Supporting Information

CsPbBr₃: xEu³⁺perovskiteQDs borosilicate glass: a new member to

the family of luminescent materials.

Rongrong Yuan, Lingli Shen, Chenyang Shen, Jianming Liu, Lei Zhou, Weidong Xiang* and

Xiaojuan Liang*

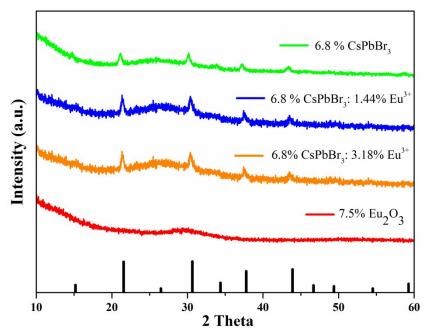


Figure S1. XRD pattern of CsPbBr₃:x Eu^{3+} glass sample. The diffraction peaks of the CsPbBr₃:x Eu^{3+} QDs glasses with 2-theta value located in approximately 21.86°, 30.81°, 37.92°, 44.11°, which are corresponding to the (110), (200), (211), (220) planes of cubic phase of CsPbBr₃ (JCPDS No. 54-0752).

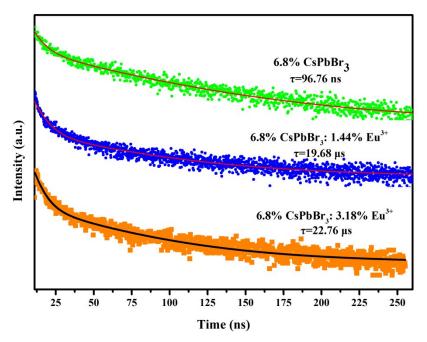


Figure S2. PL decay curves of the perovskite CsPbBr₃: xEu^{3+} QDs glasses with different Eu^{3+} ions concentrations measured using 365 nm excitation.

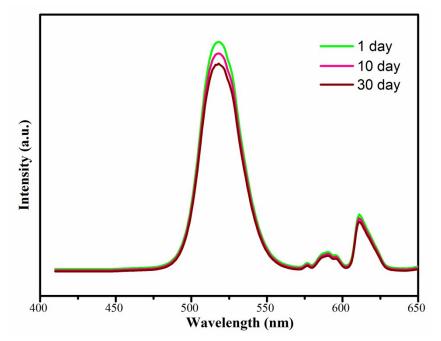


Fig S3. PL spectra of 6.8%CsPbBr₃:1.44%Eu³⁺ QDsglass after different time.

sample	PLQY
1.7%CsPbBr3	84.5%
3.4%CsPbBr3	41.9%
6.8%CsPbBr3	35.2%
9.5%CsPbBr3	20%

Table S1 Absolute PLQY of overall region for CsPbBr₃QDs with different concentrations

Table S2.The theoretical and actual concentrations of Pb2+ and Eu3+ ions when CsPbBr3:xEu3+ glasses

Complex	Theoretical	concentrations	Actual cor	al concentrations
Samples –	, C _{Pb2+} ,	, C _{Eu3+}	C _{Pb2+}	$C_{\rm Eu3^+}$
6.8%CsPbBr ₃ :1.44%Eu ³⁺	0.177 g/L	0.072 g/L	0.163 g/L	0.067 g/L
6.8%CsPbBr ₃ :3.18%Eu ³⁺	0.503 g/L	0.156 g/L	0.451 g/L	0.134 g/L

dissolved in a liter of revant.

ICP was used to measure the actual doping concentrations of Eu^{3+} in the solid CsPbBr₃ crystals by measuring the PL the concentration of Eu^{3+} left in the filtrate, 20mg glass powder were dissolved in 20ml HF then deionized water were added in volumetric flask to dilute solution(diluted in1000 times). The theoretical and and actual concentrations of Pb²⁺ and Eu³⁺ ions were list in Table S2. By simple calculation, the theoretical concentrations of Pb²⁺ and Eu³⁺ of 6.8%CsPbBr₃:1.44%Eu³⁺ glass are 0.177 g/L and 0.072 g/L, the actual concentrations of Pb²⁺ and Eu³⁺ of 6.8%CsPbBr₃:1.44%Eu³⁺ glass are 0.163 g/L and 0.067 g/L; The theoretical concentrations of Pb²⁺ and Eu³⁺ of 6.8%CsPbBr₃:3.18%Eu³⁺ glass are 0.503g/L and 0.156 g/L, the actual concentrations of Pb²⁺ and Eu³⁺ of 6.8%CsPbBr₃:1.44%Eu³⁺ glass are 0.68%CsPbBr₃:1.44%Eu³⁺ glass are 0.10156 g/L, the actual concentrations of Pb²⁺ and Eu³⁺ of 6.8%CsPbBr₃:3.18%Eu³⁺ glass are 0.503g/L and 0.156 g/L, the actual concentrations of Pb²⁺ and Eu³⁺ of 6.8%CsPbBr₃:3.18%Eu³⁺ of 6.8%CsPbBr₃:1.44%Eu³⁺ glass are 0.451 g/L and 0.134 g/L. There is little difference between the theoretical concentrations, mainly due to a small amount of substances volatilized in high temperature and some unavoild inaccuracy thoughtout the whole process, such as weighting and transferring operations.

Table S3. Biexponential Fit valves of the perovskite CsPbBr₃:x Eu³⁺ QDs glass with different Eu³⁺ ions concentrations measured using 400 nm excitan.

sample	T ₁ (ns)	T ₂ (ns)	A_1	A_2	τ (ns)
6.8%CsPbBr ₃	9.74	96.76	0.0914	1058	96.76
6.8%CsPbBr ₃ :1.44% Eu ³⁺	1.62	19681.93	0.0001	238845810	19682
6.8%CsPbBr ₃ :3.18% Eu ³⁺	37.33	22755.46	0.0016	13890476	22755

Fitting accurately to the sum of double-exponential.

$$\tau = \frac{\sum_{i} (A_{i} T_{i}^{2})}{\sum_{i} (A_{i} T_{i})} \qquad (A_{1} = \overline{T1 + T2} \qquad A_{2} = \overline{T1 + T2})$$

Table S4. Absolute PLQY of overall region for $CsPbBr_3:xEu^{3+}$ QDs glass with different Eu^{3+} ions concentrations

sample	PLQY
6.8%CsPbBr ₃	35.2%
6.8%CsPbBr ₃ :1.44% Eu ³⁺	59.2%
6.8%CsPbBr ₃ :3.18% Eu ³⁺	73.5%

Table S5 Optical parameters of the as-constructed LED with different Eu³⁺ ions concentrations

sample	CRI	Red	Green	Blue	Peak	Color coordinates	excitation	CCT(K)
		(%)	(%)	(%)	(nm)		purity	
6.8%CsPbBr ₃	11	0.3	99.2	0.5	508.3	(0.1534, 0.7517)	47.18	9413
6.8%CsPbBr ₃ :	22.4	4.9	95	0.1	550.5	(0.3050, 0.6302)	96.0	5924
1.44%Eu ³⁺								
6.8%CsPbBr ₃ :	42.8	41.8	55.7	2.5	595.2	(0.4103, 0.4215)	50.48	2403
3.18%Eu ³⁺								
5.05%Eu ₂ O ₃	29.8	67.7	30.9	1.3	700	(0.5298, 0.2737)	43.78	1186