyl)-BODIPY (3a)

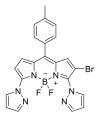

Following the general procedure, the mixture of 8-(*p*-tolyl)-BODIPY (**1a**, 14.1 mg, 0.05 mmol), pyrazole (**2a**, 13.6 mg, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (1.0 mL) was stirred at 80 °C for 12 h. Purification *via* column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 20/1/1, v/v) afforded the product **3a** (18.2 mg) in 88% yield as a brown solid with a greenish metallic lustre. M.p.: 200-202 °C. ¹H NMR (400 MHz, CDCl₃) δ = 2.48 (s, 3H), 6.53-6.54 (m, 2H), 6.92 (d, *J* = 4.4 Hz, 2H), 6.97 (d, *J* = 4.4 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.80 (d, *J* = 1.6 Hz, 2H), 8.80 (d, *J* = 2.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 21.6, 109.1, 113.4, 129.3, 130.6-130.8 (m), 131.2, 132.1, 132.2, 132.3,

132.4, 141.0, 143.3, 150.7. HRMS (ESI⁺): calcd. for $C_{22}H_{18}BF_2N_6$ [M+H]⁺: 415.1649, found: 415.1649.

3,5-Di(1*H*-pyrazol-1-yl)-8-phenyl-BODIPY (3b)

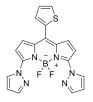

Following the general procedure, the mixture of 8-phenyl-BODIPY (**1b**, 13.4 mg, 0.05 mmol), pyrazole (**2a**, 13.6 mg, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (1.0 mL) was stirred at 80 °C for 12 h. Purification *via* column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 20/1/1, v/v) afforded the product **3b** (16.1 mg) in 80% yield as a brown solid with a greenish metallic lustre. M.p.: 202-204 °C. ¹H NMR (400 MHz, CDCl₃) δ = 6.55 (dd, *J* = 2.8 Hz, 1.6 Hz, 2H), 6.90 (d, *J* = 4.8 Hz, 2H), 6.99 (d, *J* = 3.6 Hz, 2H), 7.53-7.57 (m, 5H), 7.81 (d, *J* = 1.6 Hz, 2H), 8.82 (d, *J* = 2.8, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 109.2, 113.6, 128.6, 130.5, 130.7, 131.2, 132.1, 132.2, 132.3, 133.6, 143.3, 150.9. HRMS (ESI⁺): calcd. for C₂₁H₁₆BF₂N₆ [M+H]⁺: 401.1492, found: 401.1488.

3,5-Di(1*H*-pyrazol-1-yl)-8-(*p*-cyano-phenyl)-BODIPY (3c)


Following the general procedure, the mixture of 8-(*p*-cyano-phenyl)-BODIPY (**1c**, 14.6 mg, 0.05 mmol), pyrazole (**2a**, 13.6 mg, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (1.0 mL) was stirred at 80 °C for 12 h. Purification *via* column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 20/1/1, v/v) afforded the product **3c** (19.1 mg) in 90% yield as a golden solid with a golden metallic lustre. M.p.: 234-236 °C. ¹H NMR (400MHz, CDCl₃) δ = 6.57 (dd, *J* = 2.8 Hz, 1.6 Hz, 2H), 6.79 (d, *J* = 4.4 Hz, 2H), 7.03 (d, *J* = 4.4 Hz, 2H), 7.67-7.70 (m, 2H), 7.82 (d, *J* = 1.6 Hz, 2H), 7.84-7.86 (m, 2H), 8.82 (d, *J* = 2.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 109.6, 114.2, 114.4, 118.1, 130.5, 131.3, 132.0, 132.1, 132.2, 132.4,

138.1, 143.7, 151.6. HRMS (ESI⁺): calcd. for C₂₂H₁₅BF₂N₇ [M+H]⁺: 426.1445, found: 426.1459.

3,5-Di(1*H*-pyrazol-1-yl)-8-(3,5-*bis*(trifluoromethyl)phenyl)-BODIPY (3d)


Following the general procedure, the mixture of 8-(3,5-bis(trifluoromethyl)phenyl)-BODIPY (1d, 20.2 mg, 0.05 mmol), pyrazole (2a, 13.6 mg, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (1.0 mL) was stirred at 80 °C for 12 h. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 10/1/10, v/v) afforded the product **3d** (21.4 mg) in 80% yield as a golden solid with a golden metallic lustre. M.p.: 206-208 $\,\,{}^\circ\!\! C.\,\,{}^1\!H$ NMR (400MHz, CDCl₃) δ = 6.58 (dd, J = 2.8 Hz, 1.6 Hz, 2H), 6.75 (d, J = 4.4 Hz, 2H), 7.07 (d, J = 4.0 Hz, 2H), 7.83 (d, J = 1.6 Hz, 2H), 8.03 (s, 2H), 8.11 (s, 1H), 8.83 (d, J = 2.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 109.8$, 114.6, 123.0 (q, J_{C-F} = 273.0 Hz), 124.1-124.2 (m), 130.3, 130.45-130.48 (m), 132.0, 132.1, 132.2, 132.3, 132.4 (q, $J_{C-F} = 34.0$ Hz), 135.7, 137.9, 143.9, 151.9. HRMS (ESI⁺): calcd. for $C_{23}H_{13}BF_8N_6Na[M+Na]^+$: 559.1059, found: 559.1061.

2-Bromo-3,5-di(1*H*-pyrazol-1-yl)-8-(*p*-tolyl)-BODIPY (3e)

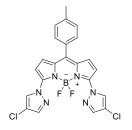
Following the general procedure, the mixture of 2-bromo-8-(*p*-tolyl)-BODIPY (**1g**, 18.0 mg, 0.05 mmol), pyrazole (**2a**, 13.6 mg, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (1.0 mL) was stirred at 80 °C for 12 h. Purification *via* column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 5/1/1, v/v) afforded the product **3e** (18.7 mg) in 76% yield as a amaranthine powder. M.p.: 214-216 °C. ¹H NMR (400MHz, CDCl₃) δ = 2.49 (s, 3H), 6.50 (dd, *J* = 2.8 Hz, 1.6

Hz, 1H), 6.54 (dd, J = 2.4 Hz, 2.0 Hz, 1H), 6.82 (s, 1H), 7.11 (d, J = 4.8 Hz, 1H), 7.21 (d, J = 4.8 Hz, 1H), 7.37 (d, J = 8.0 Hz, 2H), 7.44-7.46 (m, 2H), 7.80 (d, J = 1.6 Hz, 1H), 7.88-7.89 (m, 1H), 7.99 (d, J = 2.4 Hz, 1H), 8.80 (d, J = 2.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 21.6$, 107.1, 110.8, 116.7, 127.0, 129.6, 130.1, 130.7, 132.8, 132.9, 133.1, 133.38, 133.42, 134.8, 135.4, 141.6, 142.2, 142.5, 143.6, 144.7. HRMS (ESI⁺): calcd. for C₂₂H₁₇BBrF₂N₆ [M+H]⁺: 493.0754, 495.0733, found: 493.0756, 495.0737.

3,5-Di(1*H*-pyrazol-1-yl)-8-(thiophen-2-yl)-BODIPY (3f)

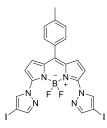
Following the general procedure, the mixture of 8-(thiophen-2-yl)-BODIPY (**1e**, 13.7 mg, 0.05 mmol), pyrazole (**2a**, 13.6 mg, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (1.0 mL) was stirred at 80 °C for 12 h. Purification *via* column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 10/1/10, v/v) afforded the product **3f** (16.2 mg) in 80% yield as a brown solid with a greenish metallic lustre. M.p.: 170-172 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 6.72 (dd, J = 2.4 Hz, 1.6 Hz, 2H), 7.03 (d, J = 4.8 Hz, 2H), 7.39-7.41 (m, 3H), 7.77 (d, J = 3.6 Hz, 1H), 7.98 (d, J = 1.6 Hz, 2H), 8.13 (d, J = 4.8 Hz, 1H), 8.61 (d, J = 2.8 Hz, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ = 109.7, 113.8, 128.7, 131.0, 131.7, 131.8, 131.9, 132.6, 133.8, 135.6, 143.7, 149.9. HRMS (ESI⁺): calcd. for C₁₉H₁₃BF₂N₆NaS [M+Na]⁺: 429.0876, found: 429.0874.

3,5-Di(1*H*-pyrazol-1-yl)-8-(pyridin-3-yl)-BODIPY (3g)

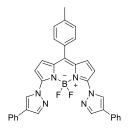

Following the general procedure, the mixture of 8-(pyridin-3-yl)-BODIPY (**1f**, 13.4 mg, 0.05 mmol), pyrazole (**2a**, 13.6 mg, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (1.0 mL) was stirred at 80 $^{\circ}$ C for 12 h. Purification *via* column

chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 5/1/5, v/v) afforded the product **3g** (18.6 mg) in 93% yield as a black powder. M.p.: 165-167 °C. ¹H NMR (400MHz, CDCl₃) δ = 6.56 (dd, J = 2.4 Hz, 1.6 Hz, 2H), 6.85 (d, J = 4.4 Hz, 2H), 7.04 (d, J = 4.4 Hz, 2H), 7.52 (dd, J = 7.6 Hz, 4.4 Hz, 2H), 7.82 (d, J = 1.6 Hz, 2H), 7.88-7.91 (m, 1H), 8.81-8.84 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ = 109.5, 114.1, 123.4, 129.8, 130.6, 132.1, 132.2, 132.3, 132.4, 137.9, 143.6, 150.4, 151.5. HRMS (ESI⁺): calcd. for C₂₀H₁₄BF₂N₇Na [M+Na]⁺: 424.1264, found: 424.1265.

3,5-Di(1*H*-pyrazol-1-yl)-8-(*p*-tolyl)-BODIPY (3h)

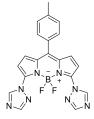

Following the general procedure, the mixture of BODIPY (**1h**, 9.6 mg, 0.05 mmol), pyrazole (**2a**, 13.6 mg, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (1.0 mL) was stirred at 80 °C for 12 h. Purification *via* column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 4/1/1, v/v) afforded the product **3h** (6.3 mg) in 39% yield as a brown solid with a greenish metallic lustre. M.p.: 171-173 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 6.73 (dd, *J* = 2.8 Hz, 1.6 Hz, 2H), 7.00 (d, *J* = 4.4 Hz, 2H), 7.53 (d, *J* = 4.4 Hz, 2H), 7.91 (s, 1H), 7.98 (d, *J* = 1.6 Hz, 2H), 8.64 (d, *J* = 2.8 Hz, 2H).¹³C NMR (100 MHz, DMSO-*d*₆) δ = 109.9, 113.2, 129.4, 131.3, 131.4, 131.5, 132.2, 132.3, 143.8, 150.0. HRMS (ESI⁺): calcd. for C₁₅H₁₁BF₂N₆Na⁺ [M+Na]⁺: 347.0999, found: 347.0996.

3,5-Di(4-chloro-1*H*-pyrazole-1-yl)-8-(*p*-tolyl)-BODIPY (3i)

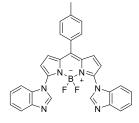

Following the general procedure, the mixture of 8-(*p*-tolyl)-BODIPY (**1a**, 14.1 mg, 0.05 mmol), 4-chloro-1*H*-pyrazole (**2b**, 20.4 mg, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (1.0 mL) was stirred at 80 °C for 12 h. Purification *via* column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 20/1/1,

v/v) afforded the product **3i** (22.17 mg) in 92% yield as a golden solid with a greenish metallic lustre. M.p.: 222-224 °C. ¹H NMR (400MHz, CDCl₃) δ = 2.48 (s, 3H), 6.94 (s, 4H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.73 (s, 2H), 8.74 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 21.6, 113.3, 114.3, 129.4, 129.6, 130.5, 130.7, 131.4, 132.6, 141.3, 142.0, 144.5, 150.2. HRMS (ESI⁺): calcd. for C₂₂H₁₆BCl₂F₂N₆ [M+H]⁺: 483.0869, 485.0840 found: 483.0874, 485.0851.

3,5-Di(4-iodo-1*H*-pyrazole-1-yl)-8-(*p*-tolyl)-BODIPY (3j)

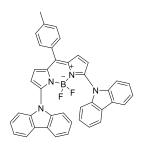

Following the general procedure, the mixture of 8-(*p*-tolyl)-BODIPY (**1a**, 14.1 mg, 0.05 mmol), 4-iodo-1H-pyrazole (**2c**, 38.8 mg, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (1.0 mL) was stirred at 80 °C for 12 h. Purification *via* column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 20/1/1, v/v) afforded the product **3j** (27.3 mg) in 82% yield as a brown solid with a greenish metallic lustre. M.p.: 228-230 °C. ¹H NMR (400MHz, CDCl₃) δ = 2.48 (s, 3H), 6.92-6.95 (m, 4H), 7.34 (d, *J* = 7.6 Hz, 2H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.79 (s, 2H), 8.76 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 21.6, 61.7, 113.4, 129.4, 130.5, 130.7, 131.4, 132.6, 135.7-136.1 (m), 141.3, 144.5, 148.1, 149.6. HRMS (ESI⁺): calcd. for C₂₂H₁₅BF₂I₂N₆Na [M+Na]⁺: 688.9401, found: 688.9402.

3,5-Di(4-phenyl-1*H*-pyrazol-1-yl)-8-(*p*-tolyl)-BODIPY (3k)

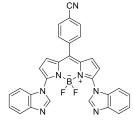

Following the general procedure, the mixture of 8-(*p*-tolyl)-BODIPY (**1a**, 14.1 mg, 0.05 mmol), 4-phenyl-1H-pyrazol (**2d**, 28.8 mg, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (1.0 mL) was stirred at 80 °C for 12 h. Purification *via* column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 20/1/1,

v/v) afforded the product **3k** (16.1 mg) in 57% yield as a black solid with a greenish metallic lustre. M.p.: > 250 °C. ¹H NMR (400MHz, CDCl₃) δ = 2.49 (s, 3H), 6.95 (d, J = 4.4 Hz, 2H), 7.05 (d, J = 4.8 Hz, 2H), 7.31-7.36 (m, 4H), 7.41-7.48 (m, 6H), 7.63-7.65 (m, 4H), 8.11 (s, 2H), 9.15 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 21.6, 113.2, 126.1, 126.2, 127.5, 128.1, 129.2, 129.3, 130.76, 130.80, 131.1, 131.5, 141.0, 141.3, 150.4 . HRMS (ESI⁺): calcd. for C₃₄H₂₅BF₂N₆Na [M+Na]⁺: 589.2094, found: 589.2097.

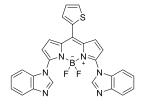
3,5-Di(1*H*-1,2,4-triazol-1-yl)-8-(*p*-tolyl)-BODIPY (3l)


Following the general procedure, the mixture of 8-(*p*-tolyl)-BODIPY (**1a**, 14.1 mg, 0.05 mmol), 1,2,4-triazol (**2e**, 27.6 mg, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (1.0 mL) was stirred at 80 °C for 12 h. Purification *via* column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 20/1/1, v/v) afforded the product **3l** (11.4 mg) in 55% yield as a brown solid with a greenish metallic lustre. M.p.: 229-231 °C. ¹H NMR (400MHz, CDCl₃) δ = 2.50 (s, 3H), 6.96 (d, *J* = 4.4 Hz, 2H), 7.05 (d, *J* = 4.4 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.47 (d, *J* = 8.0 Hz, 2H), 8.15 (s, 2H), 9.31 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 21.7, 114.0, 129.6, 130.0, 130.8, 132.5, 142.1, 145.2, 145.3, 147.3, 153.1. HRMS (ESI⁺): calcd. for C₂₀H₁₆BF₂N₈ [M+H]⁺: 417.1554, found: 417.1554.

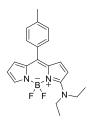
3,5-Di(1*H*-benzo[*d*]imidazol-1-yl)-8-(*p*-tolyl)-BODIPY (3m)


Following the general procedure, the mixture of 8-(*p*-tolyl)-BODIPY (**1a**, 14.1 mg, 0.05 mmol), benzimidazole (**2f**, 23.6 mg, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (1.0 mL) was stirred at 80 \degree for 12 h. Purification *via* column

chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 20/1/1, v/v) afforded the product **3m** (21.3 mg) in 83% yield as a black solid with a red metallic lustre. M.p.: > 250 °C. ¹H NMR (400MHz, CDCl₃) δ = 2.53 (s, 3H), 6.75 (d, J = 4.4 Hz, 2H), 7.15 (d, J = 4.4 Hz, 2H), 7.30-7.36 (m, 4H), 7.42 (d, J = 8.0 Hz, 2H), 7.46-7.49 (m, 2H). 7.55 (d, J = 8.0 Hz, 2H), 7.85-7.87 (m, 2H), 8.60 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 21.7, 111.2, 114.3, 121.2, 123.9, 124.4, 129.7, 130.1, 132.4, 133.0, 133.9, 142.1, 143.4, 143.5, 143.6, 143.8, 146.3, 146.5. HRMS (ESI⁺): calcd. for C₃₀H₂₁BF₂N₆Na [M+Na]⁺: 537.1781, found: 537.1780.


3,5-Di(9H-carbazole-9-yl)-8-(p-tolyl)-BODIPY (3n)

Following the general procedure, the mixture of 8-(*p*-tolyl)-BODIPY (**1a**, 14.1 mg, 0.05 mmol), carbazole (**2g**, 33.4 mg, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (1.0 mL) was stirred at 80 °C for 12 h. Purification *via* column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane/Et₃N = 60/4/4/1, v/v) afforded the product **3n** (23.9 mg) in 78% yield as a black powder. M.p.: > 250 °C. ¹H NMR (400MHz, CDCl₃) δ = 2.55 (s, 3H), 6.49 (d, *J* = 4.4 Hz, 2H), 7.18-7.22 (m, 6H), 7.30-7.36 (m, 8H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.68 (d, *J* = 8.0 Hz, 2H), 7.94 (d, *J* = 7.6 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ = 21.7, 111.7, 117.4, 120.1, 121.1, 124.4, 126.2, 129.6, 130.5, 131.2, 132.2, 133.9, 141.9, 142.0, 146.8, 150.2. HRMS (ESI⁺): calcd. for C₄₀H₂₇BF₂N₄Na [M+Na]⁺: 635.2189, found: 635.2190.

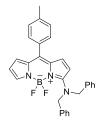

3,5-Di(1*H*-benzo[*d*]imidazol-1-yl)-8-(*p*-cyano-phenyl)-BODIPY (30)

Following the general procedure, the mixture of 8-(*p*-cyano-phenyl)-BODIPY (**1c**, 14.6 mg, 0.05 mmol), benzimidazole (**2f**, 23.6 mg, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (1.0 mL) was stirred at 80 °C for 12 h. Purification *via* column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 2/1/2, v/v) afforded the product **3o** (15.7 mg) in 60% yield as a red powder. M.p.: > 250 °C. ¹H NMR (400MHz, CDCl₃) δ = 6.81 (d, *J* = 4.4 Hz, 2H), 7.02 (d, *J* = 4.8 Hz, 2H), 7.32-7.39 (m, 4H), 7.46-7.48 (m, 2H), 7.78 (d, *J* = 8.4 Hz, 2H), 7.87 (dd, *J* = 6.0 Hz, 2.4 Hz, 2H), 7.93 (d, *J* = 8.4 Hz, 2H), 8.62 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 111.2, 114.97, 115.03, 117.9, 121.3, 124.2, 124.7, 131.3, 131.9, 132.55, 132.64, 133.7, 137.3, 142.2, 143.3, 143.9, 147.6. HRMS (ESI⁺): calcd. for C₃₀H₁₉BF₂N₇ [M+H]⁺: 526.1758, found: 526.1761.

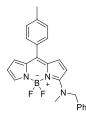
3,5-Di(1*H*-benzo[*d*]imidazol-1-yl)-8-(thiophen-2-yl)-BODIPY (3p)

Following the general procedure, the mixture of 8-(thiophen-2-yl)-BODIPY (**1e**, 13.7 mg, 0.05 mmol), benzimidazole (**2f**, 23.6 mg, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (1.0 mL) was stirred at 80 °C for 12 h. Purification *via* column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 2/1/2, v/v) afforded the product **3p** (5.1 mg) in 20% yield as a black powder. M.p.: 242-244 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.13 (d, *J* = 4.4 Hz, 2H), 7.33-7.39 (m, 4H), 7.50-7.53 (m, 3H), 7.68 (d, *J* = 2.0 Hz, 2H), 7.76-7.79 (m, 2H), 7.96 (s, 1H), 8.30 (d, *J* = 4.4 Hz, 1H), 8.42 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ = 111.4, 115.9, 120.1, 123.5, 124.4, 129.5, 131.7, 132.6, 133.2, 133.8, 134.8, 135.4, 138.6, 142.9, 143.7, 145.8. HRMS (ESI⁺): calcd. for C₂₇H₁₈BF₂N₆S [M+H]⁺: 507.1369, found: 507.1367.

3-(Diethylamino)-8-(p-tolyl)-BODIPY (4a)

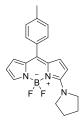

Following the general procedure, the mixture of 8-(*p*-tolyl)-BODIPY (**1a**, 14.1 mg, 0.05 mmol), diethylamine (**2h**, 17.4 μ L, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (1.0 mL) was stirred at 80 °C for 12 h. Purification *via* column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 10/1/10, v/v) afforded the product **4a** (16.2 mg) in 92% yield as a orange powder. M.p.: 110-112 °C. ¹H NMR (400MHz, CDCl₃) δ = 1.36 (t, *J* = 7.2 Hz, 6H), 2.43 (s, 3H), 3.83 (q, *J* = 6.8 Hz, 4H), 6.20 (d, *J* = 5.2 Hz, 1H), 6.32 (d, *J* = 1.6 Hz, 2H), 6.90 (d, *J* = 5.6 Hz, 1H), 7.23-7.25 (m, 2H), 7.34-7.36 (m, 2H), 7.43 (t, *J* = 1.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 13.9, 21.5, 47.0, 113.3, 113.9, 117.7, 128.9, 130.4, 130.5, 131.4, 131.9, 132.6, 135.8, 135.9, 138.9, 162.1. HRMS (ESI⁺): calcd. for C₂₀H₂₂BF₂N₃Na [M+Na]⁺: 376.1767, found: 376.1747.

3-(4-Morpholino)-8-(p-tolyl)-BODIPY (4b)

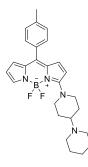

Following the general procedure, the mixture of 8-(*p*-tolyl)-BODIPY (**1a**, 14.1 mg, 0.05 mmol), morpholine (**2i**, 17.4 μ L, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (1.0 mL) was stirred at 80 °C for 12 h. Purification *via* column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 10/1/10, v/v) afforded the product **4b** (18.1 mg) in 99% yield as a orange powder. M.p.: 183-185 °C. ¹H NMR (400MHz, DMSO-*d*₆) δ = 2.40 (s, 3H), 3.77 (t, *J* = 4.8 Hz, 4H), 4.00 (t, *J* = 4.4 Hz, 4H), 6.21 (dd, *J* = 3.6 Hz, 0.8 Hz, 1H), 6.28 (dd, *J* = 3.6 Hz, 2.4 Hz, 1H), 6.82 (d, *J* = 5.2 Hz, 1H), 6.98 (d, *J* = 5.2 Hz, 1H), 7.30 (dd, *J* = 2.4 Hz, 1.6 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (100

MHz, DMSO- d_6) $\delta = 20.9$, 50.4, 66.2, 113.1, 115.8, 116.8, 129.0, 129.7, 130.1, 130.2, 130.9, 131.6, 134.9, 135.5, 138.7, 161.8. HRMS (ESI⁺): calcd. for C₂₀H₂₁BF₂N₃O [M+H]⁺: 368.1740, found: 368.1710.

3-(*N*,*N*-dibenzylamino)-8-(*p*-tolyl)-BODIPY (4c)

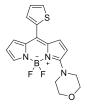

Following the general procedure, the mixture of 8-(*p*-tolyl)-BODIPY (**1a**, 14.1 mg, 0.05 mmol), dibenzylamine (**2j**, 38.4 μ L, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (1.0 mL) was stirred at 80 °C for 12 h. Purification *via* column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 10/1/10, v/v) afforded the product **4c** (23.8 mg) in 99% yield as a orange crystal. M.p.: 131-133 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 2.40 (s, 3H), 5.05 (s, 4H), 6.25 (dd, J = 4.0 Hz, 1.2 Hz, 1H), 6.30 (dd, J = 3.6 Hz, 2.4 Hz, 1H), 6.70 (d, J = 5.6 Hz, 1H), 6.98 (d, J = 5.2 Hz, 1H), 7.27-7.34 (m, 9H), 7.36-7.41 (m, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ = 20.9, 54.9, 113.5, 116.6, 117.6, 127.0, 127.6, 128.8, 129.0, 130.2, 130.4, 131.0, 131.2, 131.5, 134.9, 135.9, 136.5, 138.8, 163.8. HRMS (ESI⁺): calcd. for C₃₀H₂₆BF₂N₃Na [M+Na]⁺: 500.2080, found: 500.2076.

3-(N-benzyl-N-methylamino)-8-(p-tolyl)-BODIPY (4d)

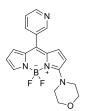

Following the general procedure, the mixture of 8-(*p*-tolyl)-BODIPY (**1a**, 14.1 mg, 0.05 mmol), *N*-methylbenzylamine (**2k**, 25.8 μ L, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (1.0 mL) was stirred at 80 °C for 12 h. Purification *via* column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 10/1/1, v/v) afforded the product **4d** (20.0 mg) in 99% yield as a orange powder. M.p.: 100-102 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 2.40 (s, 3H), 3.48 (s, 3H), 5.02 (s,

2H), 6.21 (d, J = 3.2 Hz, 1H), 6.29 (dd, J = 3.6 Hz, 2.4 Hz, 1H), 6.76 (d, J = 5.2 Hz, 1H), 6.97 (d, J = 5.2 Hz, 1H), 7.27 (d, J = 7.2 Hz, 2H), 7.32 (d, J = 8.4 Hz, 4H), 7.37-7.42 (m, 4H). ¹³C NMR (100 MHz, DMSO- d_6) $\delta = 20.9$, 58.2, 113.0, 116.4, 116.5, 126.8, 127.6, 128.8, 129.0, 129.5, 130.0, 130.1, 130.9, 131.6, 135.1, 135.6, 136.3, 138.6, 163.6. HRMS (ESI⁺): calcd. for C₂₄H₂₂BF₂N₃Na [M+Na]⁺: 424.1767, found: 424.1750.

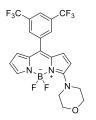
3-(Pyrrolidin-1-yl)-8-(p-tolyl)-BODIPY (4e)


Following the general procedure, the mixture of 8-(*p*-tolyl)-BODIPY (**1a**, 14.1 mg, 0.05 mmol), tetrahydro pyrrole (**2l**, 16.4 μ L, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (1.0 mL) was stirred at 80 °C for 12 h. Purification *via* column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 10/1/10, v/v) afforded the product **4e** (13.1 mg) in 75% yield as a black powder. M.p.: > 250 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 2.00 (s, 4H), 2.40 (s, 3H), 3.89 (s, 4H), 6.17 (d, *J* = 3.2 Hz, 1H), 6.26 (dd, J = 3.6 Hz, 2.4 Hz, 1H), 6.60 (d, *J* = 5.2 Hz, 1H), 6.97 (d, *J* = 5.2 Hz, 1H), 7.27 (dd, *J* = 2.4 Hz, 1.6 Hz, 1H), 7.31-7.38 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ = 21.5, 25.8, 51.5, 113.1, 114.5, 117.6, 128.9, 130.1, 130.5, 131.3, 132.0, 132.5, 135.5, 135.6, 138.8, 160.4. HRMS (ESI⁺): calcd. for C₂₀H₂₁BF₂N₃ [M+H]⁺: 352.1791, found: 352.1789.

3-[(**1**,**4**'-**Bipiperidin**)-**1**'-**y**]-**8**-(*p*-tolyl)-**BODIPY** (**4f**)

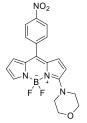

Following the general procedure, the mixture of 8-(p-tolyl)-BODIPY (1a, 14.1 mg,

0.05 mmol), 4-piperidinopiperidine (**2m**, 16.4 μ L, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (1.0 mL) was stirred at 80 °C for 12 h. Purification *via* column chromatography on silica gel (MeOH/dichloromethane = 1/30, v/v) afforded the product **4f** (22.3 mg) in 99% yield as a orange powder. M.p.: 174-176 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 1.37 (d, *J* = 4.8 Hz, 2H), 1.47 (d, *J* = 4.8 Hz, 4H), 1.54-1.61 (m, 2H), 1.87 (d, *J* = 10.8 Hz, 2H), 2.39 (s, 3H), 2.43-2.45 (m, 4H), 2.61 (t, *J* = 11.2 Hz, 1H), 3.29 (d, *J* = 12.0 Hz, 2H), 4.62 (d, *J* = 12.8 Hz, 2H), 6.17-6.18 (m, 1H), 6.26-6.27 (m, 1H), 6.82 (d, *J* = 5.6 Hz, 1H), 6.94 (d, *J* = 5.2 Hz, 1H), 7.28 (dd, *J* = 2.0 Hz, 1.2 Hz, 1H), 7.31-7.37 (m, 4H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ = 20.9, 24.6, 26.1, 28.3, 49.7, 49.8, 60.7, 112.9, 116.1, 116.3, 129.0, 129.2, 130.1, 131.0, 131.7, 135.1, 135.6, 138.6, 161.6. HRMS (ESI⁺): calcd. for C₂₆H₃₂BF₂N₄ [M+H]⁺: 449.2683, found: 449.2681.


3-(4-Morpholino)-8-(thiophen-2-yl)-BODIPY (4g)

Following the general procedure, the mixture of 8-(thiophen-2-yl)-BODIPY (**1e**, 13.7 mg, 0.05 mmol), morpholine (**2i**, 17.4 μ L, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (1.0 mL) was stirred at 80 °C for 12 h. Purification *via* column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 10/1/10, v/v) afforded the product **4g** (15.2 mg) in 85% yield as a red crystal. M.p.: 134-136 °C. ¹H NMR (400 MHz, CDCl₃) δ = 3.88-3.91 (m, 4H), 3.95-3.98 (m, 4H), 6.26 (d, *J* = 5.2 Hz, 1H), 6.38 (dd, *J* = 4.0 Hz, 2.4 Hz, 1H), 6.72 (d, *J* = 4.0 Hz, 1H), 7.15 (dd, *J* = 5.2 Hz, 3.6 Hz, 1H), 7.22 (d, *J* = 5.2 Hz, 1H), 7.30 (dd, *J* = 3.2 Hz, 1.2 Hz, 1H), 7.45 (dd, *J* = 2.4 Hz, 1.2 Hz, 1H), 7.50 (dd, *J* = 5.2 Hz, 1.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 50.7, 50.76, 50.82, 66.9, 113.0, 114.0, 119.6, 126.0, 127.3, 128.1, 130.4, 131.5, 132.0, 135.5, 135.7, 136.0, 162.3. HRMS (ESI⁺): calcd. for C₁₇H₁₆BF₂N₃NaOS [M+Na]⁺: 382.0967, found: 382.0973.

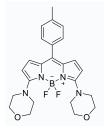
3-(4-Morpholino)-8-(pyridin-3-yl)-BODIPY (4h)


Following the general procedure, the mixture of 8-(pyridin-3-yl)-BODIPY (**1f**, 13.4 mg, 0.05 mmol), morpholine (**2i**, 17.4 μ L, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (1.0 mL) was stirred at 80 °C for 12 h. Purification *via* column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane/Et₃N = 5/1/5/1, v/v) afforded the product **4h** (17.5 mg) in 99% yield as a orange crystal. M.p.: 172-174 °C. ¹H NMR (400 MHz, CDCl₃) δ = 3.89-3.91 (m, 4H), 3.98-4.01 (m, 4H), 6.30 (d, *J* = 5.2 Hz, 1H), 6.33-6.38 (m, 2H), 6.85 (d, *J* = 5.2 Hz, 1H), 7.40-7.44 (m, 1H), 7.47 (d, *J* = 0.8 Hz, 1H), 7.80-7.83 (m, 1H), 8.69-8.73 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 50.6, 50.65, 50.70, 66.8, 113.7, 114.1, 118.8, 123.1, 128.9, 131.0, 131.4, 132.0, 135.1, 135.3, 137.6, 150.2, 150.4, 162.2. HRMS (ESI⁺): calcd. for C₁₈H₁₈BF₂N₄O [M+H]⁺: 355.1536, found: 355.1535.

3-(4-Morpholino)-8-(3,5-bis(trifluoromethyl)phenyl)-BODIPY (4i)

Following the general procedure, the mixture of 8-(3,5-bis(trifluoromethyl)phenyl)-BODIPY (**1d**, 20.2 mg, 0.05 mmol), morpholine (**2i**, 17.4 μ L, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (1.0 mL) was stirred at 80 °C for 12 h. Purification *via* column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 10/1/10, v/v) afforded the product **4i** (19.5 mg) in 80% yield as a orange crystal. M.p.: 228-231 °C. 1H NMR (400 MHz, CDCl₃) δ = 3.89-3.92 (m, 4H), 4.01-4.03 (m, 4H), 6.26 (d, *J* = 3.6 Hz, 1H), 6.35 (d, *J* = 5.2 Hz, 1H), 6.39 (dd, *J* = 3.6 Hz, 2.4 Hz, 1H), 6.77 (d, *J* = 5.2 Hz, 1H), 7.49 (dd, *J* = 2.0 Hz, 1.2 Hz, 1H), 7.94 (s, 2H), 8.00 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 50.9, 66.9,

114.5, 114.6, 118.7, 123.2 (q, $J_{C-F} = 273.0$ Hz), 128.8, 129.9-130.1 (m), 130.47-130.50 (m), 131.0, 132.0 (q, J = 33.7 Hz), 131.0, 132.5, 134.8, 135.4, 137.3, 162.4. HRMS (ESI⁺): calcd. for C₂₁H₁₇BF₈N₃O [M+H]⁺: 490.1331, found: 490.1316.

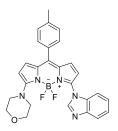


3-(4-Morpholino)-8-(4-nitrophenyl)BODIPY (4j)

Following the general procedure, the mixture of 8-(4-nitrophenyl)BODIPY (**1i**, 15.7 mg, 0.05 mmol), morpholine (**2i**, 17.4 μ L, 0.10 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (1.0 mL) was stirred at 80 °C for 12 h. Purification *via* column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 1/1/1, v/v) afforded the product **4j** (17.2 mg) in 86% yield as a orange powder. M.p.: > 250 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 3.79 (t, *J* = 4.4 Hz, 4H), 4.05 (t, *J* = 4.4 Hz, 4H), 6.19 (d, *J* = 2.8 Hz, 1H), 6.30 (dd, *J* = 3.6 Hz, 2.4 Hz, 1H), 6.94 (d, *J* = 5.6 Hz, 1H), 7.03 (d, *J* = 5.6 Hz, 1H), 7.33 (dd, *J* = 2.4 Hz, 1.2 Hz, 1H), 7.75-7.79 (m, 2H), 8.33-8.37 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ = 50.7, 66.3, 113.4, 116.3, 117.3, 123.6, 127.0, 129.8, 130.1, 131.7, 141.2, 147.7, 162.1. HRMS (ESI⁺): calcd. for C₁₉H₁₇BF₂N₄NaO₃⁺ [M+Na]⁺: 421.1254, found: 421.1254.

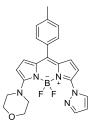
(3) The procedure for double-amination of BODIPYs with morpholine

A dried Schlenk tube with a magnetic stir bar was charged with BODIPY (0.1 mmol), morpholine (0.40 mmol, 4.0 equiv) and AgOAc (4.0 equiv). The system was evacuated thrice and back filled with N₂. Next, the solvent DMSO was added *via* a syringe and the rubber septum was replaced with a polytetrafluoroethylene stopper under N₂. Then the reaction mixture was stirred at the 80 °C for 12 h in an oil bath. After the reaction mixture was cooled to ambient temperature, the solvent was removed under reduced pressure. The residue was dissolved in 10 mL of CH₂Cl₂, filtered through a celite pad, and then washed with 20-30 mL of CH₂Cl₂. The combined filtrates were concentrated and purified *via* column chromatography on silica gel (100-200 mesh) to provide the desired products.



3,5-Di(4-morpholino)-8-(p-tolyl)-BODIPY (3q)

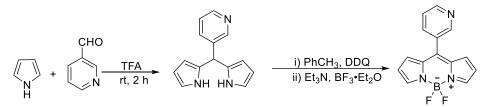
Following the general procedure, the mixture of 8-(*p*-tolyl)-BODIPY (**1a**, 28.2 mg, 0.10 mmol), morpholine (**2i**, 34.8 μ L, 0.20 mmol), AgOAc (66.8 mg, 4.0 equiv), DMSO (1.0 mL) was stirred at 80 °C for 12 h. Purification *via* column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 10/1/10, v/v) afforded the product **3q** (8.1 mg) in 18% yield as a black powder. M.p.: 215-217 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 2.39 (s, 3H), 3.49 (t, *J* = 4.8 Hz, 8H), 3.72 (t, *J* = 4.8 Hz, 8H), 6.25 (d, *J* = 4.8 Hz, 2H), 6.52 (d, *J* = 4.8 Hz, 2H), 7.29-7.34 (m, 4H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ = 21.0, 51.2, 66.1, 108.1, 127.2, 128.9, 130.3, 130.5, 131.4, 131.5, 138.7, 159.2. HRMS (ESI⁺): calcd. for C₂₄H₂₇BF₂N₄NaO₂ [M+Na]⁺: 475.2087, found: 475.2085.


(4) The procedure for amination of 3-(4-morpholino)-8-(*p*-tolyl)-BODIPY with 2a or 2f

A dried Schlenk tube with a magnetic stir bar was charged with 3-(4-morpholino)-8-(*p*-tolyl)-BODIPY (**4b**, 0.05 mmol), **2a** or **2f** (0.20 mmol, 4.0 equiv) and AgOAc (33.4 mg, 4.0 equiv). The system was evacuated thrice and back filled with N₂. Next, the solvent DMSO/H₂O/HOAc was added sequence *via* a syringe and the rubber septum was replaced with a polytetrafluoroethylene stopper under N₂. Then the reaction mixture was stirred at the 80 °C for 12 h in an oil bath. After the reaction mixture was cooled to ambient temperature, the solvent was removed under reduced pressure. The residue was dissolved in 10 mL of CH₂Cl₂, filtered through a celite pad, and then washed with 20-30 mL of CH₂Cl₂. The combined filtrates were concentrated and purified *via* column chromatography on silica gel (100-200 mesh) to provide the desired products.

3-(1*H*-Benzo[*d*]imidazol-1-yl)-5-(4-morpholino)-8-(*p*-tolyl)-BODIPY (5a)

Following the general procedure, the mixture of 3-(4-morpholino)-8-(p-tolyl)-BODIPY (4b, 17.9 mg, 0.05 mmol), benzimidazole (2f, 23.6 mg, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (0.5 mL)/H₂O (0.5 mL)/HOAc (0.5 mL) was stirred at 80 °C for 12 h. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 1/1/1, v/v) afforded the product **5a** (6.0 mg) in 25% yield as a black solid. M.p.: > 250 $^{\circ}$ C. ¹H NMR (400 MHz, DMSO- d_6) $\delta = 2.42$ (s, 3H), 3.66-3.68 (m, 4H), 3.86-3.88 (m, 4H), 6.35 (d, *J* = 4.0 Hz, 1H), 6.46 (d, *J* = 4.0 Hz, 1H), 6.93 (d, *J* = 5.6 Hz, 1H), 7.04 (d, J = 5.6 Hz, 1H), 7.25-7.31 (m, 3H), 7.37 (d, J = 8.0 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H)2H), 7.71-7.75 (m, 1H), 8.31 (s, 1H). ¹³C NMR (100 MHz, DMSO- d_6) $\delta = 21.0, 50.6$, 66.1, 110.7, 110.9, 115.8, 117.5, 119.5, 122.2, 123.3, 128.8, 129.2, 130.1, 130.3, 130.9, 132.2, 135.7, 135.8, 138.9, 142.5, 144.9, 162.1. HRMS (ESI⁺): calcd. for $C_{27}H_{25}BF_{2}N_{5}O[M+H]^{+}$: 484.2115, found: 484.2123.



3-(1H-Pyrazol-1-yl)-5-(4-morpholino)-8-(p-tolyl)-BODIPY (5b)

Following the general procedure, the mixture of 3-(4-morpholino)-8-(*p*-tolyl)-BODIPY (**4b**, 17.9 mg, 0.05 mmol), pyrazole (**2a**, 13.6 mg, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv), DMSO (0.5 mL)/H₂O (0.5 mL)/HOAc (0.5 mL) was stirred at 80 °C for 12 h. Purification *via* column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 5/1/5, v/v) afforded the product **5b** (6.9 mg) in 32% yield as a brown solid with a greenish metallic lustre. M.p.: 195-197 °C. ¹H NMR (400 MHz, DMSO- d_6) δ = 2.41 (s, 3H), 3.74 (t, J = 4.8

Hz, 4H), 3.95 (t, J = 4.8 Hz, 4H), 6.25 (d, J = 3.6 Hz, 1H), 6.38 (d, J = 4.0 Hz, 1H), 6.48 (dd, J = 2.8 Hz, 2.0 Hz, 1H), 6.88 (d, J = 5.6 Hz, 1H), 6.98 (d, J = 5.2 Hz, 1H), 7.34-7.40 (m, 4H), 7.68 (d, J = 2.0 Hz, 1H), 8.17 (d, J = 2.4 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) $\delta = 21.0$, 50.6, 66.2, 106.5, 109.0, 116.8, 129.1, 129.4, 131.1, 131.7, 131.8, 131.9, 134.7, 135.3, 138.8, 139.4, 140.5, 161.9. HRMS (ESI⁺): calcd. for C₂₃H₂₃BF₂N₅O [M+H]⁺: 434.1958, found: 434.1933.

(5) Synthesis of 8-(pyridin-3-yl)-BODIPY (1f) substrates

A 250 mL flask was charged with pyrrole (1.2 mol) and 3-pyridinecarboxaldehyde (60 mmol), stirred at room temperature for 10 min under N₂ atmosphere without the light, and then, trifluoroacetic acid (1.5 mL) was added. The mixture was stirred for 4 h. Upon completion of the reaction by TLC assay, the dilute NaOH (0.1 mol/L) was added to quench the reaction. The product was extracted with ethyl acetate, dried over anhydrous Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified *via* silica gel column chromatography (petroleum ether/dichloromethane = 1/1, v/v) to give the corresponding dipyrromethanes.

Then a 250 mL flask was charged with the corresponding dipyrromethanes (30 mmol), DDQ (1.2 equiv) and toluene (120 mL). The mixture was stirred for 3 h at room temperature under N₂ atmosphere. And then Et₃N (30 mL) and BF₃·Et₂O (28 mL) was added to the reaction. The mixture was stirred for another 11 h. The product was extracted with ethyl acetate, dried over anhydrous Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified *via* silica gel column chromatography (petroleum ether/dichloromethane = 1/1, v/v) to give the 8-(pyridin-3-yl)-BODIPY Yield: (5 %). ¹H NMR (400 MHz, CDCl₃) δ = 6.58 (s, 2H), 6.90 (s, 2H), 7.48-7.53 (m, 1H), 7.88-7.92 (m, 1H), 7.98 (s, 2H), 8.81-8.84 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 119.3, 123.4, 130.0, 131.4, 135.0, 137.7, 143.3,

145.2, 150.2, 151.8. HRMS (ESI⁺): calcd. for C₁₄H₁₁BF₂N₃ [M+H]⁺: 270.1014, found: 270.1007.

III. Single crystal X-ray structures of 3m and 4b

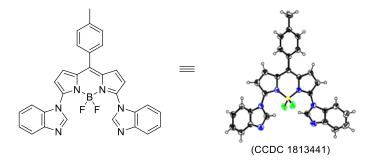


Fig. S1 ORTEP diagram of 3m.

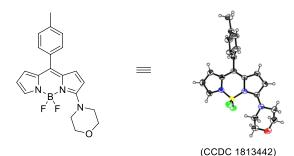


Fig. S2 ORTEP diagram of 4b.

IV. Mechanistic study

General procedure for direct C-H amination of BODIPYs in the presence of radical scavenger

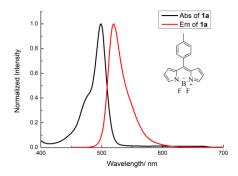
A dried Schlenk tube with a magnetic stir bar was charged with 8-(*p*-tolyl)-BODIPY (**1a**, 14.1 mg, 0.05 mmol), pyrazole (**2a**, 13.6 mg, 0.20 mmol), AgOAc (33.4 mg, 4.0 equiv) and the radical scavenger. The system was evacuated thrice and back filled with N₂. Next, the solvent DMSO was added *via* a syringe and the rubber septum was replaced with a polytetrafluoroethylene stopper under N₂. Then the reaction mixture was stirred at the 80 °C for 12 h in an oil bath. After the reaction mixture was cooled to ambient temperature, the solvent was removed under reduced pressure. The residue was dissolved in 10 mL of CH₂Cl₂, filtered through a celite pad, and then washed with

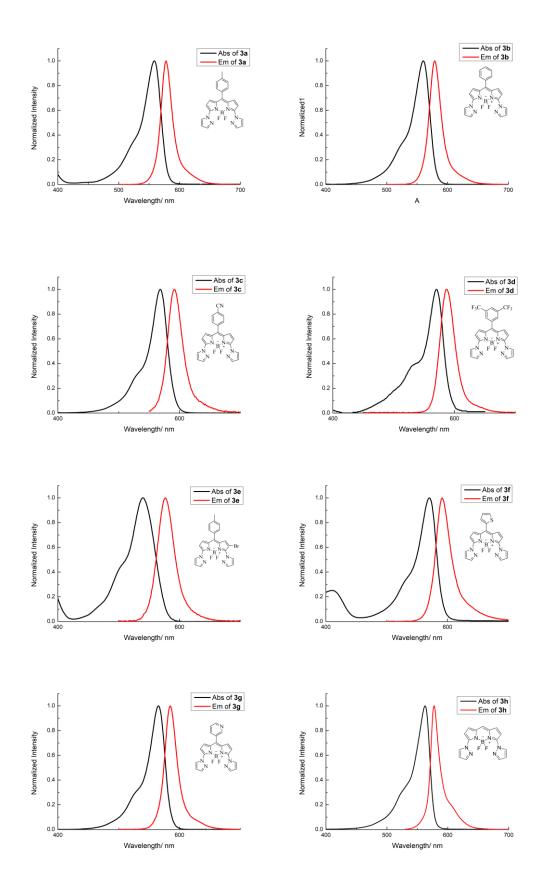
20-30 mL of CH_2Cl_2 . The combined filtrates were concentrated and purified *via* column chromatography on silica gel (100-200 mesh) to provide the desired products.

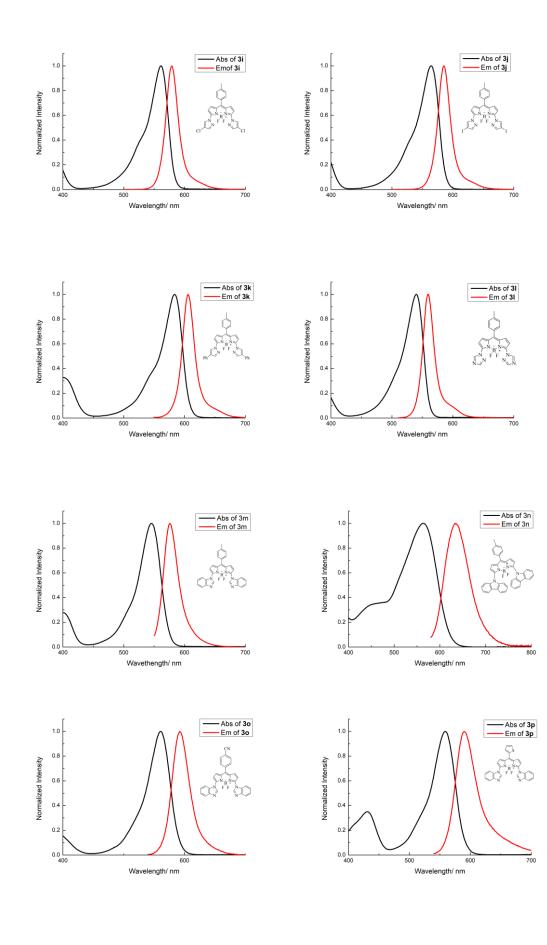
Table S2. Direct C–H amination of BODIPYs in the presence of radical scavenger^a

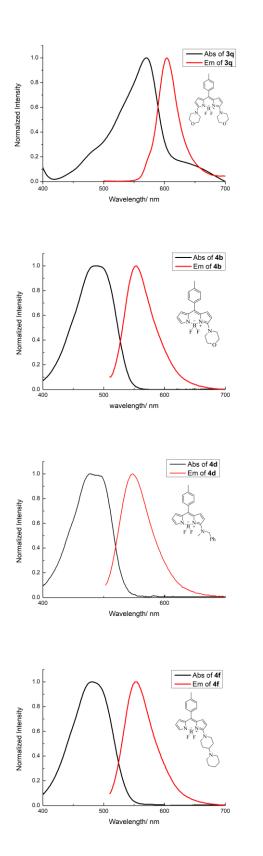
	$ \begin{array}{c} $	AgOAc (4 equiv) radical scavenger DMSO, 80 °C, 12 h	\vec{F} \vec{F} \vec{N}
Entry	Radical Scavenger	Equivalent	Yield $(\%)^b$
1	TEMPO	2	37
2	TEMPO	1	58
3	TEMPO	0.5	68
4	BHT	2	19
5	BHT	1	39
6	BHT	0.5	50
7	ascorbic acid	2	0
8	ascorbic acid	1	0
9	ascorbic acid	0.5	14

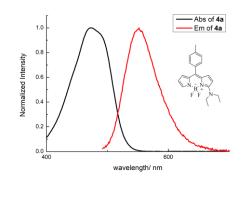
^{*a*}Reaction conditions: 8-(*p*-Tolyl)-BODIPY (**1a**, 0.05 mmol), pyrazole (**2a**, 4.0 equiv), AgOAc (4.0 equiv) and solvent (1.0 mL) at 80 °C for 12 h under N₂. ^{*b*}Isolated yields. TEMPO = 2,2,6,6-tetramethyl-1-piperidinyloxy; BHT = 2,6-*di*-tert-butyl-4-methylphenol.

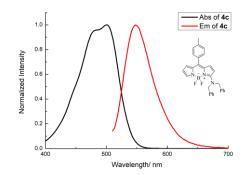

V. Photophysical data of BODIPYs

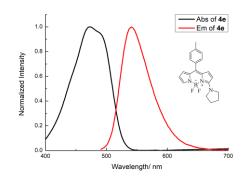

Table S3. Absorption maxima, emission maxima, Stokes shifts and fluorescencequantum yields of BODIPYs

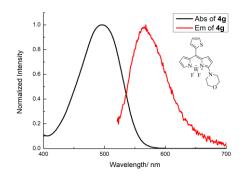

Connel	$\lambda_{\rm abs} \left({\rm nm} \right)^a$	$\lambda_{\rm em} \left({\rm nm} \right)^b$	$\left(arPhi_{\mathrm{f}} ight)^{c}$	Stokes Shift
Compd.	in CH ₂ Cl ₂	in CH ₂ Cl ₂	in CH ₂ Cl ₂	(nm)
1 a	499	520	0.01	21
3 a	559	578	0.60	19
3 b	560	579	0.64	19
3c	568	591	0.18	23
3d	571	587	0.44	16
3e	540	577	0.30	37
3f	571	591	0.03	20
3 g	565	585	0.68	20


3h	562	578	0.81	16
3i	562	579	0.76	17
3j	565	585	0.72	20
3k	584	606	0.80	22
31	540	559	0.69	19
3m	546	576	0.20	30
3n	564	636	< 0.01	72
30	561	592	0.07	31
3p	559	590	0.01	31
3q	570	604	< 0.01	34
4 a	473	552	< 0.01	79
4 b	488	547	< 0.01	59
4 c	501	548	< 0.01	47
4d	489	548	< 0.01	59
4 e	473	541	< 0.01	68
4f	481	554	< 0.01	73
4 g	496	564	< 0.01	68
4h	487	557	< 0.01	70
4 i	491	562	< 0.01	71
4j	496	570	< 0.01	74
5a	484	564	0.01	80
5b	502	581	< 0.01	79


^{*a*}Absorption maximum in CH₂Cl₂ at 1×10^{-5} mol/L. ^{*b*}Emission maximum in CH₂Cl₂ at 1×10^{-5} mol/L. ^{*c*}Absolute quantum yield determined in CH₂Cl₂ at 1×10^{-5} mol/L with an integrating sphere system.







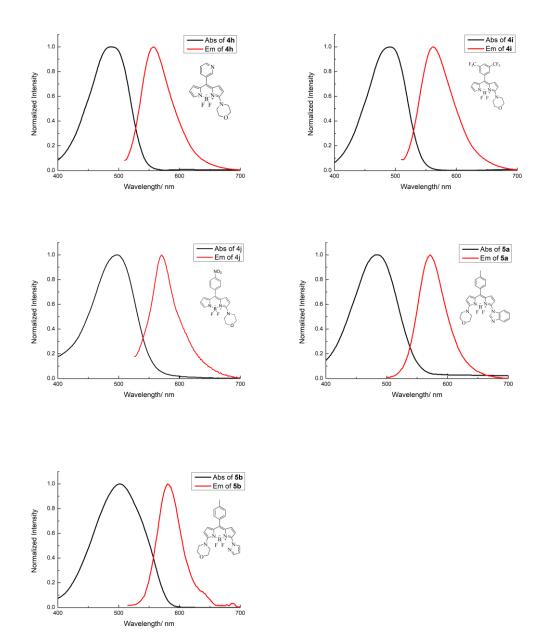
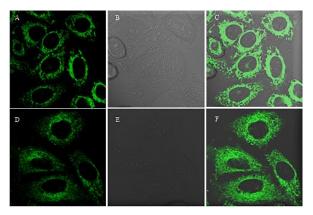
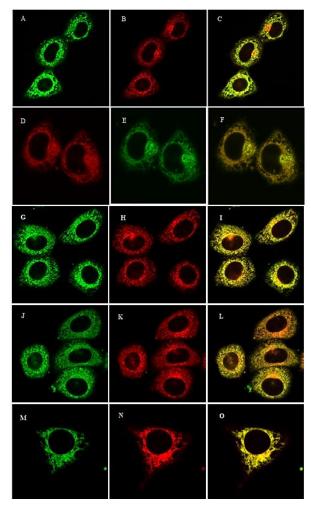


Fig. S3 Normalized UV-*vis*-NIR absorption spectra (black lines) and fluorescence emission spectra (red lines) of BODIPYs in CH_2Cl_2 (1×10⁻⁵ mol/L).


VI. Cell imaging experiments and cytotoxicity assays

i) Cell culture

HepG2 cells were hatched in DMEM (Dublecco's modified Eagle's Medium) supplemented with 10% (v/v) FBS (fetal bovine serum), 100 kU/L of penicillin, and 100 mg/L of streptomycin at 37 °C in a humidified atmosphere containing 5% CO₂.


ii) Confocal imaging experiments

For Confocal fluorescence images experiments, HepG2 cells were incubated with 2.5 μ M of **3** or **4** in PBS (phosphate buffered solution) containing 1% DMSO for 15 min at 37 °C. After incubation HepG2 cells were washed twice with PBS. The cells were observed with a Leica TCS SP8 confocal laser scanning microscope.

Fig. S4 (A) Fluorescence images of HepG2 cells stained with **3m**; (B) Bright-field image of HepG2 cells stained with **3m**; (C) Merged image of A and B; (D) Fluorescence images of HepG2 cells stained with **4b**; (E) Bright-field image of HepG2 cells stained with **4b**; (F) Merged image of D and E. HepG2 cells cultured with **3m** (2.5 μ M, $\lambda_{ex} = 543$ nm, $\lambda_{em} = 550-650$ nm) and **4b** (2.5 μ M, $\lambda_{ex} = 488$ nm, $\lambda_{em} = 450-550$ nm) in PBS containing 1% DMSO.

For subcellular co-localization experiments, live cells were incubated with 2.5 μ M of **3m**, **3o**, **3p**, **3q** or **4b** in a PBS containing 1% DMSO for 15 min at 37 °C. After incubated live cells were washed twice with PBS and 1 μ M ER-TrackerTM Red or ER-TrackerTM Green was added and incubated for an additional 30 min before imaging. The cells were observed with a Leica TCS SP8 confocal laser scanning microscope.

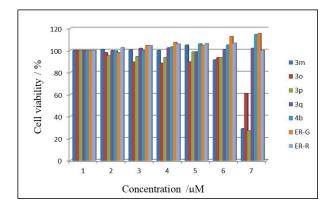


Fig. S5 Fluorescent images of HepG2 cells: (A) Stained with ER TrackerTM Green ($\lambda_{ex} = 488$ nm, $\lambda_{em} = 450-550$ nm); (B) Stained with **3m** ($\lambda_{ex} = 543$ nm, $\lambda_{em} = 550-650$ nm); (C) Merged image of A and B; (D) Stained with ER TrackerTM Red ($\lambda_{ex} = 543$ nm, $\lambda_{em} = 550-650$ nm); (E) Stained with **4b** ($\lambda_{ex} = 488$ nm, $\lambda_{em} = 450-550$ nm); (F) Merged image of D and E. (G) Stained with ER TrackerTM Green ($\lambda_{ex} = 488$ nm, $\lambda_{em} = 450-550$ nm); (I) Merged image of G and H; (J) Stained with ER TrackerTM Green ($\lambda_{ex} = 488$ nm, $\lambda_{em} = 450-650$ nm); (I) Merged image of G and H; (J) Stained with ER TrackerTM Green ($\lambda_{ex} = 488$ nm, $\lambda_{em} = 450-550$ nm); (K) Stained with **3p** ($\lambda_{ex} = 543$ nm, $\lambda_{em} = 550-650$ nm); (L) Merged image of J and K. (M) Stained with ER TrackerTM Green ($\lambda_{ex} = 488$ nm, $\lambda_{em} = 550-650$ nm); (N) Stained with **3q** ($\lambda_{ex} = 543$ nm, $\lambda_{em} = 450-550$ nm); (N) Stained with **3q** ($\lambda_{ex} = 543$ nm, $\lambda_{em} = 450-550$ nm); (N) Stained with **3q** ($\lambda_{ex} = 543$ nm, $\lambda_{em} = 450-550$ nm); (N) Stained with **3q** ($\lambda_{ex} = 543$ nm, $\lambda_{em} = 450-550$ nm); (N) Stained with **3q** ($\lambda_{ex} = 543$ nm, $\lambda_{em} = 450-550$ nm); (N) Stained with **3q** ($\lambda_{ex} = 543$ nm, $\lambda_{em} = 450-550$ nm); (N) Stained with **3q** ($\lambda_{ex} = 543$ nm, $\lambda_{em} = 450-550$ nm); (N) Stained with **3q** ($\lambda_{ex} = 543$ nm, $\lambda_{em} = 450-550$ nm); (N) Stained with **3q** ($\lambda_{ex} = 543$ nm, $\lambda_{em} = 550-650$ nm); (N) Stained with **3q** ($\lambda_{ex} = 543$ nm, $\lambda_{em} = 450-550$ nm); (N) Stained with **3q** ($\lambda_{ex} = 543$ nm, $\lambda_{em} = 550-650$ nm); (N) Stained with **3q** ($\lambda_{ex} = 543$ nm, $\lambda_{em} = 450-550$ nm); (N) Stained with **3q** ($\lambda_{ex} = 543$ nm, $\lambda_{em} = 550-650$ nm); (N) Stained with **3q** ($\lambda_{ex} = 543$ nm, $\lambda_{em} = 550-650$ nm); (O) Merged image of M and N.

ii) Cytotoxicity assays

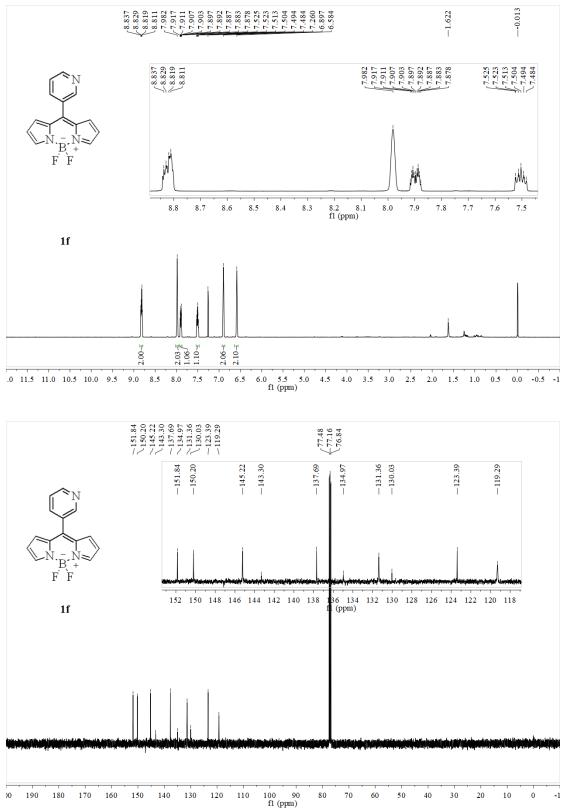
Cell counting Kit-8 (CCK-8) assays were performed to evaluate the cytotoxicity effect of **3m**, **3o**, **3p**, **3q** and **4b**. HepG2 cells were incubated in a 96-well culture plates at a volume of 100 μ L (1×10⁴ cells/mL) for a stationary culture. This media were changed into fresh media with a final volume of 200 μ L containing sample in the 2-fold down dilution series and then incubated for 24 h. Then 10 μ L of CCK-8 solution was added to each well, incubated for an additional 1 h and then absorbance

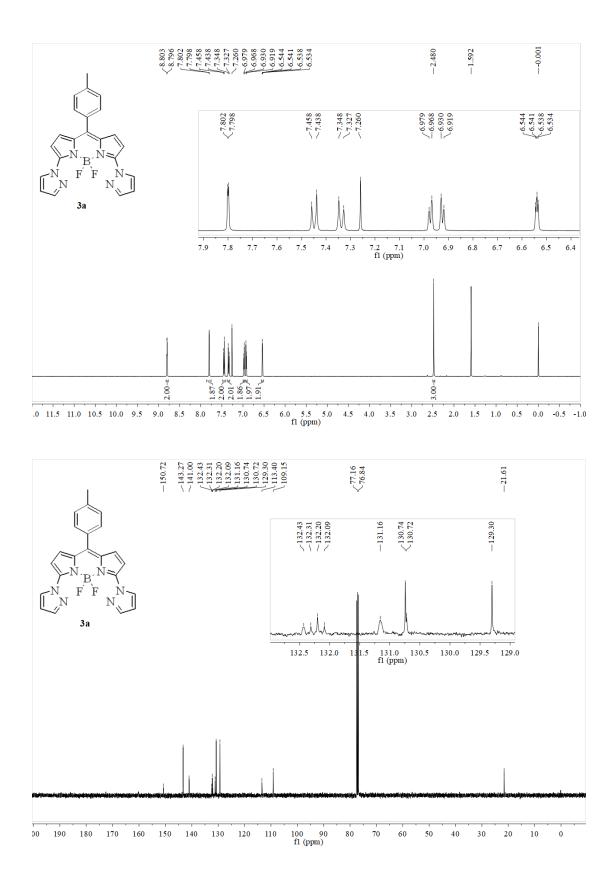
readings at a wavelength of 490 nm were taken on a spectrophotometer (Molecular Devices, Sunnyvale, USA). The cell viability was calculated by the following formula: (mean optical density(OD) in treated wells/mean OD in control wells)×100%.

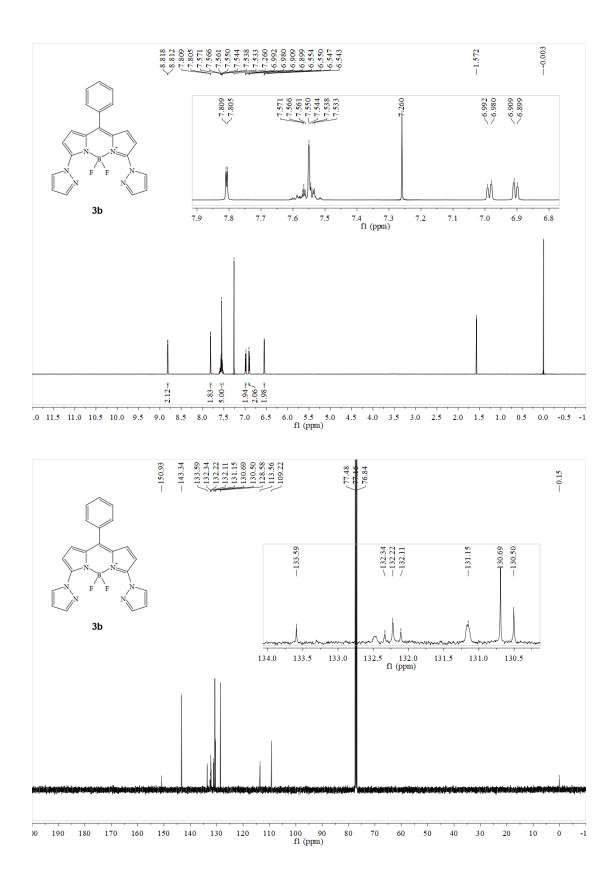
Fig. S6 Cell viability values (%) estimated by CCK8 assays on HepG2 cells, which were cultured in the presence of 0.25-8 μ M of **3m**, **3o**, **3p**, **3q**, **4b**, ER TrackerTM Red or ER TrackerTM Green for 24 h at 37 °C.

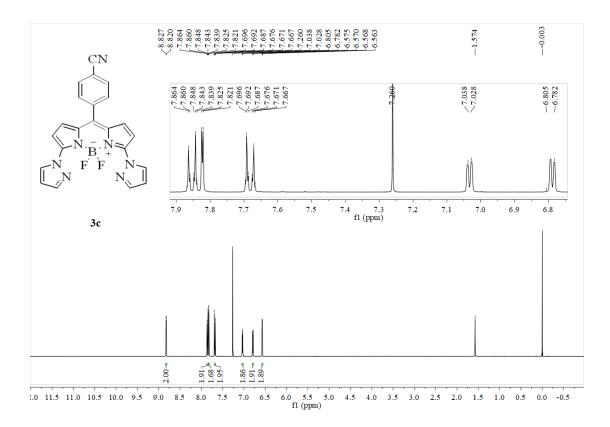
VII. References

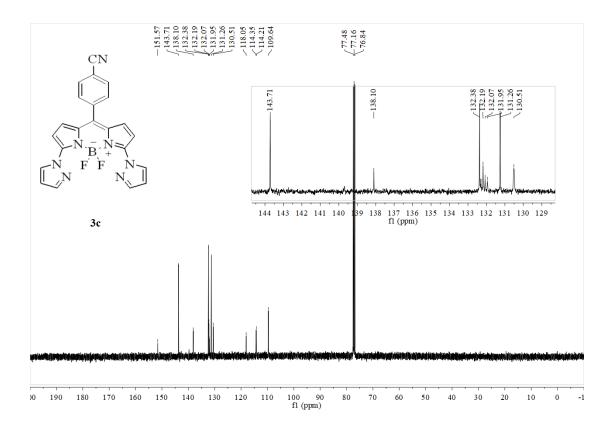
1. D. Prasannan, D. Raghav, S. Sujatha, H. Hareendrakrishnakumar, K. Rathinasamy and C. Arunkumar, *RSC Adv.*, 2016, **6**, 80808.

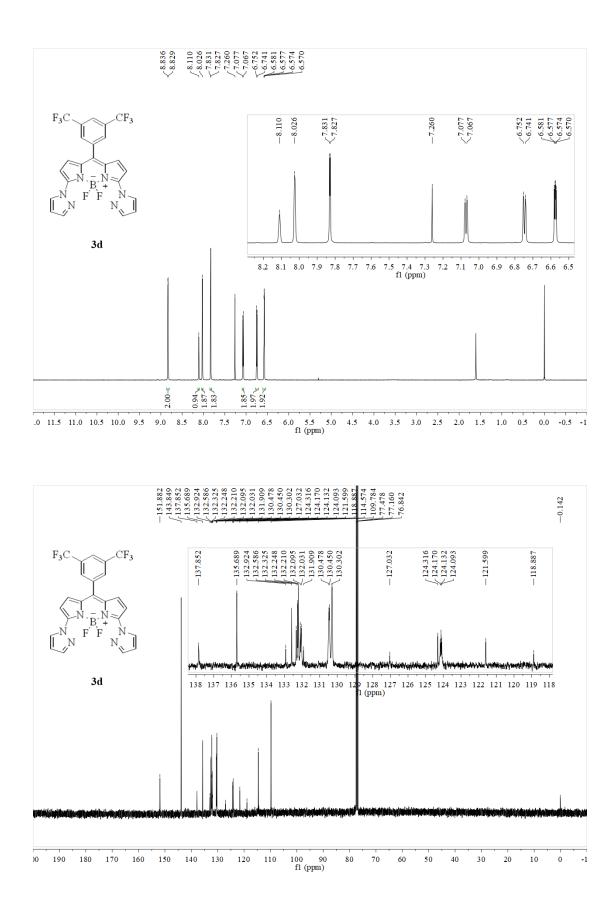

2. X. Zhang, F. Xu, P. Guo and X. Qian, New J. Chem., 2012, 36, 1621.

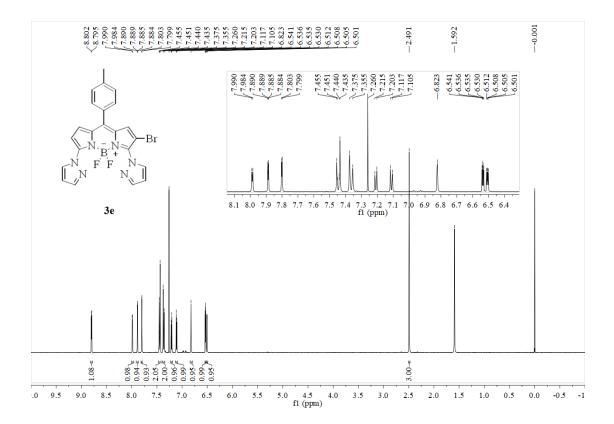

3. M. Hecht, T. Fischer, P. Dietrich, W. Kraus, A. B. Descalzo, W. E. S. Unger and K. Rurack, *ChemistryOpen*, 2013, **2**, 25.

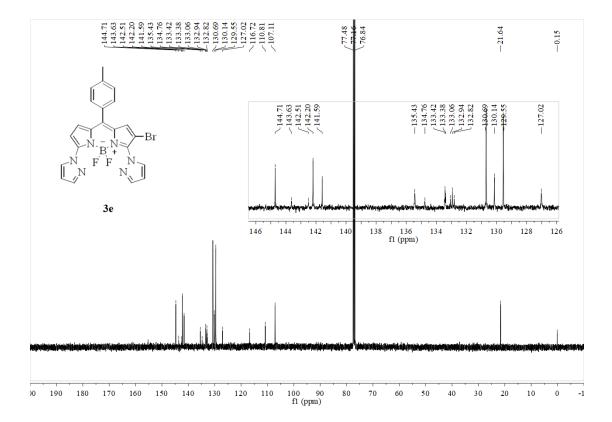

4. J. Songkhao, R. Banerjee, S. Debnath, S. Narasimhan, N. Wannaprom, P. Vanalabhpatana, N. Seriani, R. Gebauer and P. Thamyongkit, *Dyes and Pigments*, 2017, **142**, 558.

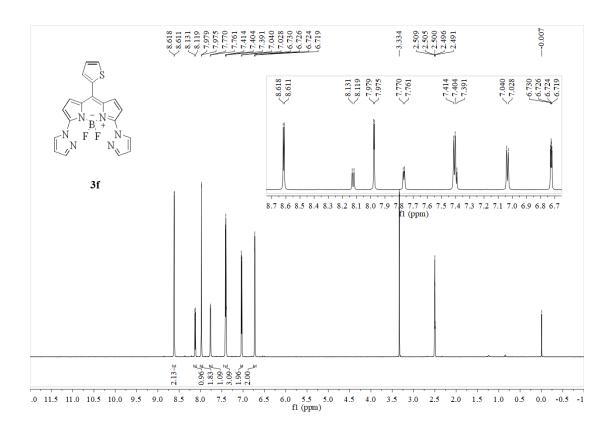

5. B. R. Groves, S. M. Crawford, T. Lundrigan, C. F. Matta, S. Sowlati and A. Thompson, *Chem. Commun.*, 2013, **49**, 816.

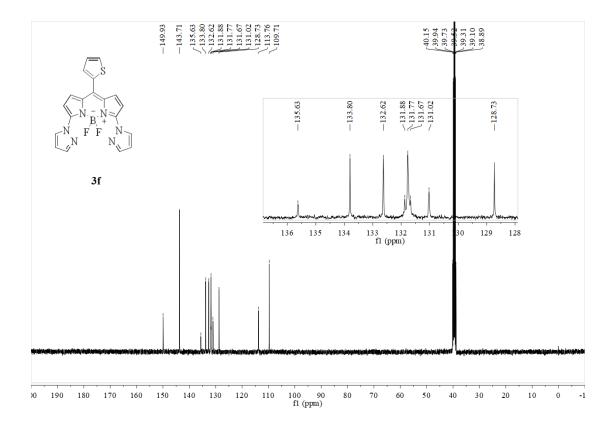


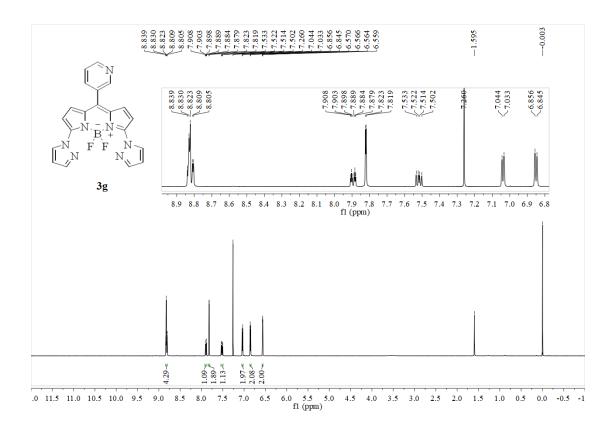


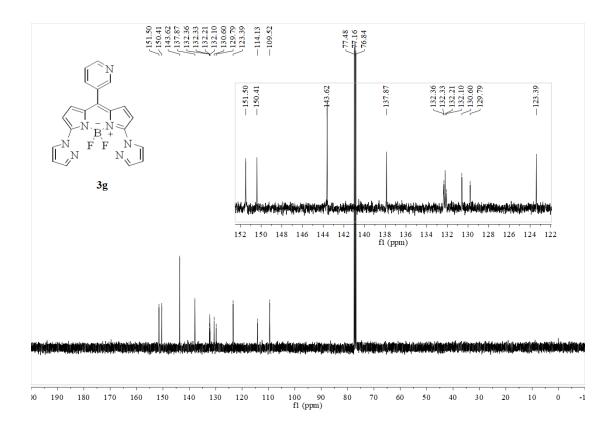


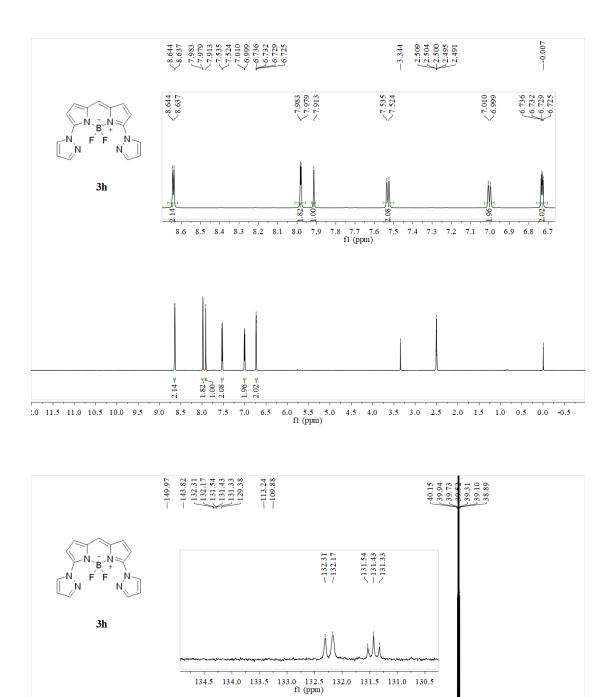


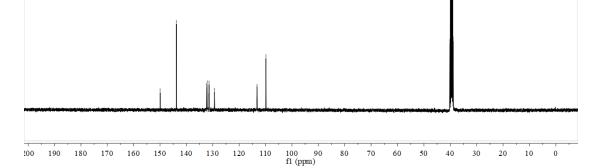


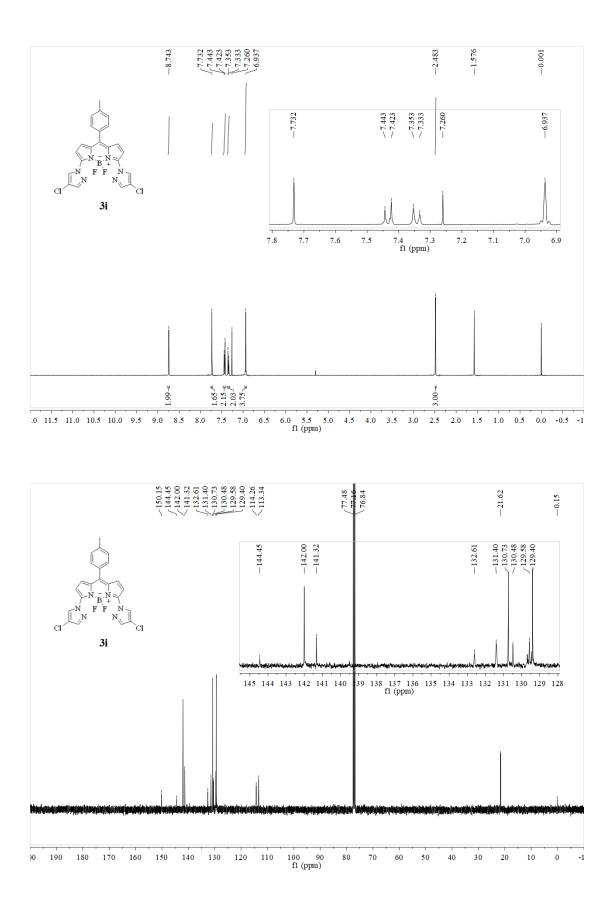


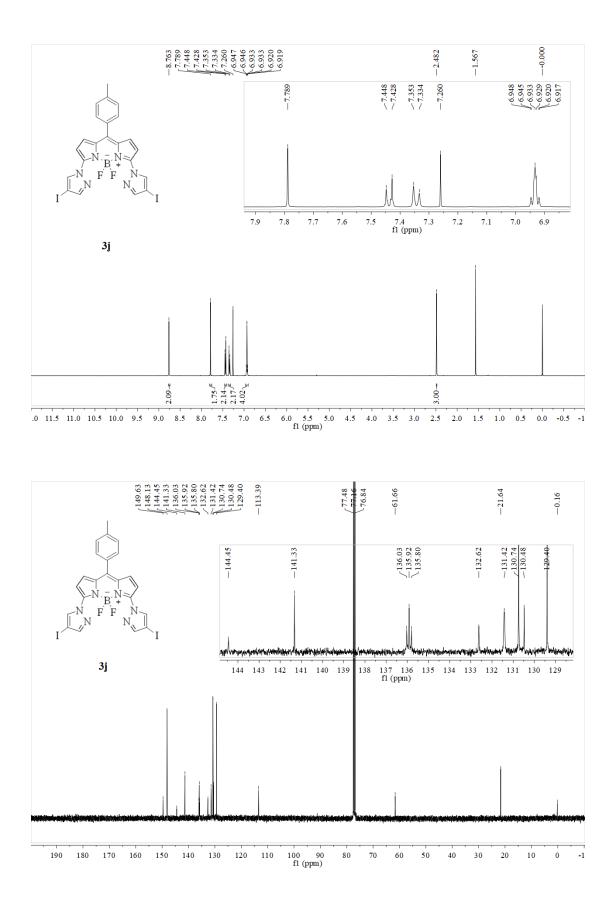


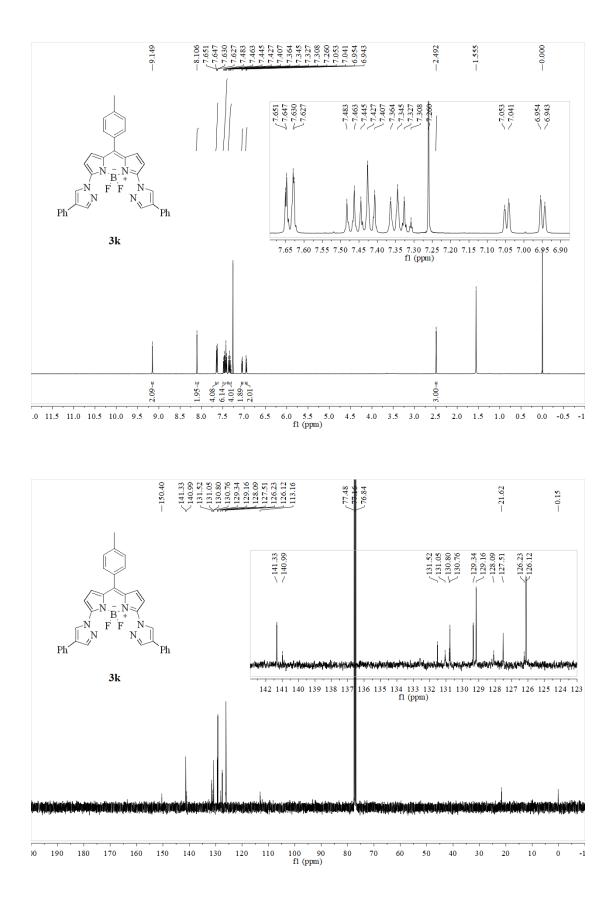


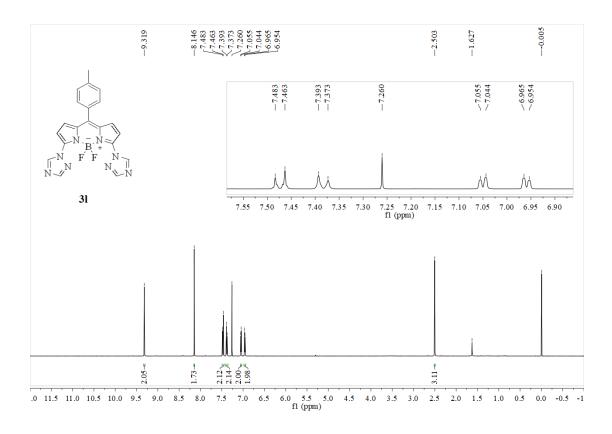


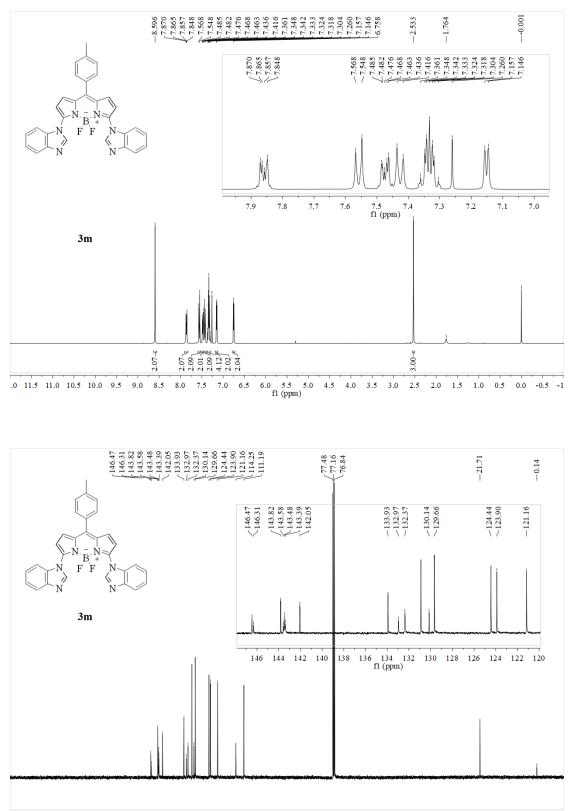


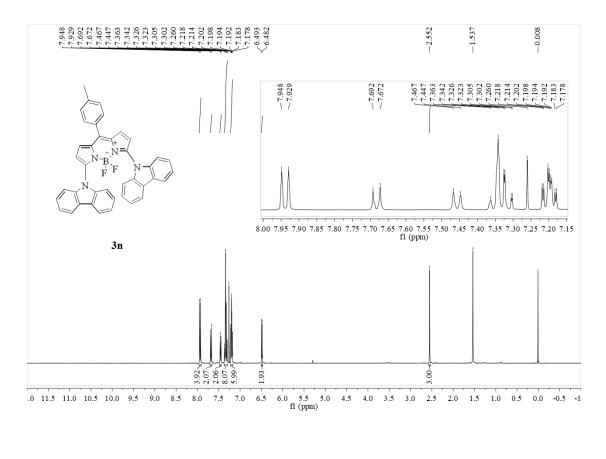


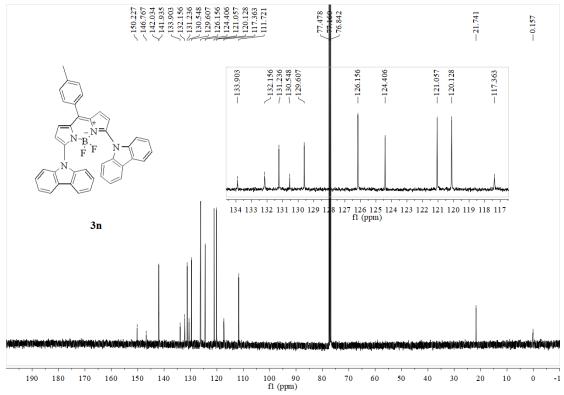


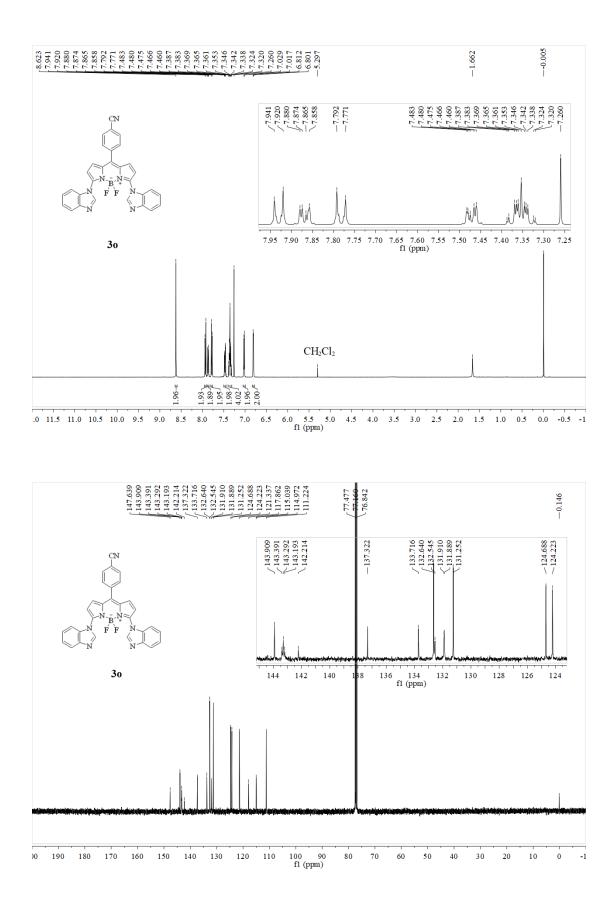


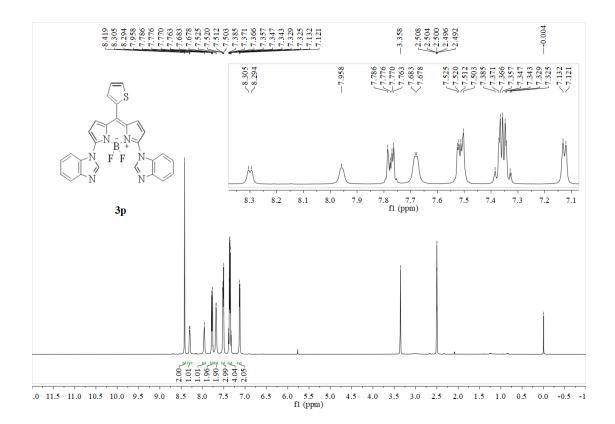


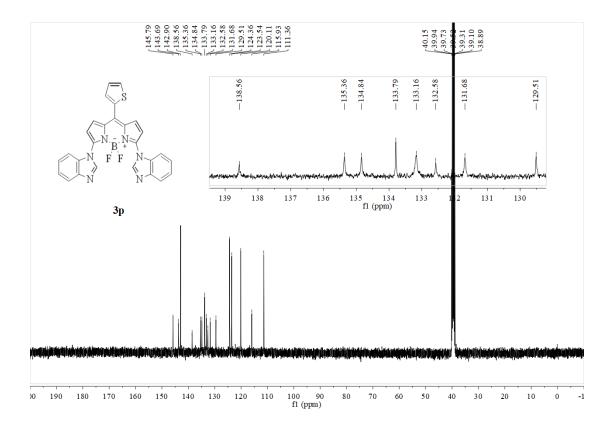


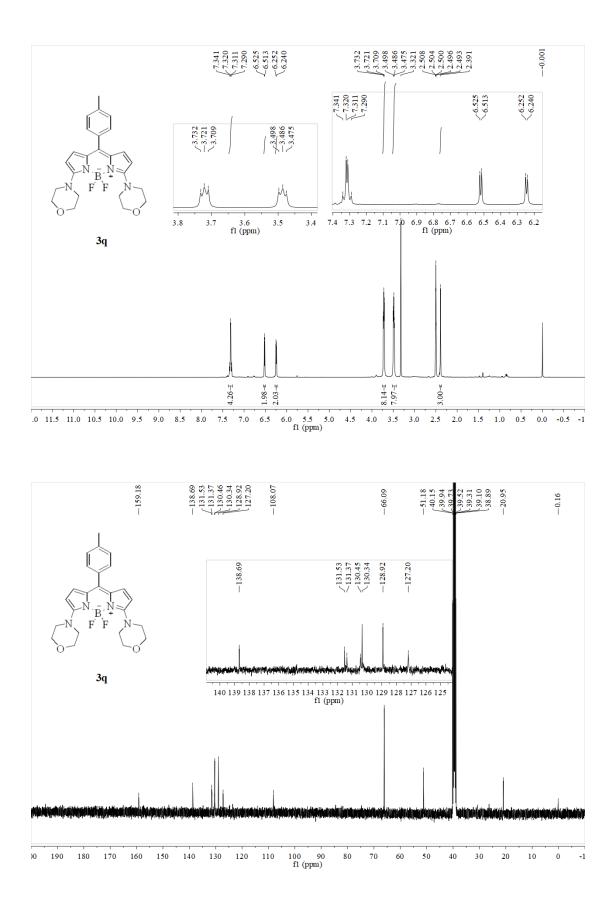

S43

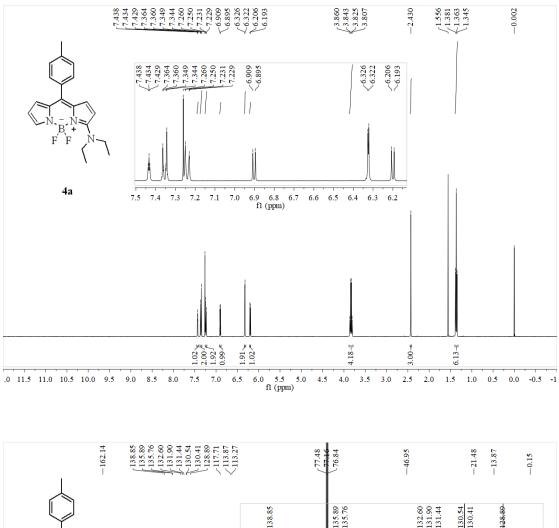


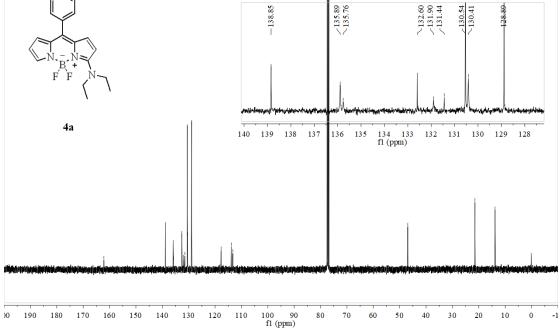


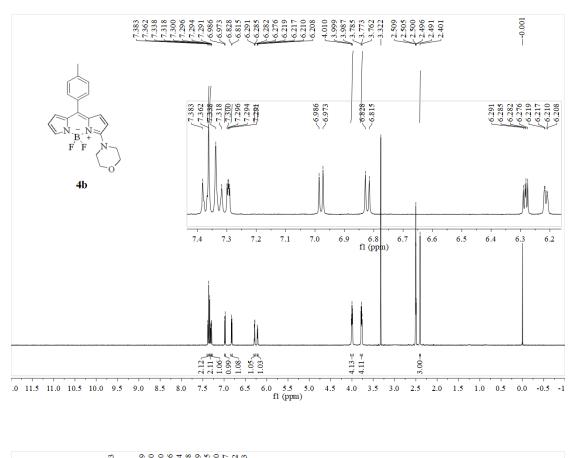

-1 100 90 f1 (ppm)

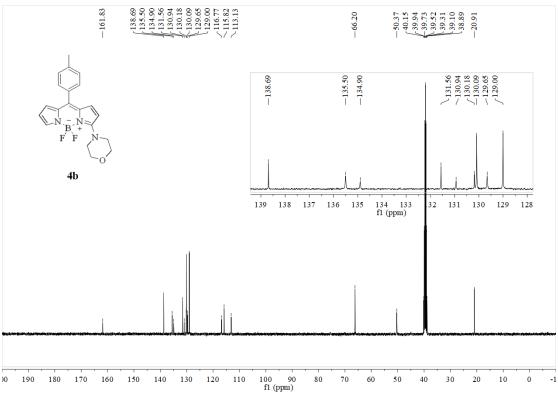


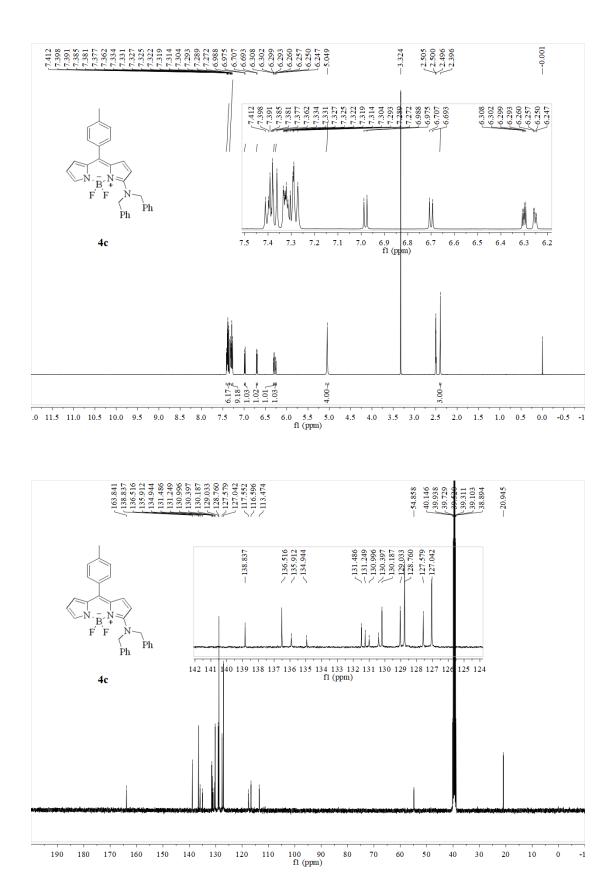


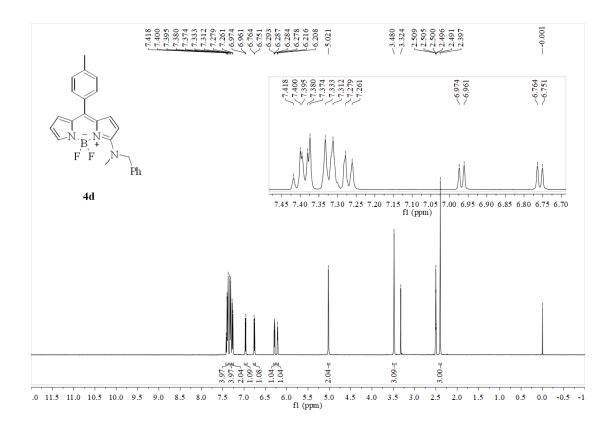


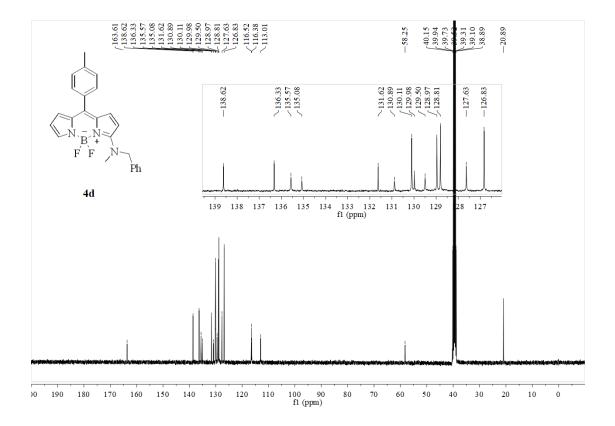

S47

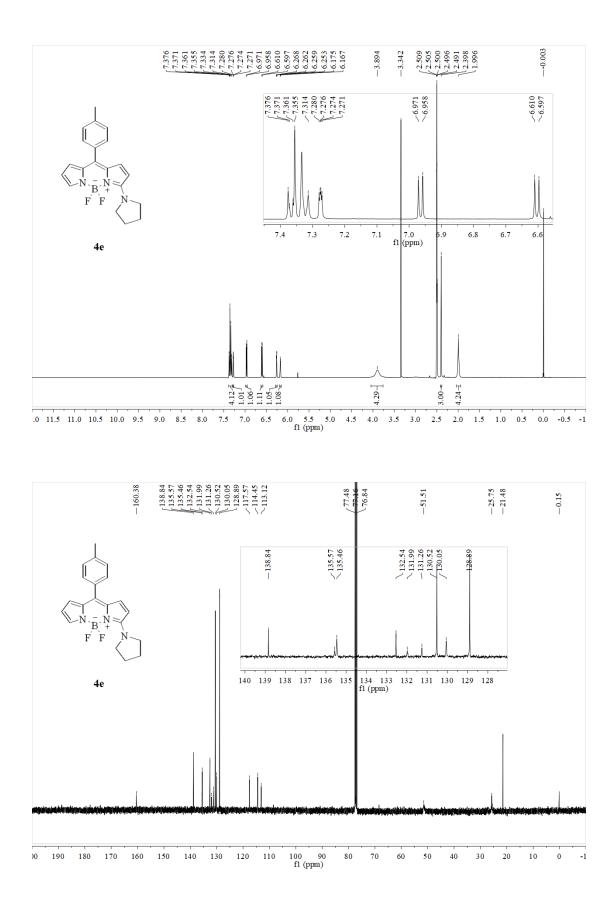


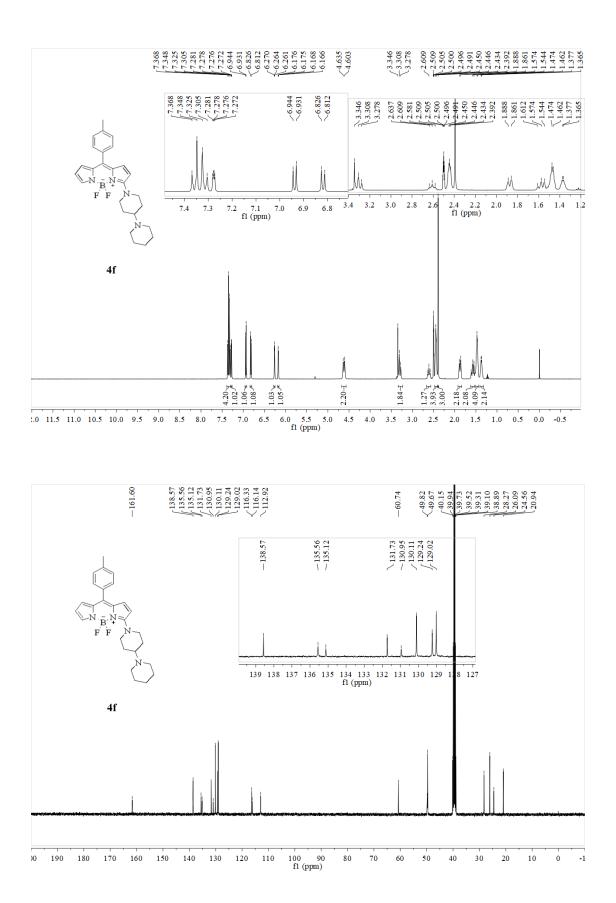


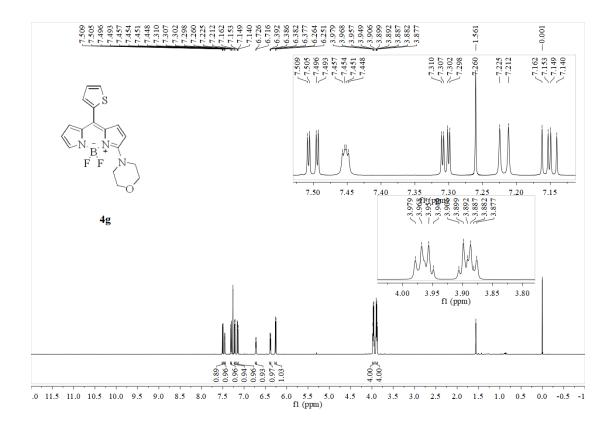


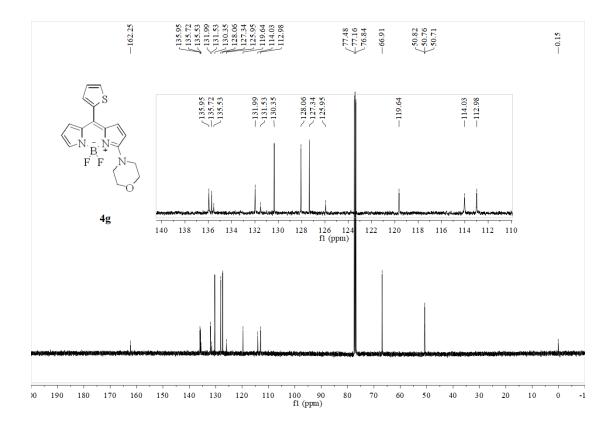


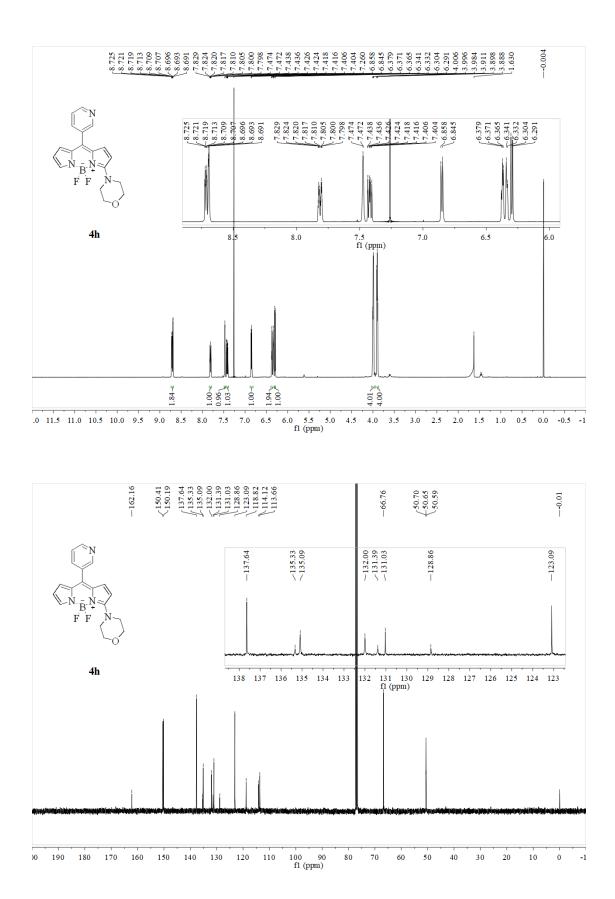


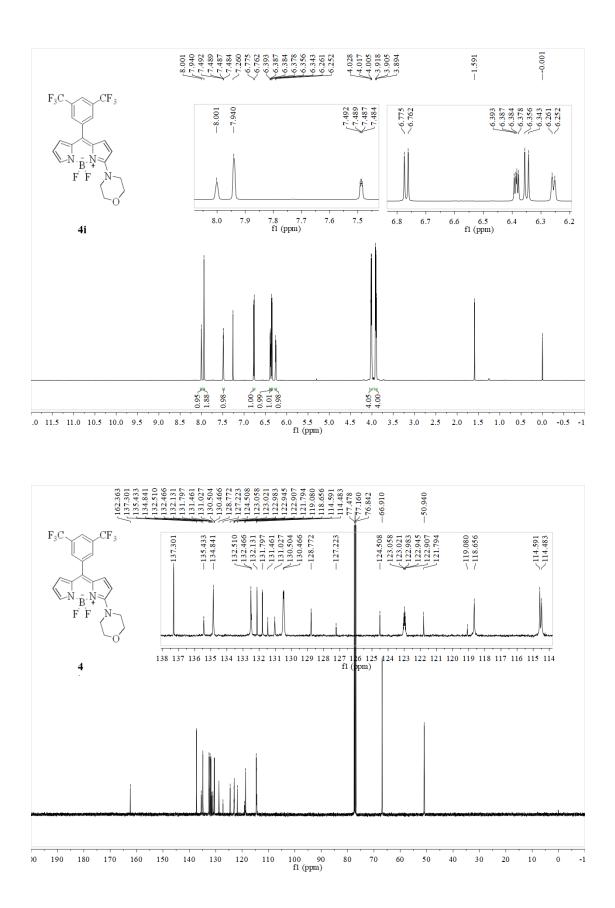


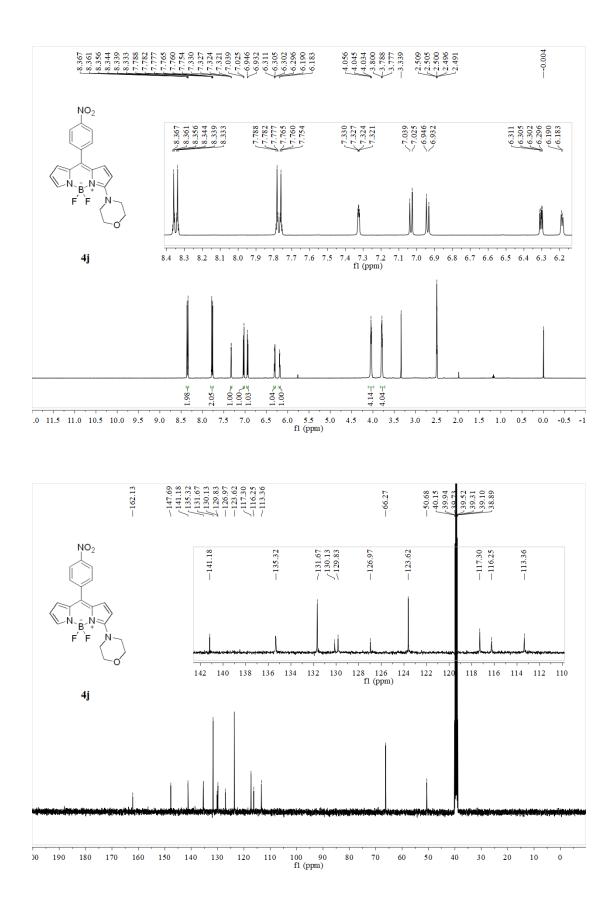


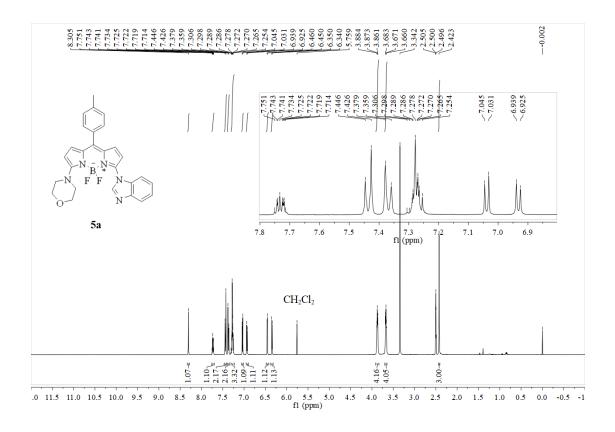


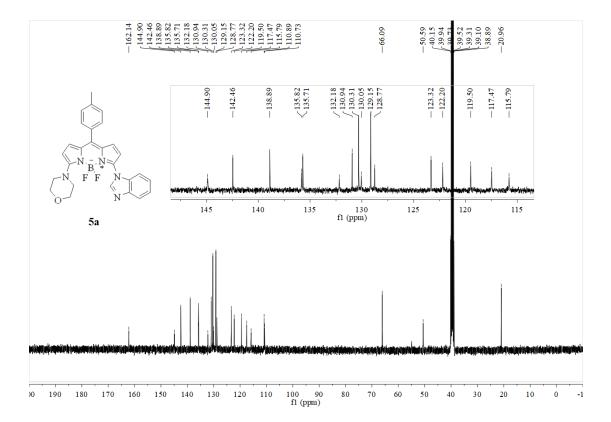


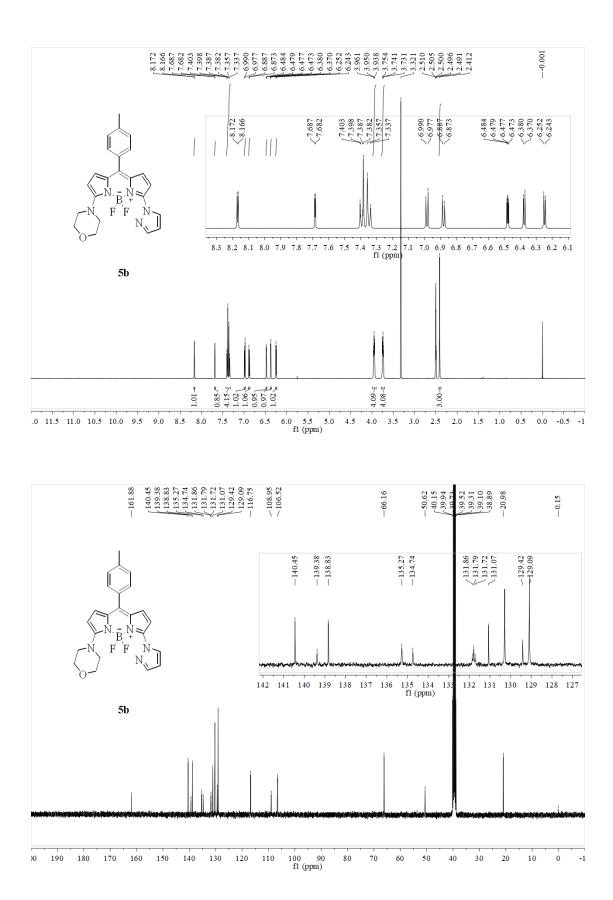












S61