Electrocatalytic CO₂ Reduction with Nickel Complexes Supported by Tunable Bipyridyl-*N*-Heterocyclic Carbene Donors: Understanding Redox-Active Macrocycles

Xiaojun Su,^[a] Kaitlin M. McCardle,^[b] Julien A. Panetier,^{*[b]} Jonah W. Jurss^{*[a]}

 ^[a] Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, USA.
 ^[b] Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, USA.

-Supporting Information-

Table of Contents

Materials and Methods	. 3
Electrochemical Measurements	. 3
Kinetics by Cyclic Voltammetry	. 4
X-ray Crystallography	. 5
Computational Details	. 5
Synthetic Procedures.	. 6
NMR Spectra	. 9
Results from X-ray Crystallography	14
Electrochemical Results	16
Computational Results	29
References	39
Cartesian Coordinates from DFT Calculations.	40

Materials and Methods. All synthetic manipulations were performed under N₂ atmosphere using standard Schlenk techniques, unless otherwise noted. Acetonitrile was distilled over CaH₂ and stored over molecular sieves before use. Water was purified with a Barnstead NANOpure Diamond water purification system. All other chemicals were reagent or ACS grade, purchased from commercial vendors, and used without further purification. High-resolution electrospray ionization mass spectra (HR-ESI-MS) were acquired with a Waters SYNAPT HDMS Q-TOF mass spectrometer. ¹H and ¹³C NMR spectra were obtained using a Bruker Advance DRX-500 spectrometer operating at 500 MHz (¹H) or 125 MHz (¹³C). Spectra were referenced to residual protiated solvent peaks and chemical shifts are reported in ppm.

Electrochemical Measurements. Electrochemistry was performed with a Bioanalytical Systems, Inc. (BASi) Epsilon potentiostat. Cyclic voltammetry was carried out in a three-electrode cell equipped with a glassy carbon disc working electrode (3 mm dia.), a platinum wire counter electrode, and a silver wire quasi-reference electrode that was referenced at the end of experiments by addition of ferrocene as an internal standard. Electrochemistry was conducted in acetonitrile (CH₃CN) solutions containing 0.1 M Bu₄NPF₆ as the supporting electrolyte. Solutions for cyclic voltammetry were degassed with N₂ or CO₂ thoroughly before collecting data.

Controlled potential electrolyses (CPE) were performed in a 3-neck pear-shaped glass cell with a glassy carbon rod (2 mm diameter, type 2, Alfa Aesar) working electrode, a silver wire quasi-reference electrode, and a platinum mesh (2.5 cm² area, 150 mesh) counter electrode that was housed in an isolation chamber, separated from the other electrodes with a fine glass frit. Solutions were degassed with CO₂ for 30 min before collecting data. Applied potentials in CPE experiments were determined by cyclic voltammetry. Constant stirring was maintained during electrolysis. Headspace gases in the airtight vessel employed for electrolyses were quantified by gas chromatographic analysis using an Agilent 7890B Gas Chromatograph and an Agilent PorapakQ (6' long, 1/8" O.D.) column. Integrated gas peaks were quantified with calibration curves generated from known standards purchased from BuyCalGas.com. CO was measured at an FID detector equipped with a methanizer, while H₂ was quantified at the TCD detector. Faradaic efficiencies were determined from the experimental amount of product

3

formed during electrolysis divided by the theoretical amount of product possible based on accumulated charge passed and the electron stoichiometry of the reaction \times 100.

Kinetics by cyclic voltammetry. The peak catalytic current for an electrocatalytic reaction involving heterogeneous electron transfers at the electrode surface is described by equation 1:^[1]

$$i_{cat} = n_{cat} FA[cat] (Dk_{cat}[S]^{y})^{1/2}$$
(1)

where n_{cat} is the number of electrons transferred in the catalytic process, F is the Faraday constant, A is the electrode surface area, [cat] is the molar concentration of catalyst, D is its diffusion coefficient, k_{cat} is the catalytic rate constant, and [S] is the molar concentration of dissolved substrate. Reaction orders with respect to catalyst, carbon dioxide, and water (as an added proton source) were determined from cyclic voltammetry studies (Figures S5-S8) using equation 1.

A commonly employed electroanalytical equation (eq 2) was used to estimate the turnover frequency (TOF) of **2-Ni** and **3-Ni**. From eq 2, estimated TOFs were calculated from the ratio of $(i_{\text{cat}}/i_p)^2$, in which i_p and i_{cat} are designated as peak current with catalyst under N₂ and CO₂, respectively. As shown, the quantity $(i_{\text{cat}}/i_p)^2$ is proportional to k_{cat} as well as the TOF.^[1b,2]

TOF =
$$k_{cat}[CO_2] = \frac{F \nu n_p^3}{RT} \left(\frac{0.4463}{n_{cat}}\right)^2 \left(\frac{i_{cat}}{i_p}\right)^2$$
 (2)

In this equation, n_{cat} is the number of electrons transferred in the catalytic process, here $n_{cat} = 2$ for the conversion of CO₂ to CO (or H₂O to H₂), *F* is the Faraday constant, *A* is the electrode surface area (0.071 cm²), [cat] is the molar concentration of catalyst, *D* is the diffusion coefficient (cm² s⁻¹), k_{cat} is the rate constant of the catalytic reaction, and [CO₂] is the concentration of dissolved CO₂. The concentration of dissolved CO₂ in CH₃CN is 0.28 M under CO₂-saturation conditions at 1 atm.^[3] Steady state conditions are required for the application of eq 2, which can often be achieved at fast scan rates.^[1b] Linear sweep voltammetry of **2-Ni** and **3-Ni** was conducted in CH₃CN/2% H₂O under CO₂ at increasing scan rates (Figures S9, S10) in order to reach scan rate independent TOFs.

X-ray Crystallography. Single crystals were coated with Paratone-N hydrocarbon oil and mounted on a Kapton loop. The specified temperature (Table S1) was maintained with an Oxford Cryostream 700 during data collection at the University of Mississippi, Department of Chemistry and Biochemistry, X-ray Crystallography Facility. Samples were irradiated with Mo-Kα radiation ($\lambda = 0.71073$ Å) using a Bruker Smart APEX II diffractometer equipped with a Microfocus Sealed Source (Incoatec IµS) and APEX-II detector. The Bruker APEX2 v. 2009.1 software package was used to integrate raw data which were corrected for Lorentz and polarization effects.^[4] A semi-empirical absorption correction (SADABS) was applied.^[5] The structure was solved using direct methods and refined by least-squares refinement on F² and standard difference Fourier techniques using SHELXL.^[6] Thermal parameters for all non-hydrogen atoms were refined anisotropically, and hydrogen atoms were included at ideal positions.

Computational Details. Density functional theory (DFT) calculations were run with Gaussian 09 Rev. E $01.^{[7]}$ Geometry optimizations were carried out at the unrestricted ω B97X-D^[8] level of theory in solution (acetonitrile, dielectric constant, $\varepsilon = 35.688$) using the SMD approach.^[9] The ω B97X-D functional is a range-separated hybrid (RSH) functional that separates the Coulomb electron-electron interaction into long-range and short-range components. This functional contains 22% of exact-exchange for the short range and 100% of Hartree-Fock (HF) exchange for long-range electron-electron interactions, and has been parametrized to take into account atom-atom dispersion interactions (i.e. non-covalent integrals were evaluated with a quadrature grid of 99 radial shells and 590 angular points per shell. Minimum energy and transition state geometries were confirmed as such through analytical frequency calculations, having no imaginary frequencies and a single imaginary frequency, respectively. Transition states were further characterized through IRC calculations and subsequent geometry optimizations.^[12,13] All computed structures were confirmed to have no internal instabilities by using the "stable=opt" and "scf=qc") keywords.

All reported redox potentials were calculated using the direct approach in which free energies of the reactants and products are calculated directly in solution (acetonitrile using the SMD approach), rather than by a thermodynamic cycle involving gas phase energies.^[14-16] All

5

potential reported herein (in V) are versus the $Fc^{+/0}$ redox couple and were obtained using the following expressions:

$$A + Fc \leftrightarrows A^- + Fc^+ \tag{3}$$

$$\Delta G^*_{red,soln} = G^*_{red,soln}(A^-) + G^*_{red,soln}(Fc^+) - G^*_{red,soln}(A) - G^*_{red,soln}(Fc)$$
(4)

$$E^{0} = -\frac{\Delta G^{*}_{red,soln}}{nF} \tag{5}$$

where the "*" superscripts denote that the quantities were computed at a standard state of 1 M. In equation 4, $G_{red,soln}^*(A^-)$ is the free energy in solution of the one-electron reduced species, $G_{red,soln}^*(Fc^+)$ is the free energy in solution of ferrocenium, $G_{red,soln}^*(A)$ is the free energy in solution of the non-reduced species, and $G_{red,soln}^*(Fc)$ is the free energy in solution of ferrocene. Based on the free energy change, the reduction potentials were calculated according to equation 5 where n is the number of electrons involved in the process (in this case n = 1 for a one-electron process) and F is the Faraday constant. All computed free energies include the zero-point vibrational energy corrections as well as thermal corrections and entropies computed by standard statistical thermodynamic methods at 298.15 K.

Synthetic Procedures. The ligand precursors of $L1^{[17]}$ and di(1*H*-imidazol-1-yl)methane^[18] and 1,2-di(1H-imidazol-1-yl)ethane^[19] were prepared according to literature procedures.

L2: A mixture of 6,6'-bis(bromomethyl)-2,2'-bipyridyl (1.0 mmol, 340 mg) and 1-(2-(1*H*-imidazol-1-yl)ethyl)-1*H*-imidazole (1.0 mmol, 162 mg) was stirred at reflux in 50 mL of CH₃CN-H₂O solution (1/1, v/v) for 2 days. The solvent was removed and water containing NH₄PF₆ (8.0 mmol, 1.3 g) was added. The resulting solution was stirred at reflux for another 3 h before the solvent was removed under reduced pressure. The crude solid was washed with dichloromethane (3 × 10 mL) followed by water (3 × 15 mL), and dried to give pure product as a white solid. Yield: 348 mg, 55%. ¹H NMR (500 MHz, CD₃CN): δ = 4.77 (s, 4H), 5.57 (s, 4H), 7.50~7.58 (m, 6 H), 7.88 (d, 2 H, *J* = 8.0 Hz), 8.02 (d, 2 H, *J* = 8.0 Hz), 8.64 (t, 2 H, *J* = 8.0 Hz), 8.64 (s, 2 Hz). ¹³C NMR (125 MHz, CD₃CN): δ = 48.54, 53.44, 122.28, 122.42, 122.71, 124.40, 137.14, 138.43, 152.73, 155.57. HR-ESI-MS: *m/z* calc. for

 $[L2 - 2PF_6]^{2+}$, 172.0869, found, 172.0888; m/z calc. for $[L2 - PF_6]^+$, 489.1386, found, 489.1380.

L3: A mixture of 6,6'-bis(bromomethyl)-2,2'-bipyridyl (1.0 mmol, 340 mg) and di(1*H*-imidazol-1-yl)methane (1.0 mmol, 148 mg) was stirred at reflux in 50 mL of CH₃CN-H₂O solution (3/1, v/v) for 7 days. The solvent was removed and water containing NH₄PF₆ (8.0 mmol, 1.3 g) was added. The resulting solution was stirred at reflux for another 3 h before the solvent was removed under reduced pressure. The crude solid was washed with dichloromethane (3 × 10 mL) followed by water (3 × 15 mL), and dried to give pure product as a white solid. Yield: 258 mg, 41.6%. ¹H NMR (500 MHz, CD₃CN): δ = 5.67 (s, 4 H), 6.63 (s, 2 H), 7.57 (m, 4 H), 7.76 (s, 2 H), 7.89 (d, 2 H, *J* = 8.0 Hz), 8.01 (t, 2 H, *J* = 8.0 Hz), 9.28 (s, 2 Hz). ¹³C NMR (125 MHz, CD₃CN): δ = 53.51, 59.64 122.10, 122.35, 123.08, 124.39, 138.09, 138.60, 152.16, 155.94. HR-ESI-MS: *m/z* calc. for [L3 – 2PF₆]²⁺, 165.0791, found, 165.0789; *m/z* calc. for [L3 – PF₆]⁺, 475.1224, found, 475.1202.

1-Ni: A solution of L1 (191 mg, 0.3 mmol) and excess Ag₂O (556 mg, 2.4 mmol) in 20 mL of anhydrous CH₃CN was stirred at room temperature for 12 h, then the fine precipitate was removed by centrifugation. Ni(DME)Cl₂ (66 mg, 0.3 mmol) was added to the light yellow filtrate, and the mixture was stirred for 12 h. After which, the resulting solution was centrifuged, and NaPF₆ (50 mg, 0.3 mmol) was added to the filtrate. The resulting solution was stirred for 12 h and centrifuged before the filtrate was evaporated to obtain a yellow solid (156 mg, 75%). Single crystals were obtained by diffusing diethyl ether slowly into a concentrated solution of 1-Ni in CH₃CN. ¹H NMR (500 MHz, CD₃CN): δ = 3.37 (s, 6 H), 5.68~5.81 (m, 4 H), 7.32 (s, 2 H), 7.51 (s, 2 H), 7.87 (s, 2 H), 8.34 (s, 4 H). ¹³C NMR (125 MHz, CD₃CN): δ = 29.90, 37.28, 53.10, 122.40, 123.68, 125.15, 126.53, 142.14, 153.47, 153.86, 155.57. HR-ESI-MS: *m/z* calc. for [1-Ni – PF₆]⁺, 547.0739, found, 547.0743; m/z calc. for [1-Ni – 2PF₆]²⁺, 201.0546, found, 201.0584.

2-Ni: The synthesis of 2-Ni followed the procedure of 1-Ni, starting with 248 mg (0.4 mmol) of L2, 742 mg (3.2 mmol) of Ag₂O, 88 mg (0.4 mmol) of Ni(DME)Cl₂, and 67 mg (0.4 mmol) of NaPF₆ to yield a yellow product (216 mg, 78%). Single crystals were obtained by diffusing diethyl ether slowly into a concentrated solution of 2-Ni in CH₃CN. ¹H NMR (500 MHz, CD₃CN): δ = 4.54 (s, 4 H), 5.52 (s, 4 H), 7.24 (s, 2 H), 7.48 (s, 2 H), 7.75 (q, 2 H,

7

J = 6.5 Hz), 8.28 (s, 4 H). ¹³C NMR (125 MHz, CD₃CN): $\delta = 29.90$, 49.49, 52.86, 122.30, 123.78, 124.57, 125.47, 142.63, 149.19, 154.74, 155.97. HR-ESI-MS: m/z calc. for [**2**-Ni – PF₆]⁺, 545.0577, found, 545.0583; m/z calc. for [**2**-Ni – 2PF₆]²⁺, 200.0468, found, 200.0497.

3-Ni: The synthesis of **3-Ni** followed the procedure of **1-Ni**, starting with 254 mg (0.4 mmol) of **L3**, 742 mg (3.2 mmol) of Ag₂O, 88 mg (0.4 mmol) of Ni(DME)Cl₂, and 67 mg (0.4 mmol) of NaPF₆ to yield a yellow product (190 mg, 70%). ¹H NMR (500 MHz, CD₃CN): $\delta = 5.64$ (s, 4 H), 6.23 (s, 2 H), 7.58 (s, 2 H), 7.63 (s, 2 H), 7.87 (d, 2 H, J = 9.0 Hz), 8.41 (s, 4 H). ¹³C NMR (125 MHz, CD₃CN): $\delta = 55.76$, 62.27, 121.75, 122.70, 124.34, 126.90, 142.52, 153.76, 155.66. HR-ESI-MS: m/z calc. for [**3-Ni** – PF₆]⁺, 531.0421, found, 531.0411; m/z calc. for [**3-Ni** – 2PF₆]²⁺, 193.0389, found, 193.0369. Synthesis of [**3-Ni**](ClO₄)₂ was performed in the same manner, but from the perchlorate salt of **L3** and addition of 1 equivalent of NaClO₄ in the last step. Single crystals were obtained by diffusing diethyl ether slowly into a concentrated solution of [**3-Ni**](ClO₄)₂ in CH₃CN.

Complex	1-Ni	2-Ni	3-Ni (ClO4 salt)
CCDC deposition #	1811793	1811794	1811795
Empirical Formula	$C_{22}H_{23}F_{12}N_7NiP_2$	$C_{22}H_{21}F_{12}N_7NiP_2$	$C_{19}H_{16}CI_2N_6NiO_8$
Formula Weight	734.12 g/mol	732.11 g/mol	585.99 g/mol
Т (К)	100(2)	100(2)	150(2)
λ(Å)	0.71073	0.71073	0.71073
Crystal System	Monoclinic	Triclinic	Monoclinic
Space Group	C2/c	P-1	C2/m
a (Å)	37.426(4)	9.9845(2)	13.978(9)
b (Å)	8.0756(8)	12.1671(3)	12.184(8)
c (Å)	23.616(3)	12.4094(3)	13.374(9)
α (°)	90	69.4740(10)	90
β (°)	128.460(5)	70.9980(10)	109.402(11)
γ (°)	90	83.8040(10)	90
V (Å ³)	5589.1(10)	1334.85(5)	2148(2)
Z	8	2	4
ρ _{calc} (g/cm ³)	1.745	1.821	1.812
μ (mm ⁻¹)	0.918	0.961	1.216
F(000)	2960	736	1192
θ range for data collectn	1.39 to 25.35°	1.79 to 25.44°	1.61 to 25.39°
	-44 ≤ h ≤ 44	-11 ≤ h ≤ 12	-16 ≤ h ≤ 16
Index ranges	-9 ≤ k ≤ 9	$-14 \le k \le 14$	-14 ≤ k ≤ 14
	-28≤ ≤27	-14 ≤ l ≤ 15	-16 ≤ l ≤ 15
Reflections collected	43232	23990	7489
Indonandant raflections	5050	4634	2050
	[R(int) = 0.0411]	[R(int) = 0.0168]	[R(int) = 0.0202]
Completeness to θ = 25.00	100.0 %	94.2 %	99.5%
Max. and min. transmission	0.8822 and 0.8377	0.9101 and 0.7615	0.8881 to 0.7117
data/restr/params	5050 / 0 / 402	4634 / 6 / 432	2050/0/175
GOF on F ²	1.045	1.079	1.059
Einal P indicos $[1 > 2\sigma(1)]$	R1 = 0.0369,	R1 = 0.0234,	R1 = 0.0479,
	wR2 = 0.0861	wR2 = 0.0561	wR2 = 0.1298
R indices (all data)	R1 = 0.0440,	R1 = 0.0251,	R1 = 0.0571,
	wR2 = 0.0904	wR2 = 0.0570	wR2 = 0.1398
Largest diff. peak and hole (e Å ⁻³)	0.961 and -0.798	0.272 and -0.323	0.701 and -0.516

Table S1.	Crystallographic	Data for Cor	nplexes 1-Ni,	2-Ni, and 3-Ni.

Figure S1. Side-on view of ORTEP diagrams of cations in **1-Ni**, **2-Ni**, and **3-Ni** (top to bottom) are shown with thermal ellipsoids at the 70%, 70%, and 35% probability levels, respectively. Hydrogen atoms are omitted for clarity.

Figure S2. (Top) CVs of 1 mM **1-Ni** at different scan rates in CH₃CN containing 0.1 M Bu_4NPF_6 supporting electrolyte at a glass carbon working electrode under N₂. (Bottom) Dependence of the first reduction peak current versus v^{1/2}.

Figure S3. (Top) CVs of 1 mM **2-Ni** at different scan rates in CH₃CN containing 0.1 M Bu_4NPF_6 supporting electrolyte at a glass carbon working electrode under N₂. (Bottom) Dependence of the first reduction peak current versus v^{1/2}.

Figure S4. (Top) CVs of 1 mM **3-Ni** at different scan rates in CH₃CN containing 0.1 M Bu_4NPF_6 supporting electrolyte at a glass carbon working electrode under N₂. (Bottom) Dependence of the first reduction peak current versus v^{1/2}.

Figure S5. Dependence of catalytic current obtained from 1 mM of 2-Ni (Top) and 3-Ni (Bottom) versus the concentration of water. CVs were performed in CO₂ saturated-CH₃CN solutions containing 0.1 M Bu₄NPF₆ at v = 100 mV/s. At low [H₂O], a linear dependence on [H₂O] is observed, consistent with a catalytic reaction that is second order in proton source. At higher [H₂O], the current reaches a limiting value, which is typical of saturation kinetics.

Figure S6. (Top) CVs of different concentrations of **2**-Ni at 100 mV/s in 0.1 M Bu₄NPF₆ CO₂-saturated CH₃CN solutions containing 2% water at a glass carbon working electrode. (Bottom) Dependence of the catalytic current versus catalyst concentration.

Figure S7. (Top) CVs of different concentration of **3-Ni** at 100 mV/s in 0.1 M Bu₄NPF₆ CO₂-saturated CH₃CN solutions containing 2% water at a glass carbon working electrode under CO₂. (Right) Dependence of the catalytic current versus catalyst concentration.

Figure S8. Dependence of catalytic current obtained from 1 mM of 2-Ni (Top) and 3-Ni (Bottom) versus the square root of CO₂ percentage. (CVs were performed in different ratios of N₂:CO₂ saturated-CH₃CN solutions containing 0.1 M Bu₄NPF₆ with the scan rate of 100 mV/s).

Figure S9. (Top) Linear sweep voltammograms of 1 mM **2-Ni** in CO₂-saturated CH₃CN/0.1 M Bu₄NPF₆ solutions containing 2% H₂O. (Bottom) Plot of turnover frequency (TOF, s^{-1}) versus scan rate.

Figure S10. (Top) Linear sweep voltammograms of 1 mM **3-Ni** in CO₂-saturated CH₃CN/0.1 M Bu₄NPF₆ solutions containing 2% H₂O. (Bottom) Plot of TOF (s⁻¹) versus scan rate.

The effect of CO₂ binding on the redox behavior of the macrocyclic catalysts was investigated by CV in anhydrous CH₃CN solutions using different ratios of N₂:CO₂. Both **2-Ni** and **3-Ni** exhibit irreversible voltammetric behavior at the second redox couple as the concentration of dissolved CO₂ is increased. Small anodic shifts in the peak potentials of the second redox process are also observed in CO₂-saturated solutions (Figure S12). This behavior is characteristic of CO₂ binding.^[20]

Figure S11. CVs of 1 mM **2-Ni** (Top) and 1 mM **3-Ni** (Bottom) under different ratios of N₂:CO₂ saturated-CH₃CN solutions containing 0.1 M Bu₄NPF₆.

Given the electronic structure of **2-Ni** which has nearly degenerate metal-centered and ligand-centered reduced states, we investigated whether the selectivity for this catalyst may be sensitive to relative substrate concentrations. Controlled potential electrolyses were performed at the same applied potential (E = -2.42 V vs Fc^{+/0}), but with a decrease in [H₂O] (from 2% to 1% H₂O) as shown in **Figure S12**. The selectivity for CO₂ reduction versus proton reduction is essentially unchanged relative to 2% H₂O (**Table S2**).

Figure S12. Charge versus time plots from controlled potential electrolyses with and without 0.2 mM **2-Ni** in CO₂-saturated CH₃CN/0.1 M Bu₄NPF₆ solutions containing 1% H₂O at E = -2.42 V vs Fc^{+/0} with a glassy carbon rod.

Additional controlled potential electrolyses were performed with **3-Ni** at an applied potential of -2.13 V vs Fc^{+/0} (corresponding to the peak of the broad feature following the 2nd reduction) in order to determine if catalytic activity occurs as less negative potentials and, if so, with the same high selectivity for CO₂ reduction as observed at E = -2.44 V. Indeed, catalysis occurs and with similar selectivity for CO₂ reduction vs H⁺ reduction (**Table S2**).

Figure S13. Charge versus time plots from controlled potential electrolyses with and without 0.2 mM **3-Ni** in CO₂-saturated CH₃CN/0.1 M Bu₄NPF₆ solutions containing 2% H₂O at E = -2.13 V vs Fc^{+/0} with a glassy carbon rod.

Experiments were also conducted with **3-Ni** and methanol as the added proton source $(pK_{a(DMSO)} = 29.0)$, a slightly stronger acid than H₂O $(pK_{a(DMSO)} = 31.4)$.²¹ These results (**Figure S14**) suggest that two different pathways are observed in cyclic voltammograms of **3-Ni**. Similar to reported observations with manganese-based catalysts,²² the broad feature around -2.1 V in Figure 2 of the main text (**3-Ni** under CO₂ with 2% H₂O) likely corresponds to slow catalysis through a protonation-first pathway before further reduction, while the large catalytic wave at more negative potentials corresponds to a reduction-first pathway. With added CH₃OH, catalysis begins right at the second reduction due to more facile protonation of the metallocarboxylic acid intermediate, which allows for subsequent reduction at a lower overpotential. High selectivity for CO₂ conversion to CO is still observed in controlled potential electrolyses with added methanol (**Table S2**).

Figure S14. A) Cyclic voltammograms of 0.5 mM **3-Ni** in CH₃CN / 1.5 M CH₃OH containing 0.1 M Bu₄NPF₆, v = 100 mV/s, glassy carbon disc. B) CVs of 0.5 mM **3-Ni** with different concentrations of added CH₃OH in CO₂-saturated CH₃CN / 0.1 M Bu₄NPF₆. C) Plot of *i*_{cat}/*i*_p as a function of [CH₃OH] obtained from CVs with 0.5 mM **3-Ni**. The current reaches a limiting value, consistent with saturated kinetics, at CH₃OH concentrations above 1 M. D) Controlled potential electrolyses of 0.2 mM **3-Ni** in CH₃CN / 2 M CH₃OH containing 0.1 M Bu₄NPF₆ at applied potential, E = -2.0 V vs Fc^{+/0}, using a glassy carbon rod.

Table S2. Summary of controlled potential electrolyses with 0.2 mM catalyst in the specified conditions at a glassy carbon rod. Faradaic efficiencies are reported as an average of two runs with standard deviations provided, all to the nearest whole number.

Catalyst	Solvent	$oldsymbol{E}_{ ext{appl}}$	FE (%)	CO (%)	H2 (%)	
1-Ni	CH ₃ CN	2.25	08	5	93 ± 3	
	(2% H ₂ O)	-2.23	90	$J \pm Z$		
2-Ni	CH ₃ CN	2 42	00	57 - 2	42 + 2	
	(1% H ₂ O)	-2.42	99	37 ± 2	42 ± 3	
2-Ni	CH ₃ CN	2 42	99	56 ± 3	43 ± 3	
	(2% H ₂ O)	-2.42				
2 N;	CH ₃ CN	-2.13	98	89 ± 2	9 ± 2	
3-111	(2% H ₂ O)					
3-Ni	CH ₃ CN	2.44	0.0	07 . 4	11 + 2	
	(2% H ₂ O)	-2.44	98	87 ± 4	11 ± 2	
2 NI:	CH ₃ CN	2.00	08	02 + 2	6 3	
3-INI	(2 M CH ₃ OH)	-2.00	70	92 ± 3	6 ± 3	

Table S3. Experimental and calculated bond lengths (Ångströms, Å) and bond angles (degrees, °) for **1-Ni**, **2-Ni**, and **3-Ni** using the ω B97X-D functional in acetonitrile *via* the SMD approach. The calculated parameters are provided for the singlet-ground states.

Complexes	Bond Lengths/ Angles	Exptl.	Calc.
	Ni-C(2)	1.859(3)	1.881
1	Ni-N(3)	1.913(2)	1.935
	Ni-N(4)	1.915(2)	1.935
1-1NI	Ni-C(17)	1.860(3)	1.881
	C(2)-Ni-N(4)	162.5°	161.4°
	N(3)-Ni-C(17)	160.4°	161.4°
	Ni-C(2)	1.9163(17)	1.933
	Ni-N(3)	1.9279(15)	1.948
2 NI:	Ni-N(4)	1.9270(14)	1.947
2-1 NI	Ni-C(16)	1.8768(18)	1.896
	C(2)-Ni-N(4)	175.3°	174.0°
	N(3)-Ni-C(17)	168.8°	166.5°
	Ni-C(2)	1.864(3)	1.864
3-Ni	Ni-N(3)	1.936(3)	1.926
	C(2)-Ni-N(3)	174.5°	175.0°

Table S4. Calculated relative energies between the singlet and triplet states for 1-Ni, 2-Ni and 3-Ni using the ω B97X-D functional in acetonitrile *via* the SMD approach. The Mulliken spin population is given for nickel, ρ (Ni).

Complexes	Multiplicity	<s<sup>2></s<sup>	$\rho(Ni)$	ΔE	ΔΖΡΕ	ΔG
1 NI:	$\mathbf{S} = 0$	0.00	0.00	0.0	0.0	0.0
1-181	$\mathbf{S} = 1$	2.01	1.67	14.5	13.2	11.3
2-Ni	$\mathbf{S} = 0$	0.00	0.00	0.0	0.0	0.0
	$\mathbf{S} = 1$	2.01	1.74	17.0	15.7	14.4
3-Ni	$\mathbf{S} = 0$	0.00	0.00	0.0	0.0	0.0
	S = 1	2.01	1.69	28.2	26.8	25.2

Table S5. Calculated relative energies between the doublet and quartet states for $1-Ni + 1e^-$, $2-Ni + 1e^-$, and $3-Ni + 1e^-$ using the ω B97X-D functional in acetonitrile *via* the SMD approach. The Mulliken spin population is given for nickel, $\rho(Ni)$.

Complexes	Multiplicity	<s<sup>2></s<sup>	ρ (Ni)	ΔΕ	ΔZPE	ΔG
	S = 1/2	0.77	0.04	0.0	0.0	0.0
1-Ni + 1e ⁻	S = 1/2	0.76	0.86	1.3	0.0	-3.0
	S = 3/2	3.77	1.74	21.8	19.8	17.1
2-Ni + 1e ⁻	S = 1/2	0.76	0.02	0.0	0.0	0.0
		0.76	0.84	3.1	2.4	0.2
	S = 3/2	3.77	1.74	20.8	19.5	18.3
3-Ni + 1e ⁻	S = 1/2	0.76	0.02	0.0	0.0	0.0
		0.76	0.81	12.1	11.4	9.8
	S = 3/2	3.77	1.70	31.0	29.6	28.3

Table S6. Calculated relative energies between the singlet and triplet states for 1-Ni + 2e⁻, 2-Ni + 2e⁻, and 3-Ni + 2e⁻ using the ω B97X-D functional in acetonitrile *via* the SMD approach. The Mulliken spin population is given for nickel, ρ (Ni). ^aThe computed energies for the spin purified low-spin singlet were obtained by using Yamaguchi and co-workers' approach. ^bThis species has a negative eigenvalue on the order of 14 cm⁻¹.

Complexes	Multiplicity	<s<sup>2></s<sup>	$\rho(Ni)$	ΔΕ	ΔΖΡΕ	ΔG
	S - 0	0.00	0.00	0.0	0.0	0.0
1-Ni + 2e ⁻	$\mathbf{S} = 0$	0.93	0.81	0.3/-2.0 ^a	-1.5/-3.8 ^a	-4.3/-6.7 ^a
	S = 1	2.03	0.90	1.9	-0.1	-3.5
	$\mathbf{S} = 0$	0.00	0.00	0.0	0.0	0.0
2-Ni + 2e ⁻		1.00	0.79	$1.6/1.2^{a}$	0.7/0.3 ^a	-0.2/-0.7 ^a
	S = 1	2.03	0.85	1.6	0.5	-1.2
3-Ni + 2e ⁻	$\mathbf{S} = 0$	0.00	0.00	0.0	0.0	0.0
		1.00	0.79	9.5/9.9 ^a	$8.3/8.7^{a}$	$8.1/8.5^{a,b}$
	S = 1	2.03	0.85	9.1	8.0	6.2

The spin contaminated singlets were corrected by using the broken spin (BS) symmetry procedure reported by Yamaguchi and co-workers:

$${}^{LS}E = \frac{{}^{BS}E\left({}^{HS}\langle S^2 \rangle - {}^{LS}\langle S^2 \rangle\right) - {}^{HS}E\left({}^{BS}\langle S^2 \rangle - {}^{LS}\langle S^2 \rangle\right)}{{}^{HS}\langle S^2 \rangle - {}^{BS}\langle S^2 \rangle}$$
(4)

Yamaguchi's approach allows one to calculate the energy of the spin purified low-spin (LS) state from the triplet state (HS) that is related to the low-spin state by spin flip and $\langle S^2 \rangle$, which is the expected value of the total spin operator.

Table S7. Calculated relative energies between the doublet and quartet states for $1-Ni + 3e^-$, $2-Ni + 3e^-$, and $3-Ni + 3e^-$ using the ω B97X-D functional in acetonitrile *via* the SMD approach. The Mulliken spin population is given for nickel, ρ (Ni).

Complexes	Multiplicity	<s<sup>2></s<sup>	$\rho(Ni)$	ΔΕ	ΔΖΡΕ	ΔG
1 NF + 2a-	S = 1/2	0.77	0.85	0.0	0.0	0.0
1 - 101 + 30	S = 3/2	3.78	0.91	16.8	15.2	14.7
2-Ni + 3e ⁻	S = 1/2	0.76	0.80	0.0	0.0	0.0
	S = 3/2	3.78	0.86	15.6	14.2	13.6
3-Ni + 3e ⁻	S = 1/2	0.76	0.77	0.0	0.0	0.0
	S = 3/2	3.79	0.81	16.9	15.3	15.0

Figure S15. Calculated redox potentials (in V versus the $Fc^{+/0}$ redox couple) are displayed for the first three-reduction events. The superscript represents the spin multiplicity of a given species and the spin on the nickel is denoted as ρ_{Ni} . ^aThe computed energies for the spin purified low-spin singlet were obtained by using Yamaguchi and co-workers' approach.

Figure S16. Isosurface (0.07 au) plots of the canonical molecular orbitals for ²**1-Ni** + **1e**⁻ at the ω B97X-D/Def2TZVPP level of theory in solution (SMD). The atomic contributions to the molecular orbitals are given for nickel. All energies are in atomic units. Hydrogen atoms have been omitted for clarity.

Figure S17. Isosurface (0.07 au) plots of the canonical molecular orbitals for ²2-Ni + 1e⁻ at the ω B97X-D/Def2TZVPP level of theory in solution (SMD). The atomic contributions to the molecular orbitals are given for nickel. All energies are in atomic units. Hydrogen atoms have been omitted for clarity. Hydrogen atoms have been omitted for clarity.

Figure S18. Isosurface (0.07 au) plots of the canonical molecular orbitals for ²2'-Ni + 1e⁻ at the ω B97X-D/Def2TZVPP level of theory in solution (SMD). The atomic contributions to the molecular orbitals are given for nickel. All energies are in atomic units. Hydrogen atoms have been omitted for clarity.

Figure S19. Isosurface (0.07 au) plots of the canonical molecular orbitals for ²3-Ni + 1e⁻ at the ω B97X-D/Def2TZVPP level of theory in solution (SMD). The atomic contributions to the molecular orbitals are given for nickel. All energies are in atomic units. Hydrogen atoms have been omitted for clarity.

Figure S20. Isosurface (0.07 au) plots of the canonical molecular orbitals for ¹**1-Ni** + $2e^{-}$ at the ω B97X-D/Def2TZVPP level of theory in solution (SMD). The atomic contributions to the molecular orbitals are given for nickel. All energies are in atomic units. Hydrogen atoms have been omitted for clarity.

Figure S21. Isosurface (0.07 au) plots of the canonical molecular orbitals for ¹**1'-Ni** + 2e⁻ at the ω B97X-D/Def2TZVPP level of theory in solution (SMD). The atomic contributions to the molecular orbitals are given for nickel. All energies are in atomic units. The α -HOMO-4, which is mainly ligand-centered, as well as the hydrogen atoms have been omitted for clarity.

Figure S22. Isosurface (0.07 au) plots of the canonical molecular orbitals for ³1-Ni + 2e⁻ at the ω B97X-D/Def2TZVPP level of theory in solution (SMD). The atomic contributions to the molecular orbitals are given for nickel. All energies are in atomic units. Hydrogen atoms have been omitted for clarity.

Figure S23. Isosurface (0.07 au) plots of the canonical molecular orbitals for ¹2-Ni + 2e⁻ at the ω B97X-D/Def2TZVPP level of theory in solution (SMD). The atomic contributions to the molecular orbitals are given for nickel. All energies are in atomic units. The α -HOMO-4, which is mainly ligand-centered, as well as the hydrogen atoms have been omitted for clarity.

Figure S24. Isosurface (0.07 au) plots of the canonical molecular orbitals for ¹2'-Ni + 2e⁻ at the ω B97X-D/Def2TZVPP level of theory in solution (SMD). The atomic contributions to the molecular orbitals are given for nickel. All energies are in atomic units. The α -HOMO-4, which is mainly ligand-centered, as well as the hydrogen atoms have been omitted for clarity.

Figure S25. Isosurface (0.07 au) plots of the canonical molecular orbitals for ${}^{3}2$ -Ni + 2e⁻ at the ω B97X-D/Def2TZVPP level of theory in solution (SMD). The atomic contributions to the molecular orbitals are given for nickel. All energies are in atomic units. Hydrogen atoms have been omitted for clarity.

Figure S26. Isosurface (0.07 au) plots of the canonical molecular orbitals for ¹**3-Ni** + $2e^{-}$ at the ω B97X-D/Def2TZVPP level of theory in solution (SMD). The atomic contributions to the molecular orbitals are given for nickel. All energies are in atomic units. Hydrogen atoms have been omitted for clarity.

Figure S27. Isosurface (0.005 au) plots of the Mulliken spin population for the two-electron reduced species: $^{1}1'-Ni + 2e^{-}$, $^{3}1-Ni + 2e^{-}$, $^{1}2'-Ni + 2e^{-}$, and $^{3}2-Ni + 2e^{-}$.

References

- a) J.-M. Savéant, E. Vianello, *Electrochim. Acta* **1965**, *10*, 905-920; b) E. S. Rountree, B. D. McCarthy, T. T. Eisenhart, J. L. Dempsey, *Inorg. Chem.* **2014**, *53*, 9983-10002.
- [2] a) J.-M. Savéant, K. B. Su, J. Electroanal. Chem. 1984, 171, 341-349; b) J. M. Smieja, M. D. Sampson, K. A. Grice, E. E. Benson, J. D. Froehlich, C. P. Kubiak, Inorg. Chem. 2013, 52, 2484-2491.
- [3] E. Fujita, C. Creutz, N. Sutin, D. J. Szalda, J. Am. Chem. Soc. 1991, 113, 343-353.
- [4] APEX2, v. 2009; Bruker Analytical X-Ray Systems, Inc: Madison, WI, 2009.
- [5] Sheldrick, G. M. SADABS, Version 2.03; Bruker Analytical X-ray Sys-tems, Inc: Madison, WI, 2000.
- [6] a) G. M. Sheldrick, Phase annealing in SHELX-90: Direct methods for larger structures. Acta Crystallogr., Sect. A: Found. Crystallogr. 1990, 46, 467-473; b) G. M. Sheldrick, A short history of SHELX. Acta Crystallogr., Sect. A: Found Crystallogr. 2008, 64, 112-122; c) G. M. Sheldrick. SHELXL-2014/7: Program for crystal structure determination, University of Göttingen: Göttingen, Germany, 2014.
- [7] Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. E.; J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V, Ortiz, J. V.; J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- [8] J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615-6620.
- [9] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.
- [10] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
- [11] F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057-1065.
- [12] C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154-2161.
- [13] C. Gonzalez, H. B. Schlegel, J. Phys. Chem. 1990, 94, 5523-5527
- [14] A. V. Marenich, J. Ho, M. L. Coote, C. J. Cramer, D. G. Truhlar, Phys. Chem. Chem. Phys. 2014, 16, 15068-15106.
- [15] J. Ho, Phys. Chem. Chem. Phys. 2015, 17, 2859-2868.
- [16] J. Ho, M. Z. Ertem, J. Phys. Chem. B 2016, 120, 1319-1329.
- [17] X.-E. Wu, L. Ma, M.-X. Ding, L.-X. Gao, Chem. Lett. 2005, 34, 312-313.
- [18] D. Nakatake, Y. Yokote, Y. Matsushima, R. Yazakia, T. Ohshima, Green Chem. 2016, 18, 1524-1530.
- [19] F. Wang, L. Jiang, J. Wang, Z. Zhang, *Energy Fuels* **2016**, *30*, 5885-5892.
- [20] M. H. Schmidt, G. M. Miskelly, N. S. Lewis, J. Am. Chem. Soc. 1990, 112, 3420-3426.
- [21] W. N. Olmstead, Z. Margolin, F. G. Bordwell, J. Org. Chem. 1980, 45, 3295-3299.
- [22] K.T. Ngo, M. McKinnon, B. Mahanti, R. Narayanan, D. C. Grills, M. Z. Ertem, J. Rochford, J. Am. Chem. Soc. 2017, 139, 2604-2618.

Tables of Cartesian Coordinates (Å) and Computed Energies (a.u.) for all Stationary.

1**1-Ni**

Energy	= -2610.935710
Enthalpy OK	= -2610.549802
Enthalpy 298K	= -2610.527400
Free Energy 298K	= -2610.599097
Nimag	= 0 (40.5574 cm-1)

С	3.00631	0.07697	-1.83506
Η	3.70121	-0.40959	-1.15203
Η	3.53721	0.36942	-2.73703
Η	2.20745	-0.60892	-2.09932
С	1.35767	1.32406	-0.43582
С	2.97930	2.52722	-1.39350
Η	3.85168	2.69770	-1.99866
С	2.19765	3.38365	-0.70593
Η	2.24902	4.45005	-0.57815
С	0.15629	3.14998	0.71089
Η	0.12847	4.22741	0.57898
Η	0.40246	2.94955	1.75632
С	-1.21140	2.58040	0.44645
С	-2.32168	3.39210	0.62253
Η	-2.18546	4.44193	0.83808
С	-3.58270	2.83991	0.52780
Η	-4.46149	3.45615	0.65784
С	-3.71336	1.48323	0.28599
Η	-4.68999	1.02646	0.24633
С	-2.57024	0.72911	0.11063
С	-2.57024	-0.72911	-0.11063
С	-3.71336	-1.48323	-0.28599
Η	-4.68999	-1.02646	-0.24633
С	-3.58270	-2.83992	-0.52780
Η	-4.46149	-3.45615	-0.65785
С	-2.32168	-3.39210	-0.62253
Η	-2.18546	-4.44193	-0.83808
С	-1.21140	-2.58040	-0.44645
С	0.15629	-3.14998	-0.71089
Η	0.12847	-4.22742	-0.57897

Н	0.40246	-2.94956	-1.75632
С	1.35767	-1.32406	0.43582
С	2.19765	-3.38365	0.70592
Η	2.24903	-4.45005	0.57814
С	2.97930	-2.52722	1.39351
Н	3.85167	-2.69770	1.99868
С	3.00631	-0.07697	1.83505
Н	3.70121	0.40959	1.15203
Н	3.53721	-0.36941	2.73703
Н	2.20745	0.60892	2.09931
Ν	2.44495	1.27046	-1.22399
Ν	1.20518	2.62277	-0.13363
Ν	-1.34363	1.28495	0.15764
Ν	-1.34363	-1.28496	-0.15764
Ν	1.20518	-2.62277	0.13363
Ν	2.44495	-1.27046	1.22399
Ni	0.09478	-0.00000	0.00000

3**1-Ni**

Energy	= -2610.912568
Enthalpy OK	= -2610.528753
Enthalpy 298K	= -2610.505513
Free Energy 298K	= -2610.581075
Nimag	= 0 (27.9830 cm-1)

С	0.75281	-2.47094	2.41949
Η	1.20252	-3.45454	2.53663
Η	0.51598	-2.06028	3.39953
Η	1.44913	-1.81248	1.90794
С	-0.74645	-1.79992	0.57462
С	-1.46376	-3.48472	1.85814
Η	-1.41678	-4.19842	2.66154
С	-2.41272	-3.26114	0.92410
Η	-3.35659	-3.74348	0.74135
С	-2.65218	-1.65706	-1.00341
Η	-3.61595	-2.14945	-1.08861
Η	-2.07910	-1.86860	-1.90676
С	-2.84088	-0.16959	-0.85179
С	-4.08145	0.43674	-0.93909
Η	-4.95895	-0.15506	-1.15630
С	-4.16953	1.80139	-0.72221

Н	-5.12615	2.30169	-0.78377
С	-3.03513	2.51781	-0.38121
Η	-3.10022	3.57128	-0.15537
С	-1.82667	1.84617	-0.30839
С	-0.55879	2.46388	0.15344
С	-0.38426	3.82575	0.32971
Η	-1.17705	4.52106	0.09904
С	0.83415	4.28037	0.80126
Η	0.99951	5.33961	0.94292
С	1.84113	3.37380	1.08391
Η	2.80217	3.70241	1.45219
С	1.60393	2.02536	0.88136
С	2.64542	0.98808	1.21173
Н	3.55610	1.47845	1.54167
Η	2.27693	0.36987	2.03172
С	2.08574	-0.54653	-0.65385
С	4.27030	-0.18469	-0.29856
Η	5.13415	0.24533	0.17635
С	4.15885	-1.06546	-1.31576
Н	4.90803	-1.55518	-1.91228
С	2.25677	-2.14655	-2.52800
Η	2.61640	-3.16234	-2.37585
Н	2.54907	-1.80168	-3.51804
Н	1.17337	-2.12830	-2.44300
Ν	-0.45328	-2.58004	1.62051
Ν	-1.95291	-2.22295	0.14752
Ν	-1.74612	0.54129	-0.58926
Ν	0.42414	1.59464	0.43013
Ν	2.98674	0.12245	0.08954
Ν	2.81282	-1.26993	-1.51452
Ni	0.12443	-0.26338	-0.38755

12-Ni

Energy	= -2609.728030
Enthalpy OK	= -2609.361258
Enthalpy 298K	= -2609.341171
Free Energy 298K	= -2609.407602
Nimag	= 0 (41.4011 cm-1)

С	1.92071	0.66107	-0.21727
С	4.11405	1.14234	-0.08252

Η	5.14933	0.95115	0.13635
С	3.49566	2.24236	-0.54313
Η	3.87348	3.21104	-0.81666
С	1.18333	2.88561	-1.09917
Н	0.92192	2.63828	-2.12967
Η	1.64541	3.86770	-1.09437
С	-0.07237	2.90669	-0.28785
С	-0.63876	4.09152	0.15055
Η	-0.12439	5.02590	-0.02085
С	-1.85812	4.04955	0.80026
Η	-2.31088	4.95768	1.17335
С	-2.51488	2.83831	0.93575
Η	-3.49257	2.78730	1.39017
С	-1.90252	1.69901	0.45284
С	-2.55195	0.38302	0.33022
С	-3.88410	0.13600	0.60065
Η	-4.50272	0.89165	1.06093
С	-4.41533	-1.08885	0.23609
Η	-5.45518	-1.31004	0.43305
С	-3.61388	-2.01357	-0.40838
Η	-4.00660	-2.96329	-0.74106
С	-2.28044	-1.71280	-0.62082
С	-1.35522	-2.65243	-1.33952
Η	-1.83681	-3.61092	-1.50301
Η	-1.09097	-2.22656	-2.30796
С	0.57986	-1.86827	-0.03938
С	0.29649	-4.09248	-0.12981
Η	-0.16747	-5.01264	-0.43653
С	1.34472	-3.84567	0.68080
Η	1.99116	-4.50799	1.22818
С	2.51567	-1.79617	1.49637
Η	3.02056	-2.54841	2.09621
Η	2.04760	-1.08061	2.16981
С	3.53264	-1.13001	0.60521
Η	4.44644	-0.98229	1.17508
Η	3.76473	-1.77109	-0.24523
Ν	3.14227	0.18970	0.11671
Ν	2.16114	1.93165	-0.61160
Ν	-0.67323	1.73613	-0.09297
Ν	-1.76143	-0.54990	-0.22608
Ν	-0.15453	-2.86666	-0.55796
Ν	1.49243	-2.47856	0.72743

32-Ni

Energy	= -2609.701011
Enthalpy OK	= -2609.336241
Enthalpy 298K	= -2609.315456
Free Energy 298K	= -2609.384651
Nimag	= 0 (45.8192 cm-1)

С	2.11655	0.49419	-0.32877
С	4.31082	0.70473	0.08944
Η	5.30190	0.36945	0.33846
С	3.83398	1.93685	-0.17736
Η	4.32066	2.89510	-0.21217
С	1.63522	2.87030	-0.87582
Η	1.46008	2.75331	-1.94670
Η	2.18255	3.79627	-0.72889
С	0.29779	2.97292	-0.19312
С	-0.13231	4.19142	0.30633
Η	0.53068	5.04447	0.28941
С	-1.41332	4.28998	0.81651
Η	-1.77028	5.22663	1.22207
С	-2.24168	3.18307	0.79268
Η	-3.25006	3.25251	1.17026
С	-1.74873	1.99487	0.27921
С	-2.57075	0.76246	0.15487
С	-3.92526	0.72361	0.44347
Η	-4.44412	1.59721	0.80572
С	-4.61212	-0.46016	0.24645
Η	-5.66929	-0.51708	0.46673
С	-3.93780	-1.56651	-0.23697
Η	-4.44758	-2.50393	-0.40684
С	-2.58346	-1.45939	-0.50299
С	-1.82020	-2.62153	-1.08441
Η	-2.45814	-3.49959	-1.11328
Η	-1.53140	-2.37941	-2.10778
С	0.34475	-2.07988	-0.03498
С	-0.32790	-4.21209	0.15880
Η	-0.98100	-5.05521	0.02042
С	0.86794	-4.10181	0.77482
Η	1.46872	-4.83141	1.28811

С	2.49310	-2.24254	1.19585
Η	3.02266	-3.07595	1.64923
Η	2.25359	-1.53044	1.98396
С	3.40036	-1.60628	0.15232
Η	4.43210	-1.76382	0.45436
Η	3.26020	-2.08836	-0.81401
Ν	3.24583	-0.16243	-0.00683
Ν	2.49008	1.78287	-0.42565
Ν	-0.49338	1.89931	-0.17953
Ν	-1.92595	-0.31635	-0.30336
Ν	-0.62612	-2.95980	-0.32655
Ν	1.25823	-2.78754	0.64475
Ni	0.16985	-0.09026	-0.35846

¹3-Ni

Energy	= -2570.413937
Enthalpy OK	= -2570.076303
Enthalpy 298K	= -2570.057325
Free Energy 298K	= -2570.121306
Nimag	= 0 (50.9048 cm-1)

С	-1.50850	1.28212	0.04242
С	-3.44724	2.35477	-0.28698
Н	-4.48140	2.45658	-0.56349
С	-2.54768	3.26049	0.14488
Η	-2.64019	4.31419	0.33835
С	-0.15670	3.18433	0.86525
Η	-0.13506	3.04150	1.94771
Η	-0.20545	4.25117	0.66898
С	1.11972	2.62945	0.29555
С	2.18008	3.48174	0.03096
Η	2.05205	4.54704	0.15750
С	3.38212	2.95066	-0.39361
Η	4.21621	3.59983	-0.62113
С	3.51696	1.57807	-0.51230
Η	4.45453	1.14253	-0.82137
С	2.42834	0.78069	-0.22135
С	2.45916	-0.69522	-0.20823
С	3.58901	-1.44943	-0.45305
Η	4.51984	-0.97864	-0.72982
С	3.50667	-2.82542	-0.32377

Η	4.37374	-3.44170	-0.51694
С	2.31423	-3.40147	0.06692
Η	2.22497	-4.47026	0.19739
С	1.21398	-2.59010	0.29750
С	-0.05066	-3.19653	0.83975
Η	-0.05751	-4.26147	0.62867
Η	-0.04880	-3.06897	1.92440
С	-1.46229	-1.33457	0.02530
С	-2.43129	-3.34946	0.09977
Η	-2.48703	-4.40801	0.28020
С	-3.36084	-2.47069	-0.32387
Η	-4.39005	-2.60534	-0.60485
С	-3.36668	-0.05277	-0.90471
Η	-3.23328	-0.04123	-1.98508
Η	-4.42631	-0.07443	-0.66861
Ν	-2.78754	1.14624	-0.33954
Ν	-1.36545	2.58030	0.33579
Ν	1.24543	1.31050	0.14452
Ν	1.29057	-1.26852	0.13881
Ν	-1.27430	-2.63030	0.30338
Ν	-2.74418	-1.23901	-0.35899
Ni	-0.16280	-0.00419	0.15421

33-Ni

Energy	= -2570.368959
Enthalpy OK	= -2570.033660
Enthalpy 298K	= -2570.013942
Free Energy 298K	= -2570.081216
Nimag	= 0 (40.7640 cm-1)

С	-1.53983	1.48522	0.34172
С	-3.21124	2.52810	-0.72574
Η	-4.17910	2.62805	-1.18401
С	-2.21567	3.42337	-0.55131
Η	-2.14109	4.45951	-0.82978
С	0.04741	3.34259	0.55850
Η	0.01276	3.41059	1.64708
Η	0.09841	4.35473	0.16890
С	1.31532	2.61082	0.17269
С	2.43581	3.36220	-0.14895
Н	2.36746	4.43986	-0.18783

С	3.62533	2.71278	-0.41195
Η	4.51429	3.27799	-0.65622
С	3.67047	1.33023	-0.37795
Η	4.59354	0.81664	-0.59571
С	2.51381	0.63427	-0.07280
С	2.44221	-0.85494	-0.08605
С	3.51342	-1.65016	-0.45568
Н	4.46768	-1.21998	-0.71540
С	3.33788	-3.02130	-0.50681
Η	4.15779	-3.66180	-0.80141
С	2.10534	-3.56222	-0.19795
Η	1.93492	-4.62805	-0.24790
С	1.07438	-2.71556	0.17958
С	-0.24497	-3.32418	0.60421
Η	-0.29090	-4.34804	0.24604
Η	-0.27143	-3.35447	1.69459
С	-1.66548	-1.34038	0.36188
С	-2.51029	-3.22398	-0.50333
Η	-2.52759	-4.26651	-0.76683
С	-3.42282	-2.24665	-0.69167
Η	-4.39604	-2.26687	-1.14896
С	-3.60940	0.15843	-0.04309
Η	-4.36127	0.18658	-0.82608
Η	-4.09930	0.18655	0.92788
Ν	-2.77074	1.34013	-0.17806
Ν	-1.20014	2.75461	0.09699
Ν	1.37334	1.27882	0.21942
Ν	1.25854	-1.39490	0.24256
Ν	-1.44008	-2.63846	0.13692
Ν	-2.87864	-1.09449	-0.16119
Ni	-0.22308	0.01333	0.57526

²1-Ni + 1e⁻

Energy	= -2611.048715
Enthalpy OK	= -2610.665293
Enthalpy 298K	= -2610.642965
Free Energy 298K	= -2610.714533
Nimag	= 0 (47.8587 cm-1)

C 3.01123 0.14896 -1.83040 H 3.69558 -0.36609 -1.15704

Η	3.55405	0.46657	-2.71692
Н	2.21184	-0.52448	-2.12445
С	1.35438	1.34698	-0.40210
С	2.98802	2.58390	-1.30670
Η	3.86461	2.77489	-1.89969
С	2.20397	3.41530	-0.59087
Η	2.25773	4.47615	-0.42316
С	0.14582	3.11611	0.80985
Н	0.14201	4.20121	0.76622
Η	0.37180	2.81993	1.83696
С	-1.21692	2.58462	0.45437
С	-2.30663	3.41020	0.53490
Η	-2.17084	4.46063	0.74881
С	-3.59575	2.85902	0.36628
Η	-4.46907	3.49544	0.41710
С	-3.72967	1.51813	0.15834
Η	-4.70919	1.07441	0.05117
С	-2.57986	0.70364	0.08053
С	-2.57986	-0.70362	-0.08053
С	-3.72968	-1.51810	-0.15834
Η	-4.70920	-1.07437	-0.05117
С	-3.59577	-2.85899	-0.36628
Η	-4.46910	-3.49541	-0.41709
С	-2.30666	-3.41018	-0.53490
Η	-2.17088	-4.46061	-0.74881
С	-1.21694	-2.58461	-0.45437
С	0.14579	-3.11611	-0.80985
Η	0.14197	-4.20122	-0.76621
Η	0.37177	-2.81993	-1.83696
С	1.35437	-1.34699	0.40209
С	2.20393	-3.41532	0.59088
Η	2.25767	-4.47617	0.42318
С	2.98801	-2.58392	1.30669
Η	3.86460	-2.77492	1.89967
С	3.01122	-0.14899	1.83041
Η	3.69556	0.36607	1.15704
Η	3.55405	-0.46660	2.71692
Η	2.21184	0.52446	2.12447
Ν	2.44863	1.32263	-1.18629
Ν	1.20774	2.63515	-0.05253
Ν	-1.32740	1.26714	0.18604
Ν	-1.32741	-1.26713	-0.18604

N 1.20772 -2.63516 0.05253 N 2.44861 -1.32265 1.18630 Ni 0.09301 -0.00000 -0.00000

²1'-Ni + 1e⁻

Energy	= -2611.046579
Enthalpy OK	= -2610.665234
Enthalpy 298K	= -2610.641372
Free Energy 298K	= -2610.719259
Nimag	= 0 (20.8936 cm-1)

С	-0.93492	-2.89424	2.36549
Η	-1.01946	-3.97980	2.35953
Η	-1.09574	-2.52698	3.37857
Η	0.05903	-2.60575	2.03447
С	-1.61859	-1.41193	0.50236
С	-3.25490	-2.60834	1.49827
Η	-3.67343	-3.30854	2.19969
С	-3.83570	-1.86623	0.53414
Η	-4.86114	-1.79115	0.21755
С	-2.99957	-0.22594	-1.17054
Η	-4.05789	-0.18886	-1.41292
Η	-2.46493	-0.61320	-2.03924
С	-2.49598	1.16087	-0.86346
С	-3.31359	2.26970	-0.99808
Η	-4.34192	2.14822	-1.30828
С	-2.79000	3.52230	-0.72402
Η	-3.40716	4.40598	-0.81330
С	-1.47192	3.63111	-0.32346
Η	-1.05116	4.59802	-0.09181
С	-0.71002	2.47567	-0.21266
С	0.71000	2.47567	0.21266
С	1.47189	3.63112	0.32346
Η	1.05113	4.59803	0.09181
С	2.78998	3.52232	0.72402
Η	3.40713	4.40599	0.81330
С	3.31358	2.26972	0.99808
Η	4.34191	2.14824	1.30828
С	2.49597	1.16089	0.86346
С	2.99957	-0.22592	1.17054
Η	4.05789	-0.18884	1.41292

Η	2.46493	-0.61318	2.03924
С	1.61860	-1.41192	-0.50236
С	3.83571	-1.86621	-0.53414
Н	4.86115	-1.79113	-0.21755
С	3.25491	-2.60834	-1.49826
Н	3.67345	-3.30854	-2.19968
С	0.93493	-2.89423	-2.36549
Н	1.01948	-3.97979	-2.35952
Η	1.09576	-2.52697	-3.37857
Н	-0.05901	-2.60575	-2.03448
Ν	-1.90716	-2.31779	1.46010
Ν	-2.82201	-1.14615	-0.05920
Ν	-1.22184	1.26869	-0.48151
Ν	1.22183	1.26869	0.48150
Ν	2.82202	-1.14614	0.05920
Ν	1.90717	-2.31778	-1.46010
Ni	0.00000	-0.36354	-0.00000

41-Ni + 1e⁻

Energy	= -2611.013911
Enthalpy OK	= -2610.633779
Enthalpy 298K	= -2610.609919
Free Energy 298K	= -2610.687347
Nimag	= 0 (32.9187 cm-1)

С	-0.39552	-3.24159	1.87782
Н	-0.27357	-4.26469	1.52604
Η	-0.54936	-3.24626	2.95543
Η	0.49648	-2.66884	1.64280
С	-1.47004	-1.53618	0.43678
С	-2.82196	-3.09530	1.31765
Η	-3.07556	-3.95907	1.90643
С	-3.58867	-2.27237	0.57226
Η	-4.64514	-2.27701	0.36999
С	-3.14309	-0.30283	-0.90938
Η	-4.22785	-0.31515	-0.96596
Н	-2.75506	-0.58514	-1.89046
С	-2.67149	1.09590	-0.59736
С	-3.54569	2.14527	-0.73018

Η	-4.58589	1.96236	-0.95786
С	-3.04506	3.45931	-0.58704
Η	-3.70811	4.30707	-0.70017
С	-1.72388	3.65298	-0.31589
Η	-1.33328	4.65575	-0.22096
С	-0.86462	2.53762	-0.15315
С	0.51979	2.63059	0.15279
С	1.22122	3.85058	0.32105
Н	0.69929	4.79197	0.23010
С	2.55636	3.83481	0.59267
Η	3.09926	4.76350	0.71059
С	3.22909	2.59953	0.73074
Η	4.28437	2.55829	0.95895
С	2.50364	1.44263	0.59333
С	3.15929	0.11960	0.90423
Η	4.23601	0.25268	0.95538
Η	2.81758	-0.20958	1.88796
С	1.66271	-1.32618	-0.43856
С	3.85876	-1.78318	-0.56599
Η	4.90649	-1.64985	-0.36210
С	3.20679	-2.70118	-1.30969
Η	3.57164	-3.52653	-1.89515
С	0.81922	-3.16217	-1.87087
Η	0.78357	-4.17177	-1.46451
Н	1.01099	-3.21009	-2.94118
Η	-0.13110	-2.66685	-1.69619
Ν	-1.53128	-2.62588	1.21900
Ν	-2.74126	-1.32394	0.04713
Ν	-1.37276	1.26681	-0.29776
Ν	1.19394	1.43927	0.29289
Ν	2.89454	-0.94945	-0.04753
Ν	1.86626	-2.40123	-1.21682
Ni	0.01472	-0.21667	-0.00553

²2-Ni + 1e⁻

Energy	= -2609.840863
Enthalpy OK	= -2609.477192
Enthalpy 298K	= -2609.456876
Free Energy 298K	= -2609.524146
Nimag	= 0 (46.4592 cm-1)

С	1.89393	0.75062	-0.20899
С	4.06325	1.33662	-0.03883
Н	5.10358	1.19405	0.19284
С	3.39750	2.40901	-0.49950
Η	3.73156	3.39724	-0.76015
С	1.05824	2.93270	-1.09367
Н	0.81735	2.64861	-2.12024
Η	1.47688	3.93438	-1.10846
С	-0.19906	2.90592	-0.28436
С	-0.81958	4.06345	0.10302
Η	-0.35224	5.01770	-0.09194
С	-2.07897	3.97688	0.73885
Н	-2.57927	4.87432	1.07747
С	-2.67388	2.75869	0.88439
Н	-3.65900	2.67471	1.32092
С	-2.00787	1.59753	0.43505
С	-2.56490	0.30423	0.33749
С	-3.89691	-0.05521	0.63874
Η	-4.54953	0.65993	1.11939
С	-4.35730	-1.29003	0.28936
Η	-5.37861	-1.57414	0.50510
С	-3.49852	-2.18930	-0.38463
Η	-3.84730	-3.15549	-0.71909
С	-2.20120	-1.81658	-0.60745
С	-1.24353	-2.70071	-1.35303
Η	-1.68031	-3.67802	-1.53320
Η	-0.99705	-2.24514	-2.31326
С	0.66222	-1.84671	-0.06114
С	0.48079	-4.08323	-0.16553
Η	0.05933	-5.02178	-0.47797
С	1.51930	-3.79631	0.64443
Η	2.19666	-4.43343	1.18439
С	2.58950	-1.70046	1.48132
Η	3.12784	-2.43363	2.07614
Η	2.08345	-1.01660	2.16056
С	3.58059	-0.97140	0.60877
Η	4.48283	-0.79184	1.18829
Η	3.84856	-1.58901	-0.24889
Ν	3.13489	0.33603	0.13785
Ν	2.08109	2.03384	-0.59009
Ν	-0.72589	1.68917	-0.06446
N	-1.71029	-0.62598	-0.21153

N -0.02580 -2.87589 -0.58421 N 1.60550 -2.42341 0.69962 Ni 0.12061 -0.03259 -0.21242

²2'-Ni + 1e⁻

Energy	= -2609.835918
Enthalpy OK	= -2609.473327
Enthalpy 298K	= -2609.452032
Free Energy 298K	= -2609.523763
Nimag	= 0 (8.5863 cm-1)

С	2.15403	0.28133	-0.41922
С	4.30262	0.30516	0.28833
Η	5.22773	-0.11660	0.63961
С	3.95453	1.58120	0.03268
Η	4.51106	2.49834	0.11148
С	1.91886	2.70366	-0.87163
Η	1.75024	2.59394	-1.94452
Η	2.55198	3.57423	-0.72498
С	0.58273	2.94265	-0.21577
С	0.26249	4.20720	0.25380
Η	1.00290	4.99449	0.23523
С	-1.01357	4.43662	0.73392
Η	-1.29250	5.41177	1.10956
С	-1.93560	3.40713	0.71561
Η	-2.94225	3.57877	1.06359
С	-1.54073	2.16392	0.24232
С	-2.47011	1.00518	0.15505
С	-3.79589	1.06752	0.56449
Η	-4.20984	1.96955	0.98831
С	-4.59029	-0.05417	0.42085
Η	-5.62539	-0.03177	0.73358
С	-4.04490	-1.20452	-0.12176
Η	-4.63609	-2.10087	-0.24633
С	-2.71355	-1.19412	-0.50283
С	-2.07130	-2.41482	-1.10867
Η	-2.79167	-3.22662	-1.15536
Η	-1.75054	-2.18441	-2.12514
С	0.13473	-2.08630	-0.05590
С	-0.75903	-4.15477	0.13942
Η	-1.49636	-4.92579	0.00144

С	0.44159	-4.17202	0.75338
Η	0.96198	-4.96256	1.26474
С	2.25793	-2.49995	1.16090
Η	2.71036	-3.39332	1.58485
Η	2.10816	-1.78587	1.97006
С	3.20934	-1.92309	0.11772
Η	4.22516	-2.19786	0.39110
Η	3.00064	-2.35907	-0.85806
N	3.19728	-0.47000	0.00662
N	2.64556	1.54191	-0.39576
N	-0.29580	1.94028	-0.19466
N	-1.94935	-0.10892	-0.36724
N	-0.92234	-2.87511	-0.34476
N	0.96759	-2.90348	0.62138
Ni	0.19610	-0.12843	-0.42908

42-Ni + 1e⁻

Energy	=	-2609.807766
Enthalpy OK	=	-2609.446145
Enthalpy 29	8K =	-2609.425104
Free Energy	298K =	-2609.495011
Nimag	=	0 (43.9558 cm-1)
C 2.13189	0.45197	-0.33937
C 4.32179	0.62016	0.13729
н 5.30026	0.26486	0.40789
C 3.87182	1.86277	-0.12870
н 4.37590	2.81267	-0.14134
C 1.69929	2.83881	-0.86898
н 1.52746	2.71197	-1.93967
н 2.26878	3.75296	-0.72909
C 0.36371	2.96918	-0.18686
C -0.03648	4.19229	0.28544
н 0.63997	5.03437	0.25777
C -1.35309	4.32545	0.78451
н -1.69450	5.27729	1.16962
C -2.19110	3.25156	0.76217
н -3.20437	3.34819	1.12478
C -1.73281	2.00691	0.26519
c -2.53802	0.84062	0.15857

Η	-4.42049	1.66225	0.85683
С	-4.60846	-0.37684	0.30344
Н	-5.66213	-0.42595	0.54507
С	-3.94401	-1.51635	-0.20490
Η	-4.46747	-2.44812	-0.36362
С	-2.60905	-1.41485	-0.49890
С	-1.87012	-2.58158	-1.10253
Н	-2.51949	-3.45107	-1.14527
Н	-1.56899	-2.32992	-2.12046
С	0.31074	-2.08998	-0.06353
С	-0.41815	-4.20381	0.15441
Н	-1.09271	-5.03120	0.02339
С	0.77653	-4.11832	0.77666
Н	1.35448	-4.85707	1.30302
С	2.44469	-2.29833	1.18801
Н	2.95667	-3.14370	1.64001
Н	2.21819	-1.58400	1.97829
С	3.36769	-1.67377	0.15072
Н	4.39548	-1.85721	0.45210
Н	3.21774	-2.14614	-0.81901
Ν	3.24425	-0.22698	0.00366
Ν	2.53251	1.73430	-0.41287
Ν	-0.43362	1.88470	-0.17436
Ν	-1.90745	-0.28150	-0.31922
Ν	-0.67987	-2.95082	-0.34901
Ν	1.20181	-2.81605	0.63137
Ni	0.15175	-0.07905	-0.37419

²3-Ni + 1e⁻

C -3.91642 0.78377 0.48072 C -2.51442 3.29162 0.12201

Ene	ergy	=	-2570.526	508
Ent	halpy OK	=	-2570.1923	106
Ent	chalpy 298	K =	-2570.1728	348
Fre	ee Energy	298K =	-2570.2383	120
Nin	nag	=	0 (38.2907	cm-1)
С	-1.49175	1.30136	0.04424	
С	-3.41977	2.39213	-0.31181	
Н	-4.45025	2.50278	-0.59861	

Η	-2.59931	4.34742	0.30757
С	-0.12480	3.17996	0.87641
Н	-0.11485	3.00051	1.95382
Η	-0.16564	4.25283	0.71329
С	1.14455	2.62330	0.28915
С	2.19444	3.46409	0.02764
Η	2.07504	4.53059	0.15185
С	3.42651	2.90923	-0.38607
Η	4.26472	3.55665	-0.60651
С	3.55560	1.55611	-0.48903
Η	4.49652	1.11401	-0.78406
С	2.45078	0.72447	-0.20390
С	2.46244	-0.69026	-0.19944
С	3.58445	-1.50479	-0.46631
Η	4.52362	-1.04843	-0.74508
С	3.47550	-2.85956	-0.36118
Η	4.32715	-3.49405	-0.56721
С	2.24716	-3.43287	0.03768
Η	2.14274	-4.50100	0.16150
С	1.18216	-2.60779	0.28895
С	-0.08232	-3.18499	0.86693
Η	-0.10714	-4.25736	0.69737
Η	-0.07928	-3.01195	1.94544
С	-1.47348	-1.32200	0.03940
С	-2.46817	-3.32675	0.10666
Η	-2.53843	-4.38446	0.28729
С	-3.38548	-2.43808	-0.32422
Η	-4.41398	-2.56185	-0.61279
С	-3.35373	-0.02125	-0.91492
Η	-3.20431	-0.01746	-1.99364
Η	-4.41752	-0.02961	-0.69640
Ν	-2.77133	1.17571	-0.34836
Ν	-1.34101	2.60092	0.32905
Ν	1.24008	1.28744	0.14360
Ν	1.25839	-1.27098	0.14222
Ν	-1.30481	-2.62059	0.31841
Ν	-2.75420	-1.21252	-0.35425
Ni	-0.16025	-0.00150	0.16137

Ent	chalpy OK	=	-2570.173954
Ent	chalpy 298	3K =	-2570.153881
Fre	ee Energy	298K =	-2570.222460
Nin	nag	=	0 (18.1633 cm-1)
С	-1.12355	-1.86384	-0.46165
С	-2.37299	-3.11704	0.95106
Η	-3.24371	-3.38498	1.52327
С	-1.17926	-3.73010	0.81527
Н	-0.79878	-4.63840	1.24816
С	0.90005	-3.23536	-0.51644
Н	0.87300	-3.34627	-1.60190
Н	1.20872	-4.18984	-0.09872
С	1.94405	-2.19238	-0.17721
С	3.23573	-2.62155	0.09403
Η	3.45684	-3.67946	0.12004
С	4.21983	-1.68075	0.32194
Η	5.23808	-1.98643	0.52054
С	3.88467	-0.33912	0.30931
Н	4.64244	0.40585	0.49466
С	2.56891	0.01959	0.05999
С	2.10698	1.43403	0.11170
С	2.91888	2.45866	0.57735
Η	3.93338	2.26939	0.89151
С	2.40070	3.73708	0.65729
Η	3.01105	4.55108	1.02415
С	1.08865	3.95586	0.28303
Η	0.64560	4.93956	0.34943
С	0.33436	2.88812	-0.17877
С	-1.08232	3.14121	-0.64572
Η	-1.39510	4.12707	-0.31362
Η	-1.09261	3.13983	-1.73670
С	-1.95978	0.86583	-0.46820
С	-3.18744	2.45446	0.56587
Η	-3.43608	3.44797	0.89517
С	-3.82228	1.27717	0.74481
Η	-4.73663	1.03874	1.25925
С	-3.43080	-1.07440	-0.04330
Η	-4.20343	-1.30378	0.68386
Н	-3.82695	-1.22394	-1.04559

N -2.32000 -1.98203 0.16593

²3'-Ni + 1e⁻

Energy = -2570.507214 N -0.43925 -2.94934 -0.04995

```
N 1.62760 -0.89774 -0.20864
N 0.84333 1.65697 -0.27240
N -2.05688 2.17551 -0.17527
N -3.05451 0.32080 0.10948
Ni -0.25515 -0.09645 -0.68570
```

43-Ni + 1e⁻

Energy		=	-2570.477033
Enthalpy	0K	=	-2570.144966
Enthalpy	298K	=	-2570.124979
Free Ener	gy 298	3K =	-2570.193047
Nimag		=	0 (36.0049 cm-1)
C -1.593	98 1.	43513	0.37499
C -3.261	39 2.	41986	-0.76011
н -4.214	93 2.	48619	-1.25322
C -2.301	38 3.	34734	-0.55470
н -2.249	92 4.	38377	-0.83745
C -0.062	84 3.	32896	0.62508
н -0.102	20 3.	32701	1.71552
н -0.056	19 4.	36302	0.29388
C 1.219	13 2.	65475	0.18532
C 2.271	25 3.	43980	-0.21218
н 2.153	97 4.	51149	-0.28397
C 3.506	14 2.	81837	-0.50345
н 4.359	94 3.	41750	-0.79159
C 3.611	98 1.	46198	-0.43172
н 4.550	97 0.	98188	-0.66537
C 2.485	78 0.	68321	-0.06814
C 2.468	36 -0.	74071	-0.06986
C 3.573	54 -1.	54515	-0.44127
н 4.521	20 -1.	08642	-0.68213
C 3.435	78 -2.	89860	-0.51412
н 4.273	49 -3.	51699	-0.80869
C 2.188	24 -3.	49126	-0.21688
н 2.045	49 -4.	55984	-0.28891
C 1.156	18 -2.	68217	0.18492
C -0.140	35 -3.	32624	0.62735
н -0.158	71 -4.	36042	0.29673
н -0.177	93 -3.	32268	1.71787
C -1.626	58 -1.	39689	0.37502

С	-2.38164	-3.29469	-0.54647
Η	-2.35546	-4.33291	-0.82608
С	-3.32000	-2.34541	-0.75226
Η	-4.27605	-2.39057	-1.24285
С	-3.60467	0.04209	-0.07471
Η	-4.34391	0.04997	-0.87026
Η	-4.11275	0.04871	0.88754
Ν	-2.80220	1.24960	-0.18937
Ν	-1.29091	2.71535	0.13564
Ν	1.31214	1.31419	0.28008
Ν	1.28103	-1.34413	0.28088
Ν	-1.35455	-2.68470	0.13915
Ν	-2.83131	-1.18453	-0.18707
Ni	-0.20706	0.00278	0.60939

¹1-Ni + 2e⁻

Ene	erav	=	-2611 138721
Ent	-balau OV	_	-2610 758102
	halpy on	-	-2010.738103
Ent	chalpy 298	3K =	-2610./3538/
Fre	ee Energy	298K =	-2610.807059
Nir	nag	=	0 (51.4608 cm-1)
С	3.01038	0.17952	-1.82905
Н	3.69001	-0.35078	-1.16198
Н	3.55721	0.50251	-2.71164
Н	2.20714	-0.48697	-2.13009
С	1.34072	1.35814	-0.40393
С	3.00732	2.60369	-1.25361
Н	3.89561	2.80031	-1.82728
С	2.22001	3.42489	-0.52965
Н	2.28258	4.48108	-0.33639
С	0.13972	3.10380	0.84493
Н	0.14595	4.19031	0.83775
Н	0.36230	2.76520	1.86090
С	-1 21797	2 58570	0 45644
C	-2 28835	3 12557	0 47816
	2.20000	1 47720	0.47010
н	-2.14/19	4.4//39	0.68445
С	-3.60337	2.87677	0.28858
Η	-4.46790	3.52851	0.29447
С	-3.74602	1.54442	0.10955
Н	-4.72892	1.11442	-0.03638

С	-2.60150	0.68199	0.08276
С	-2.60150	-0.68199	-0.08276
С	-3.74602	-1.54442	-0.10955
Н	-4.72892	-1.11442	0.03638
С	-3.60337	-2.87677	-0.28858
Н	-4.46790	-3.52851	-0.29447
С	-2.28835	-3.42557	-0.47816
Н	-2.14719	-4.47739	-0.68445
С	-1.21797	-2.58570	-0.45644
С	0.13972	-3.10380	-0.84493
Η	0.14595	-4.19031	-0.83775
Н	0.36230	-2.76520	-1.86090
С	1.34072	-1.35814	0.40393
С	2.22001	-3.42489	0.52965
Η	2.28258	-4.48108	0.33639
С	3.00732	-2.60369	1.25362
Η	3.89561	-2.80031	1.82728
С	3.01038	-0.17952	1.82905
Η	3.69001	0.35077	1.16198
Η	3.55721	-0.50251	2.71164
Η	2.20714	0.48697	2.13009
Ν	2.45139	1.34507	-1.17193
Ν	1.20676	2.64257	-0.02638
Ν	-1.31458	1.24675	0.24016
Ν	-1.31458	-1.24675	-0.24016
Ν	1.20676	-2.64257	0.02638
Ν	2.45139	-1.34507	1.17193
Ni	0.08804	0.00000	0.00000

11'-Ni + 2e⁻

Energy	= -2611.138254
Enthalpy OK	= -2610.760455
Enthalpy 298K	= -2610.736321
Free Energy 298K	= -2610.813958
Nimag	= 0 (22.0701 cm-1)

C 0.91015 -2.87920 -2.39160 H 1.00163 -3.96441 -2.40694 H 1.05548 -2.49324 -3.40048 H -0.08239 -2.60400 -2.04504 C 1.60340 -1.40991 -0.51936

С	3.23483	-2.60165	-1.53860
Η	3.64844	-3.29643	-2.24840
С	3.82196	-1.86552	-0.57375
Η	4.85035	-1.79209	-0.26605
С	3.00340	-0.23814	1.15273
Η	4.06468	-0.21127	1.38585
Η	2.47315	-0.63978	2.01872
С	2.49739	1.15304	0.86749
С	3.31716	2.24550	1.02042
Η	4.34762	2.11919	1.32173
С	2.76977	3.52823	0.78529
Η	3.38348	4.41215	0.90368
С	1.46904	3.64127	0.39037
Η	1.04988	4.61642	0.18400
С	0.67342	2.47833	0.22636
С	-0.67340	2.47834	-0.22636
С	-1.46901	3.64128	-0.39037
Η	-1.04984	4.61642	-0.18400
С	-2.76974	3.52825	-0.78529
Η	-3.38344	4.41218	-0.90368
С	-3.31714	2.24553	-1.02042
Η	-4.34760	2.11923	-1.32173
С	-2.49738	1.15306	-0.86749
С	-3.00340	-0.23812	-1.15273
Η	-4.06468	-0.21124	-1.38585
Η	-2.47316	-0.63976	-2.01872
С	-1.60341	-1.40989	0.51936
С	-3.82198	-1.86548	0.57375
Η	-4.85037	-1.79204	0.26606
С	-3.23485	-2.60164	1.53859
Η	-3.64847	-3.29643	2.24838
С	-0.91017	-2.87920	2.39159
Η	-1.00158	-3.96442	2.40683
Η	-1.05559	-2.49335	3.40050
Η	0.08236	-2.60391	2.04511
Ν	1.88688	-2.31205	-1.48670
Ν	2.81400	-1.14932	0.03349
Ν	1.20916	1.24147	0.50447
Ν	-1.20915	1.24148	-0.50447
Ν	-2.81400	-1.14929	-0.03349
Ν	-1.88690	-2.31203	1.48670
Ni	-0.00000	-0.35141	0.00000

³1-Ni + 2e⁻

Energy	= -2611.135642	C
Enthalpy OK	= -2610.758212	ŀ
Enthalpy 298K	= -2610.733992	ŀ
Free Energy 298K	= -2610.812667	ŀ
Nimag	= 0 (22.1248 cm-1)	Ν

С	0.99467	-2.85444	-2.45942
Н	1.17303	-3.92408	-2.55996
Н	1.06994	-2.38522	-3.44021
Н	-0.00301	-2.68909	-2.06171
С	1.64282	-1.44646	-0.52548
С	3.31885	-2.47535	-1.64521
Н	3.75655	-3.10459	-2.40025
С	3.88372	-1.75562	-0.65489
Н	4.91316	-1.63409	-0.36647
С	3.01115	-0.26364	1.16254
Н	4.06928	-0.22450	1.40788
Н	2.48302	-0.70289	2.01076
С	2.48167	1.13056	0.92367
С	3.26362	2.23191	1.19934
Η	4.27998	2.11224	1.54698
С	2.68999	3.50992	1.01638
Η	3.26493	4.40041	1.23774
С	1.41008	3.61786	0.55608
Η	0.96942	4.59485	0.41488
С	0.66158	2.44710	0.25915
С	-0.66158	2.44710	-0.25915
С	-1.41009	3.61786	-0.55608
Η	-0.96943	4.59485	-0.41487
С	-2.69000	3.50991	-1.01637
Н	-3.26494	4.40040	-1.23774
С	-3.26362	2.23190	-1.19933
Η	-4.27998	2.11223	-1.54698
С	-2.48167	1.13055	-0.92367
С	-3.01115	-0.26365	-1.16254
Η	-4.06929	-0.22450	-1.40787
Η	-2.48304	-0.70290	-2.01076
С	-1.64281	-1.44646	0.52548
С	-3.88372	-1.75557	0.65494
Η	-4.91316	-1.63400	0.36655

С	-3.31883	-2.47544	1.64515
Н	-3.75652	-3.10473	2.40014
С	-0.99467	-2.85442	2.45943
Н	-1.17299	-3.92408	2.55994
Н	-1.06997	-2.38524	3.44023
Н	0.00302	-2.68904	2.06175
Ν	1.95741	-2.27654	-1.54597
Ν	2.84874	-1.14081	0.01463
Ν	1.22685	1.21234	0.47730
Ν	-1.22686	1.21233	-0.47730
Ν	-2.84874	-1.14082	-0.01463
Ν	-1.95741	-2.27654	1.54597
Ni	0.00000	-0.41847	-0.00000

¹2-Ni + 2e⁻

Energy	= -2609.929885
Enthalpy OK	= -2609.568976
Enthalpy 298K	= -2609.548294
Free Energy 298K	= -2609.615576
Nimag	= 0 (50.4879 cm-1)

С	1.81942	0.91984	-0.20911
С	3.92715	1.71124	-0.02932
Η	4.97579	1.66785	0.20470
С	3.16356	2.71463	-0.49408
Η	3.40365	3.72992	-0.75452
С	0.77826	2.99770	-1.10522
Η	0.56163	2.65590	-2.12071
Η	1.09983	4.03425	-1.15440
С	-0.46436	2.86826	-0.28197
С	-1.18969	3.97316	0.04750
Н	-0.82196	4.95889	-0.19995
С	-2.45832	3.78826	0.70413
Н	-3.03105	4.64844	1.02804
С	-2.94113	2.53828	0.87212
Н	-3.91560	2.37885	1.31707
С	-2.18393	1.39776	0.43024
С	-2.60450	0.10510	0.33244
С	-3.90493	-0.42459	0.64317
Н	-4.62524	0.21426	1.13915
С	-4.23428	-1.68560	0.28959

Η	-5.21896	-2.07947	0.50882
С	-3.27196	-2.50197	-0.40489
Н	-3.52577	-3.48950	-0.76310
С	-2.01938	-2.00468	-0.59918
С	-0.98998	-2.79396	-1.35594
Н	-1.33572	-3.80550	-1.54827
Н	-0.78006	-2.30465	-2.30963
С	0.82904	-1.78167	-0.06349
С	0.86555	-4.02726	-0.18864
Н	0.53410	-4.99938	-0.50729
С	1.87741	-3.65056	0.61826
Н	2.61647	-4.22558	1.14703
С	2.74001	-1.46534	1.47172
Н	3.34679	-2.14489	2.06467
Н	2.17012	-0.83578	2.15353
С	3.65939	-0.63694	0.60683
Н	4.54061	-0.38051	1.19006
Н	3.98556	-1.22314	-0.25314
Ν	3.09600	0.62575	0.14352
Ν	1.88895	2.21510	-0.59108
Ν	-0.84397	1.60143	0.00342
Ν	-1.61906	-0.78102	-0.17635
Ν	0.24285	-2.86990	-0.59311
Ν	1.83111	-2.27480	0.68649
Ni	0.12374	-0.02378	-0.18419

12'-Ni + 2e⁻

Ene	ergy	=	-2609.927269	Н
Ent	halpy OK	=	-2609.567826	Н
Ent	halpy 2981	K =	-2609.546477	Ν
Fre	ee Energy 2	298K =	-2609.615936	Ν
Nin	nag	=	0 (41.3297 cm-1)	Ν
				Ν
С	1.91650	1.02032	-0.47000	Ν
С	3.89373	1.79694	0.32455	Ν
Η	4.89916	1.72562	0.70046	Ni
С	3.11266	2.86777	0.08540	
Η	3.29637	3.92065	0.20820	³ 2-
С	0.82991	3.21413	-0.85447	
Η	0.70552	3.05871	-1.92830	En
Н	1.12445	4.24899	-0.70135	En

С	-0.50324	2.96312	-0.19355
С	-1.25329	4.03649	0.23172
Η	-0.84809	5.03776	0.19283
С	-2.56488	3.79097	0.69513
Η	-3.18525	4.60995	1.03646
С	-3.05093	2.51704	0.68464
Н	-4.06550	2.32542	1.00450
С	-2.22937	1.44754	0.24293
С	-2.66352	0.09662	0.14672
С	-3.93953	-0.36173	0.56608
Η	-4.65193	0.33161	0.99042
С	-4.26779	-1.67942	0.44147
Н	-5.23951	-2.03327	0.76163
С	-3.32388	-2.58108	-0.10005
Н	-3.54641	-3.63336	-0.20760
С	-2.10439	-2.08272	-0.49458
С	-1.06765	-2.99326	-1.09718
Η	-1.44267	-4.01210	-1.14376
Η	-0.84146	-2.66378	-2.11280
С	0.86703	-1.89078	-0.02412
С	0.79815	-4.14914	0.12149
Η	0.39214	-5.13343	-0.03248
С	1.92823	-3.74033	0.73305
Η	2.70710	-4.29566	1.22535
С	3.02325	-1.53128	1.14724
Н	3.76949	-2.20439	1.56267
Η	2.64802	-0.90616	1.95716
С	3.68397	-0.66542	0.07817
Η	4.73944	-0.56302	0.31852
Η	3.61109	-1.15452	-0.89191
Ν	3.15463	0.68557	-0.02324
Ν	1.92094	2.37426	-0.39836
Ν	-0.93539	1.69681	-0.15369
Ν	-1.76288	-0.78931	-0.39604
Ν	0.17064	-3.00863	-0.33019
Ν	1.94929	-2.36440	0.63289
Ni	0.21206	-0.04549	-0.42312

³2-Ni + 2e⁻

Energy	= -2609.927270
Enthalpy OK	= -2609.568119

Enthalpy 298K = -2609.546667				
Free Energy	298K =	-2609.617506		
Nimag	=	0 (42.8878 cm-1)		
C 2.16762	0.22270	-0.44697		
C 4.31332	0.17785	0.27893		
н 5.22362	-0.27343	0.63263		
C 4.00116	1.46590	0.03589		
н 4.58226	2.36621	0.13165		
C 1.99939	2.65804	-0.86303		
н 1.82630	2.55943	-1.93659		
н 2.66211	3.50572	-0.71006		
C 0.67321	2.92334	-0.19422		
C 0.41003	4.18061	0.30053		
н 1.17474	4.94449	0.29025		
C -0.88566	4.44360	0.79948		
н -1.12898	5.41979	1.19942		
C -1.82875	3.45998	0.76125		
н -2.82661	3.65726	1.12663		
C -1.50030	2.17910	0.24524		
C -2.42767	1.10526	0.13966		
C -3.79832	1.19811	0.49898		
н -4.19771	2.12620	0.88294		
C -4.61656	0.11660	0.35437		
н -5.66232	0.18348	0.62663		
C -4.08960	-1.09163	-0.15334		
н -4.70815	-1.96943	-0.27646		
C -2.75562	-1.12326	-0.49111		
C -2.15094	-2.37486	-1.07742		
н -2.89084	-3.17048	-1.10466		
н -1.82970	-2.17280	-2.10043		
C 0.09696	5 -2.10625	-0.09562		
C -0.90421	-4.10908	0.24160		
н -1.68409	-4.84580	0.16094		
C 0.30359	-4.15654	0.83941		
н 0.78914	-4.94279	1.39037		
C 2.20862	-2.56716	1.13250		
н 2.64234	-3.47495	1.54556		
н 2.09903	-1.85029	1.94631		
C 3.15593	-2.01452	0.07271		
н 4.16773	-2.32736	0.31950		
н 2.90935	-2.43373	-0.90156		

Ν	3.18951	-0.56245	-0.02338
N	2.69591	1.46845	-0.40461
N	-0.22393	1.92827	-0.20611
N	-1.93295	-0.07554	-0.35713
N	-1.00551	-2.85551	-0.32083
N	0.89630	-2.92991	0.61961
Ni	0.18869	-0.13006	-0.45175

¹3-Ni + 2e⁻

Ene	ergy	=	-2570.615306
Ent	chalpy OK	=	-2570.283491
Ent	halpy 298	3K =	-2570.263970
Fr∈	ee Energy	298K =	-2570.328768
Nin	nag	=	0 (52.1156 cm-1)
С	1.48029	1.31248	-0.04863
С	3.40407	2.41605	0.32357
Η	4.43203	2.53262	0.61729
С	2.49590	3.31084	-0.11412
Η	2.57687	4.36762	-0.29640
С	0.10452	3.17157	-0.88740
Η	0.09795	2.95800	-1.95963
Η	0.14031	4.24929	-0.75480
С	-1.15717	2.61500	-0.28148
С	-2.19757	3.45830	-0.03068
Η	-2.07973	4.52351	-0.17016
С	-3.45832	2.89441	0.37807
Η	-4.29674	3.54633	0.58979
С	-3.59238	1.55430	0.47209
Η	-4.54217	1.11793	0.75456
С	-2.48252	0.68324	0.19280
С	-2.48232	-0.68398	0.19276
С	-3.59194	-1.55538	0.47192
Η	-4.54193	-1.11930	0.75421
С	-3.45747	-2.89545	0.37795
Η	-4.29573	-3.54762	0.58954
С	-2.19650	-3.45897	-0.03064
Η	-2.07830	-4.52414	-0.17006
С	-1.15636	-2.61534	-0.28143

С	0.10553	-3.17153	-0.88730
Н	0.14164	-4.24923	-0.75468
Н	0.09890	-2.95798	-1.95954
С	1.48078	-1.31199	-0.04867
С	2.49692	-3.31012	-0.11400
Η	2.57815	-4.36689	-0.29624
С	3.40485	-2.41510	0.32369
Η	4.43283	-2.53141	0.61743
С	3.34049	0.00053	0.92737
Η	3.16937	0.00031	2.00365
Η	4.40925	0.00057	0.73275
Ν	2.76193	1.19443	0.35163
Ν	1.32747	2.61387	-0.33015
Ν	-1.22812	1.27044	-0.12671
Ν	-1.22773	-1.27080	-0.12672
Ν	1.32831	-2.61345	-0.33006
Ν	2.76242	-1.19363	0.35157
Ni	0.15866	0.00004	-0.15856

13'-Ni + 2e-

Nimag	= 0 (14.2793 cm-1)
Free Energy 298K	= -2570.315937
Enthalpy 298K	= -2570.250779
Enthalpy OK	= -2570.270222
Energy	= -2570.600175

С	1.63066	1.43007	-0.48861
С	3.19658	2.30980	0.89352
Η	4.10490	2.32797	1.46985
С	2.24270	3.24680	0.71251
Η	2.15150	4.24497	1.10353
С	0.10001	3.33241	-0.61822
Η	0.13620	3.33936	-1.70898
Η	0.10762	4.36472	-0.27836
С	-1.18880	2.66604	-0.18302
С	-2.23477	3.46507	0.22182
Η	-2.10913	4.53637	0.29136
С	-3.46793	2.84890	0.52228
Η	-4.32059	3.44812	0.81554
С	-3.57262	1.49146	0.45276
Η	-4.51173	1.01508	0.69403

С	-2.44787	0.70917	0.08073
С	-2.44587	-0.71533	0.08114
С	-3.56802	-1.50048	0.45491
Н	-4.50782	-1.02644	0.69801
С	-3.45985	-2.85764	0.52431
Н	-4.31055	-3.45897	0.81891
С	-2.22550	-3.47069	0.22231
Н	-2.09707	-4.54168	0.29159
С	-1.18189	-2.66899	-0.18328
С	0.10844	-3.33198	-0.61921
Η	0.11883	-4.36444	-0.27985
Η	0.14439	-3.33827	-1.70998
С	1.63450	-1.42596	-0.48950
С	2.25070	-3.24110	0.71195
Η	2.16185	-4.23950	1.10292
С	3.20215	-2.30172	0.89326
Η	4.11037	-2.31771	1.46981
С	3.59390	0.00455	-0.01161
Η	4.38580	0.00545	0.73194
Н	4.03818	0.00528	-1.00508
Ν	2.80607	1.21063	0.15371
Ν	1.30672	2.68990	-0.13458
Ν	-1.27320	1.33186	-0.27789
Ν	-1.26980	-1.33501	-0.27817
Ν	1.31365	-2.68664	-0.13555
Ν	2.80912	-1.20354	0.15330
Ni	0.26965	0.00025	-0.71212

³3-Ni + 2e⁻

٣n	orau	_	-2570 60	0861
E11	ergy	_	-2370.00	0001
En	thalpy OK	=	-2570.27	0664
En	thalpy 298	K =	-2570.25	0440
Fr	ee Energy	298K =	-2570.31	8964
Ni	mag	=	1 (35.683	87 cm-1)
С	-1.63141	1.43008	0.48985	
С	-3.19536	2.30939	-0.89460	

H -4.10280 2.32734 -1.47233 C -2.24204 3.24671 -0.71195 H -2.15051 4.24496 -1.10270 C -0.10070 3.33175 0.62142

Η	-0.13732	3.33636	1.71216
Η	-0.10845	4.36480	0.28380
С	1.18765	2.66602	0.18456
С	2.23291	3.46499	-0.22077
Η	2.10698	4.53637	-0.28903
С	3.46606	2.84951	-0.52418
Η	4.31783	3.44925	-0.81889
С	3.57096	1.49232	-0.45547
Η	4.50955	1.01604	-0.69902
С	2.44714	0.70915	-0.08157
С	2.44559	-0.71442	-0.08169
С	3.56766	-1.49997	-0.45580
Η	4.50721	-1.02568	-0.69952
С	3.45985	-2.85693	-0.52449
Η	4.31029	-3.45849	-0.81934
С	2.22542	-3.46978	-0.22096
Η	2.09720	-4.54089	-0.28918
С	1.18189	-2.66858	0.18441
С	-0.10790	-3.33154	0.62129
Η	-0.11793	-4.36455	0.28360
Η	-0.14447	-3.33614	1.71203
С	-1.63423	-1.42635	0.48934
С	-2.24963	-3.24219	-0.71117
Η	-2.16057	-4.24084	-1.10145
С	-3.20086	-2.30275	-0.89386
Η	-4.10859	-2.31890	-1.47118
С	-3.59349	0.00396	0.00903
Η	-4.38376	0.00474	-0.73629
Η	-4.03999	0.00439	1.00147
Ν	-2.80556	1.21025	-0.15448
Ν	-1.30725	2.68985	0.13628
Ν	1.27185	1.33095	0.27850
Ν	1.26897	-1.33369	0.27835
Ν	-1.31309	-2.68701	0.13623
Ν	-2.80820	-1.20413	-0.15447
Ni	-0.26852	0.00034	0.71152