Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information

Table of Contents

1.	General	S2
2.	Synthesis and characterization of the starting materials	S2
3.	Optimization of the reaction conditions with triphenylphosphine oxide (1a)	S3
4.	Hydrodearylation of triarylphosphine oxides 1	S4
5.	Dearylative functionalization of triphenylphosphine oxide (1a)	S7
	(Schemes 3 and 4)	
6.	Dearylative-functionalization of diaryl(alkyl)phosphine oxides	S21
	(Scheme 5)	
7.	Competition studies (Scheme 6)	S28
8.	Deuterium labeling experiments	S30
9.	DFT calculation	S30
10.	NMR spectra of new compounds	S43
11.	References	S188

1. General

¹H NMR spectra (400 or 500 MHz) were recorded on a Bruker Avance 400 or 500 spectrometer in CDCl₃ [using TMS (for ¹H, $\delta = 0.00$) as internal standard]. ¹³C NMR spectra (100 or 125 MHz) were recorded on a Bruker Avance 400 or 500 spectrometer in CDCl₃ [using CDCl₃ (for ¹³C, $\delta = 77.00$) as internal standard]. ¹⁹F NMR spectra (376 MHz) were recorded on a Bruker AvanceIII 400 spectrometer in CDCl₃. ³¹P NMR spectra (162 or 202 MHz) were recorded on a Bruker Avance 400 or 500 spectrometer in CDCl₃. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q =quartet, br = broad. High-resolution mass spectra were obtained with a Waters Q-Tof Premier mass spectrometer. Flash chromatography was performed using Merck silica gel 60 with distilled solvents. Tetrahydrofuran (THF), dichloromethane (CH₂Cl₂), acetonitrile (MeCN) and diethyl ether (Et₂O) were taken from a solvent purification system (PS-400-5, innovative technology Inc.). NaH (60% dispersion in mineral oil), NaI and LiI were purchased from Sigma-Aldrich, Inc. Due to moisture sensitivity of NaH, it was consistently handled under an Ar atmosphere in a glovebox or with Schlenk techniques under an inert (N2 or Ar) atmosphere. NaI and LiI were dried over P₂O₅ under reduced pressure at 60 °C and 120 °C, respectively.¹ Other solvents and reagents, unless otherwise noted, were commercially available and used as received.

2. Synthesis and characterization of the starting materials

Triphenylphosphine oxide (1a) [CAS: 791-28-6] were purchased from Strem Chemicals, Inc. and used as received. Other phosphine oxides $1b^2$, $1c^3$, $1d^2$, $1e^4$, $1f^5$, $1g^6$, and $1h^7$ and 7^8 were synthesized according to the literature procedures. Their spectra data were identical to those reported.

tert-butyl(4-methoxyphenyl)(phenyl)phosphine oxide 8

To a solution of *tert*-butyl(phenyl)phosphine oxide⁹ (330.3 mg, 1.81 mmol) in toluene (2 mL) was added 4-iodoanisole (465.4 mg, 1.99 mmol), CuI (39.2 mg, 0.206 mmol), K_2CO_3 (540.5 mg, 3.91 mmol), and 1-phenethylamine (50 µL, 0.388 mmol) and the reaction mixture was

stirred at reflux temperature for 18 h. The reaction was then cooled to 23 °C and quenched with saturated aqueous NH₄Cl. The organic material was extracted with EtOAc (3 x 10 mL) and the combined organic extracts were washed with brine, dried over MgSO₄ and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 45:55:2) to give 64% yield (332.9 mg, 1.15 mmol) of **8** as thick colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.95–7.86 (m, 4H), 7.51–7.44 (m, 3H), 6.99 (dd, J = 4.8, 2.0 Hz, 2H), 3.84 (s, 3H), 1.23 (d, J = 15.2 Hz, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 162.1 (d, $J_{P-C} = 2.0$ Hz), 133.9 (d, $J_{P-C} = 9.0$ Hz), 132.1 (d, $J_{P-C} = 8.0$ Hz), 131.6 (d, $J_{P-C} = 91.0$ Hz), 131.3 (d, $J_{P-C} = 2.0$ Hz), 128.1 (d, $J_{P-C} = 11.0$ Hz), 122.1 (d, $J_{P-C} = 95.0$ Hz), 113.8 (d, $J_{P-C} = 12.0$ Hz), 55.2, 33.9 (d, $J_{P-C} = 71.0$ Hz), 25.2; ³¹P NMR (162 MHz, CDCl₃) δ 38.7; ESIHRMS: Found *m*/*z* 289.1365; Calcd for C₁₇H₂₂O₂P [M + H]⁺ 289.1357.

3. Optimization of the reaction conditions with triphenylphosphine oxide (1a) Table S1.^{*a*}

	0	MH (2 equiv) additive (1 equiv		H ₂ O	0
	Ph~/ Ph 1a	THF, temp. time		Ph~ Pr 2	Γ ~ Η } 2a
Entry	MH (equiv)	Additive (equiv)	Temp (°C)	Time (h)	Yield of 2a $(\%)^b$
1	NaH (3)	NaI (2)	85 (sealed)	13	89
2	NaH (3)	LiI (2)	85 (sealed)	4	84
3	NaH (2)	LiI (2)	85 (sealed)	4	84
4	NaH (2)	LiI (1)	85 (sealed)	6	84
5	LiH (2)	-	85 (sealed)	12	$0 (>95)^c$
6	LiH (2)	LiI (1)	85 (sealed)	12	$0 (>95)^c$
7	NaH (2)	LiI (1)	60	13	98^d
8	NaH (2)	NaI (1)	60	24	88^d
9	NaH (2)	-	60	24	2 (>95) ^c
10	NaH (1.5)	LiI (0.75)	60	13	73 (27) ^c
10	NaH (2)	LiI (1)	40	24	$68(23)^c$

^{*a*} The reactions were conducted at 0.5 mmol scale in 0.2 M of THF. ^{*b*} ¹H NMR yield with 1,1,2,2-tetrachloroethane as internal standard. ^{*c*} Recovery yield of **1a**. ^{*d*} Isolated yield of **2a**.

4. Hydrodearylation of triarylphosphine oxides 1

4.1. A general procedure for hydrodearylation of triarylphosphine oxides 1 (Scheme 2)

$$\begin{array}{c} O \\ Ar - P \\ Ar \end{array} Ar \xrightarrow{Ar} Ar \end{array} \xrightarrow{NaH (2 equiv)} O \\ \hline Lil (1 equiv) \\ \hline THF, 60 \circ C \\ 1 \end{array} \xrightarrow{Ar - P \\ Ar } H$$

To a mixture of phosphine oxide **1** (0.5 mmol), NaH (40.0 mg, 1.0 mmol) and LiI (66.9 mg, 0.5 mmol) in 25 mL reaction vessel was added THF (2.5 mL) and the reaction mixture was stirred at 60 °C (the reaction time for each reaction was indicated below). Upon completion of the reaction based on TLC analysis, the reaction was quenched with saturated aqueous NH₄Cl at 0 °C. The organic material was extracted with EtOAc (3 x 10 mL) and the combined organic extracts were washed with brine, dried over MgSO₄ and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography to give the corresponding diaryl phosphine oxide **2**.

4.2. Characterization of the products

diphenylphosphine oxide (2a) [CAS: 4559-70-0]

Prepared from triphenylphosphine oxide (1a) (139.7 mg, 0.502 mmol) for 13 h. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 50:50:2) to give 98% yield (99.2 mg, 0.4907 mmol) of 2a as colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 481.1 Hz, 1H), 7.73–7.68 (m, 4H), 7.59–7.55 (m, 2H), 7.51–7.47 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 132.4 (d, *J*_{*P*-*C*} = 3.0 Hz), 131.2 (d, *J*_{*P*-*C*} = 101.0 Hz), 130.5 (d, *J*_{*P*-*C*} = 12.0 Hz), 128.8 (d, *J*_{*P*-*C*} = 13.0 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 21.5 (d, *J* = 481.1 Hz).

bis(4-methoxyphenyl)phosphine oxide (2b)¹⁰

Prepared from tris(4-methoxyphenyl)phosphine oxide (**1b**) (184.8 mg, 0.502 mmol) for 13 h. Purification by recrystallization ($CH_2Cl_2:n$ -Hex, 10:90) to give 91% (120.1 mg, 0.458 mmol) of **2b** as white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 477.4 Hz, 1H), 7.61 (dd, J = 13.2, 8.8 Hz, 4H), 6.99 (dd, J = 8.8, 2.0 Hz, 4H), 3.84 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 162.8 (d, J_{P-C} = 3.0 Hz), 132.6 (d, J_{P-C} = 13.0 Hz), 122.9 (d, J_{P-C} = 107.0 Hz), 114.4 (d, J_{P-C} = 14.0 Hz), 55.3; ³¹P NMR (162 MHz, CDCl₃) δ 20.7 (d, J = 477.4 Hz).

bis(3,5-dimethoxyphenyl)phosphine oxide (2c)

Prepared from tris(3,5-dimethoxyphenyl)phosphine oxide (1c) (229.6 mg, 0.501 mmol) with NaH (80.7 mg, 2.02 mmol) and LiI (133.0 mg, 0.994 mmol) for 16 h. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc, 90:10 for isolation of 1,3-dimethoxybenzene, followed by *n*-Hex:EtOAc:MeOH, 60:40:2 for isolation of 2c) to give 76% yield (52.5 mg, 0.380 mmol) of 1,3-dimethoxybenzene as colorless oil and 60% yield (97.0 mg, 0.300 mmol) of 2c as white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.94, (d, 475.4 Hz, 1H), 6.83 (dd, J = 15.1, 2.0 Hz, 4H), 6.62-6.61 (m, 2H), 3.81 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 161.1 (d, $J_{P-C} = 18.8$ Hz), 133.0 (d, $J_{P-C} = 101.0$ Hz), 107.9 (d, $J_{P-C} = 12.9$ Hz), 104.7 (d, $J_{P-C} = 2.0$ Hz), 55.5; ³¹P NMR (162 MHz, CDCl₃) δ 22.6 (d, J = 475.4 Hz); ESIHRMS: Found *m*/*z* 323.1049; Calcd for C₁₆H₂₀O₅P [M + H]⁺ 323.1048.

1,3-dimethoxybenzene [CAS: 151-10-0]

¹H NMR (400 MHz, CDCl₃) δ 7.18 (t, J = 8.0 Hz, 1H), 6.51 (dd, J = 8.0, 2.4 Hz, 2H), 6.47 (t, J = 2.4 Hz, 1H), 3.79 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 160.8, 129.8, 106.1, 100.4, 55.2. di-o-tolylphosphine oxide (2d)¹⁰

Prepared from tri-*o*-tolylphosphine oxide (1d) (160.6 mg, 0.501 mmol) for 27 h. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 55:45:2) to give 61% yield (70.4 mg, 0.306 mmol) of 2d as colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 476.8 Hz, 1H), 7.72 (dd, J = 15.2, 7.6 Hz, 2H), 7.46 (dd, J = 7.6, 7.6 Hz, 2H), 7.32 (d, J = 7.6, 7.6 Hz, 2H), 7.25 (dd, J = 13.6, 7.6 Hz, 2H), 2.38 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 141.0 (d, J_{P-C} = 10.0 Hz), 132.42 (d, J_{P-C} = 2.0 Hz), 132.37 (d, J_{P-C} = 16.0 Hz), 131.1 (d, J_{P-C} = 10.0 Hz), 129.2 (d, J_{P-C} = 99.0 Hz), 126.0 (d, J_{P-C} = 13.0 Hz), 20.1 (d, J_{P-C} = 6.0 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 17.6 (d, J = 476.8 Hz).

bis(4-(trifluoromethyl)phenyl)phosphine oxide (2e)

Prepared from tris(4-(trifluoromethyl)phenyl)phosphine oxide (**1e**) (241.8 mg, 0.501 mmol) with NaH (80.8 mg, 2.02 mmol) and LiI (133.3 mg, 0.947 mmol) at 85 °C for 11 h. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 60:40:2) to give 33% yield (55.9 mg, 0.165 mmol) of **2d** as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 492.0 Hz, 1H), 7.87 (dd, *J* = 9.6, 8.0 Hz, 4H), 7.80 (dd, *J* = 8.0, 2.0 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 134.81 (qd, *J*_{*F*-*C*} = 33.0 Hz, *J*_{*P*-*C*} = 3.0 Hz), 134.80 (d, *J*_{*P*-*C*} = 99.0 Hz), 131.2 (d, *J*_{*P*-*C*} = 12.0 Hz), 126.0 (dq, *J*_{*P*-*C*} = 13.0 Hz, *J*_{*F*-*C*} = 4.0 Hz), 123.3 (q, *J*_{*F*-*C*</sup> = 271.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.4; ³¹P NMR (162 MHz, CDCl₃) δ 17.9 (d, *J* = 492.0 Hz); ESIHRMS: Found *m*/*z* 339.0379; Calcd for C₁₄H₁₀F₆OP [M + H]⁺ 339.0373.}

5. Dearylative functionalization of triphenylphosphine oxide (1a) (Schemes 3 and 4)5.1. A general procedure

To a mixture of triphenylphosphine oxide (1a) (0.5 mmol), NaH (40.0 mg, 1.0 mmol) and LiI (66.9 mg, 0.5 mmol) in 25 mL reaction vessel was added THF (2.5 mL) and the reaction mixture was stirred at 60 °C for 13 h. The reaction was then cooled to 0 °C and the corresponding electrophile (E^+) **3** or **5** (1.1 equiv). Upon completion of the reaction based on TLC analysis (the reaction temperature and time were indicated below), the reaction was quenched with saturated aqueous NH₄Cl at 0 °C. The organic material was extracted with EtOAc (3 x 10 mL) and the combined organic extracts were washed with brine, dried over MgSO₄ and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography to give the trisubstituted phosphine oxide **4** or **6**.

5.2. Characterization of the products

diphenyl(3-phenylpropyl)phosphine oxide (4aa)¹¹

Prepared from triphenylphosphine oxide (1a) (139.6 mg, 0.502 mmol) with (3-bromopropyl)benzene (3a) (80 μ L, 0.526 mmol) at 0 °C for 30 min. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 55:45:2) to give 77% yield (123.8 mg, 0.386 mmol) of 4aa as white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.70–7.65 (m, 4H), 7.51–7.40 (m, 6H), 7.27–7.23 (m, 2H), 7.19–7.15 (m, 1H), 7.12–7.10 (m, 2H), 2.71 (t, *J* = 7.4 Hz, 2H) 2.28–2.21 (m, 2H), 2.03–1.93 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 140.7, 132.9 (d, *J*_{*P*-*C*} = 98.1 Hz), 131.6 (d, *J*_{*P*-*C*} = 2.8 Hz), 130.6 (d, *J*_{*P*-*C*} = 9.3 Hz), 128.5 (d, *J*_{*P*-*C*} = 11.5 Hz), 128.4, 128.3, 126.0, 36.5 (d, *J*_{*P*-*C*} = 14.7 Hz), 28.8 (d, *J*_{*P*-*C*} = 72.1 Hz), 22.9 (d, *J*_{*P*-*C*} = 3.5 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 32.4.

ethyl 5-(diphenylphosphoryl)pentanoate (4ab)

Prepared from triphenylphosphine oxide (1a) (139.8 mg, 0.502 mmol) with ethyl 5bromovalerate (3b) (90 μ L, 0.568 mmol) at 0 °C for 1 h. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 55:45:2) to give 77% yield (128.0 mg, 0.387 mmol) of **4ab** as colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.75–7.70 (m, 4H), 7.53–7.44 (m, 6H), 4.08 (q, J = 7.2 Hz, 2H), 2.31–2.25 (m, 4H), 1.74–1.62 (m, 4H), 1.20 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 132.7 (d, J_{P-C} = 97.0 Hz), 131.6 (d, J_{P-C} = 3.0 Hz), 130.6 (d, J_{P-C} = 9.0 Hz), 128.6 (d, J_{P-C} = 11.0 Hz), 60.2, 33.6, 29.3 (d, J_{P-C} = 75.0 Hz), 26.0 (d, J_{P-C} = 15.0 Hz), 21.0 (d, J_{P-C} = 4.0 Hz), 14.0; ³¹P NMR (162 MHz, CDCl₃) δ 32.3; ESIHRMS: Found m/z 331.1473; Calcd for C₁₉H₂₄O₃P [M + H]⁺ 331.1463.

(2-(1,3-dioxolan-2-yl)ethyl)diphenylphosphine oxide (4ac)

Prepared from triphenylphosphine oxide (1a) (139.4 mg, 0.501 mmol) with 2-(2-bromoethyl)-1,3-dioxolane (3c) (70 μ L, 0.572 mmol) at 0 °C for 1 h. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 80:20:2) to give 67% yield (101.6 mg, 0.336 mmol) of 4ac as pale yellow solid.

¹H NMR (500 MHz, CDCl₃) δ 7.75 (dd, J = 11.0, 6.5 Hz, 4H), 7.51 (dd, J = 6.5, 6.5 Hz, 2H), 7.46 (ddd, J = 6.5, 6.5, 1.5 Hz, 4H), 4.95 (t, J = 4.0 Hz, 1H), 3.94–3.92 (m, 2H), 3.85–3.83 (m, 2H), 2.42–2.36 (m, 2H), 2.00–1.94 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 132.7 (d, J_{P-C} $_{C}$ = 98.8 Hz), 131.7 (d, J_{P-C} = 2.5 Hz), 130.7 (d, J_{P-C} = 8.8 Hz), 128.6 (d, J_{P-C} = 11.3 Hz), 103.4 (d, J_{P-C} = 15.0 Hz), 65.0, 25.8 (d, J_{P-C} = 2.5 Hz), 23.4 (d, J_{P-C} = 73.8 Hz); ³¹P NMR (202 MHz, CDCl₃) δ 32.7; ESIHRMS: Found *m*/*z* 303.1153; Calcd for C₁₇H₂₀O₃P [M + H]⁺ 303.1150. pent-4-en-1-yldiphenylphosphine oxide (4ad)

Prepared from triphenylphosphine oxide (1a) (139.5 mg, 0.501 mmol) with 5-bromo-1pentene (70 μ L, 0.592 mmol) (3d) at 0 °C for 30 min. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 50:50:2) to give 71% yield (96.2 mg, 0.356 mmol) of 4ad as white solid.

¹H NMR (500 MHz, CDCl₃) δ 7.75–7.71 (m, 4H), 7.52–7.49 (m, 2H), 7.47–7.44 (m, 4H), 5.71 (ddt, *J* = 13.6, 8.0, 5.6 Hz, 1H), 4.99 (d, *J* = 13.6 Hz, 2H), 4.98 (d, *J* = 8.0 Hz, 2H), 2.28–2.30 (m, 2H), 2.15 (dt, *J* = 5.6, 5.6 Hz, 2H), 1.77–1.69 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 137.2, 133.0 (d, *J*_{P-C} = 97.5 Hz), 131.6 (d, *J*_{P-C} = 2.5 Hz), 130.6 (d, *J*_{P-C} = 8.8 Hz), 128.5 (d, *J*_{P-C} = 11.3 Hz), 115.7, 34.5 (d, *J*_{P-C} = 15.0 Hz), 28.9 (d, *J*_{P-C} = 71.3 Hz), 20.5 (d, *J*_{P-C} = 3.8 Hz); ³¹P NMR (202 MHz, CDCl₃) δ 32.5; ESIHRMS: Found *m*/*z* 271.1273; Calcd for C₁₇H₂₀OP [M + H]⁺ 271.1252.

but-3-yn-1-yldiphenylphosphine oxide (4ae)

Prepared from triphenylphosphine oxide (1a) (139.7 mg, 0.502 mmol) with 4-bromo-1butyne (3e) (50 μ L, 0.533 mmol) at 0 °C for 1 h. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 55:45:2) to give 85% yield (109.1 mg, 0.425 mmol) of 4ae as white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.74 (dd, J = 12.0, 7.6 Hz, 4H), 7.52 (ddd, J = 14.4, 7.6, 7.6 Hz, 2H), 7.48–7.46 (m, 4H), 2.58–2.49 (m, 4H), 1.95 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 132.1 (d, J_{P-C} = 99.0 Hz), 131.9 (d, J_{P-C} = 2.0 Hz), 130.7 (d, J_{P-C} = 9.0 Hz), 128.7 (d, J_{P-C} = 12.0 Hz), 82.7 (d, J_{P-C} = 19.0 Hz), 69.3, 29.2 (d, J_{P-C} = 70.0 Hz), 11.5 (d, J_{P-C} = 1.0 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 30.6; ESIHRMS: Found *m*/*z* 255.0940; Calcd for C₁₆H₁₆OP [M + H]⁺ 255.0939.

benzyldiphenylphosphine oxide (4af)¹²

O Ph-P_Ph

Prepared from triphenylphosphine oxide (1a) (139.9 mg, 0.503 mmol) with benzyl bromide (3f) (65 μ L, 0.547 mmol) at 0 °C for 10 min. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 55:45:2) to give 79% yield (116.2 mg, 0.398 mmol) of 4af as white solid.

¹H NMR (500 MHz, CDCl₃) δ 7.69 (dd, J = 11.5, 7.0 Hz, 4H), 7.51 (dd, J = 7.5, 7.5 Hz, 2H), 7.43 (ddd, J = 7.5, 7.5, 2.5 Hz, 4H), 7.18–7.17 (m, 3H), 7.11–7.10 (m, 2H), 3.65 (d, J = 14.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 132.3 (d, $J_{P-C} = 98.8$ Hz), 131.7 (d, $J_{P-C} = 2.5$ Hz), 131.1 (d, $J_{P-C} = 10.0$ Hz), 130.1 (d, $J_{P-C} = 5.0$ Hz), 128.4, (d, $J_{P-C} = 12.5$ Hz), 128.32, 128.31 (d, $J_{P-C} = 5.0$ Hz), 126.7 (d, $J_{P-C} = 5.0$ Hz), 38.0 (d, $J_{P-C} = 66.3$ Hz); ³¹P NMR (202 MHz, CDCl₃) δ 29.4.

(2-bromobenzyl)diphenylphosphine oxide (4ag)¹³

Prepared from triphenylphosphine oxide (1a) (139.7 mg, 0.502 mmol) with 2-bromobenzyl bromide (1g) (137.0 mg, 0.548 mmol) at 0 °C for 15 min. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 55:45:2) to give 89% yield (166.2 mg, 0.448 mmol) of 4ag as white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.71 (dd, J = 11.2, 7.2 Hz, 4H), 7.58 (dt, J = 7.6, 1.6 Hz, 1H), 7.51 (td, J = 7.2, 1.2 Hz, 2H), 7.45–7.40 (m, 5H), 7.21 (t, J = 7.2 Hz, 1H), 7.04 (td, J = 7.6, 1.6 Hz, 1H), 3.90 (d, J = 13.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 132.7 (d, J_{P-C} = 2.0 Hz), 132.0 (d, J_{P-C} = 95.0 Hz), 131.9 (d, J_{P-C} = 2.0 Hz), 131.8, 131.5 (d, J_{P-C} = 3.0 Hz), 131.1 (d, J_{P-C} = 9.0 Hz), 128.42 (d, J_{P-C} = 12.0 Hz), 128.43 (d, J_{P-C} = 2.0 Hz), 127.4 (d, J_{P-C} = 3.0 Hz), 125.3 (d, J_{P-C} = 7.0 Hz), 37.2 (d, J_{P-C} = 66.0 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 29.5.

allyldiphenylphosphine oxide (4ah)¹⁴

Prepared from triphenylphosphine oxide (1a) (139.1 mg, 0.500 mmol) and allyl bromide (3h) (50 μ L, 0.578 mmol) at 0 °C for 10 min. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 55:45:2) to give 91% yield (110.3 mg, 0.455 mmol) of 4ah as white solid including 4% of diphenyl(prop-1-en-1-yl)phosphine oxide (E/Z = 3:1).

¹H NMR (400 MHz, CDCl₃) δ 7.78–7.72 (m, 4H), 7.55–7.51 (m, 2H), 7.49–7.45 (m, 4H), 5.86–5.76 (m, 1H), 5.13 (m, 2H), 3.15 (dd, J = 14.8, 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 132.4 (d, $J_{P-C} = 98.0$ Hz), 131.7 (d, $J_{P-C} = 3.0$ Hz), 130.9 (d, $J_{P-C} = 9.0$ Hz), 128.5 (d, $J_{P-C} = 12.0$ Hz), 127.0 (d, $J_{P-C} = 9.0$ Hz), 120.9 (d, $J_{P-C} = 11.0$ Hz), 36.1 (d, $J_{P-C} = 68.0$ Hz); ³¹P NMR (162 MHz, CDCl₃) δ 29.6.

cinnamyldiphenylphosphine oxide (4ai)¹⁵

Ph-P-P-Ph

Prepared from triphenylphosphine oxide (1a) (139.4 mg, 0.501 mmol) and cinnamyl bromide (3i) (111.0 mg, 0.563 mmol) at 0 °C for 15 min. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 55:45:2) to give 89% yield (141.6 mg, 0.445 mmol) of **4ai** as pale yellow solid.

¹H NMR (400 MHz, CDCl₃) δ 7.76 (dd, J = 11.6, 6.8 Hz, 4H), 7.51 (td, J = 3.6, 1.6 Hz, 2H), 7.48–7.43 (m, 4H), 6.42 (dd, J = 16.0, 4.4 Hz, 1H), 6.17 (ddt, J = 16.0, 7.6, 7.6 Hz, 1H), 3.29 (dd, J = 14.8, 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 136.7 (d, J_{P-C} = 4.0 Hz), 135.5 (d, J_{P-C} = 12.0 Hz), 132.4 (d, J_{P-C} = 98.0 Hz), 131.8 (d, J_{P-C} = 2.0 Hz), 131.0 (d, J_{P-C} = 9.0 Hz), 128.6 (d, J_{P-C} = 11.0 Hz), 128.4, 127.5, 126.2, 118.4 (d, J_{P-C} = 10.0 Hz), 35.5 (d, J_{P-C} = 68.4 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 30.0.

(3-methylbut-2-en-1-yl)diphenylphosphine oxide (4aj)¹⁶

Prepared from triphenylphosphine oxide (1a) (139.4 mg, 0.501 mmol) with 3,3-dimethylallyl bromide (3j) (70 μ L, 0.606 mmol) at 0 °C for 15 min. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 55:45:2) to give 82% yield (111.7 mg, 0.413 mmol) of 4aj as white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.74 (dd, J = 11.0, 6.8 Hz, 4H), 7.51 (td, J = 7.2, 1.2 Hz, 2H), 7.48–7.43 (m, 4H), 5.24–5.19 (m, 1H), 3.08 (dd, J = 10.8, 8.0 Hz, 2H), 1.66 (d, J = 3.6 Hz, 3H), 1.45 (d, J = 2.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.5 (d, J_{P-C} = 12.0 Hz), 132.9 (d, J_{P-C} = 98.0 Hz), 131.6 (d, J_{P-C} = 3.0 Hz), 131.0 (d, J_{P-C} = 10.0 Hz), 128.4 (d, J_{P-C} =

9.0 Hz), 112.2 (d, $J_{P-C} = 9.0$ Hz), 30.8 (d, $J_{P-C} = 71.0$ Hz), 25.7 (d, $J_{P-C} = 3.0$ Hz), 17.9 (d, $J_{P-C} = 2.0$ Hz); ³¹P NMR (162 MHz, CDCl₃) δ 30.9.

(methoxymethyl)diphenylphosphine oxide (4ak)¹⁷

Prepared from triphenylphosphine oxide (1a) (139.4 mg, 0.501 mmol) with methoxymethyl chloride (3k) (40 μ L, 0.532 mmol) at 0 °C for 10 min. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 30:70:2) to give 86% yield (105.0 mg, 0.428 mmol) of 4ak as pale yellow solid. The reaction in a larger scale using 1.394 g (5.01 mmol) of 1a gave 80% yield (989.0 mg, 4.02 mmol) of 4ak.

¹H NMR (500 MHz, CDCl₃) δ 7.84–7.80 (m, 4H), 7.56 (ddd, *J* = 7.5, 7.5, 1.5 Hz, 2H), 7.48 (ddd, *J* = 7.5, 7.5, 3.0 Hz, 4H), 4.22 (d, *J* = 6.5 Hz, 2H), 3.46 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 132.0 (d, *J*_{*P*-*C*} = 2.5 Hz), 131.3 (d, *J*_{*P*-*C*} = 10.0 Hz), 131.1 (d, *J*_{*P*-*C*} = 98.8 Hz), 128.4 (d, *J*_{*P*-*C*} = 12.5 Hz), 71.0 (d, *J*_{*P*-*C*} = 87.5 Hz), 61.7 (d, *J*_{*P*-*C*} = 12.5 Hz); ³¹P NMR (202 MHz, CDCl₃) δ 27.0.

((benzyloxy)methyl)diphenylphosphine oxide (4al)

Prepared from triphenylphosphine oxide (1a) (139.7 mg, 0.502 mmol) with benzyloxymethyl chloride (3l) (80 μ L, 0.575 mmol) at 0 °C for 10 min. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 40:60:2) to give 82% yield (131.9 mg, 0.410 mmol) of 4al as pale yellow solid.

¹H NMR (500 MHz, CDCl₃) δ 7.82–7.78 (m, 4H), 7.54 (ddd, J = 7.5, 7.5, 1.0 Hz, 2H), 7.46 (ddd, J = 7.5, 7.5, 2.5 Hz, 4H), 7.37–7.27 (m, 3H), 7.20–7.18 (m, 2H), 4.60 (s, 2H), 4.23 (d, J = 6.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 136.7, 132.0 (d, J_{P-C} = 2.5 Hz), 131.5, 131.4, 131.1 (d, J_{P-C} = 98.8 Hz), 128.44 (d, J_{P-C} = 12.5 Hz), 128.39, 128.0, 75.4 (d, J_{P-C} = 11.3 Hz), 67.9 (d, J_{P-C} = 87.5 Hz); ³¹P NMR (202 MHz, CDCl₃) δ 27.7; ESIHRMS: Found m/z 323.1201; Calcd for C₂₀H₂₀O₂P [M + H]⁺ 323.1201.

propane-1,3-diylbis(diphenylphosphine oxide) (4am)¹⁸

$$\begin{array}{c} O & O \\ H & Ph \\ Ph \\ Ph \\ Ph \end{array} \begin{array}{c} O \\ Ph \\ Ph \\ Ph \end{array} \begin{array}{c} O \\ H \\ Ph \\ Ph \end{array}$$

Prepared from triphenylphosphine oxide (1a) (139.7 mg, 0.502 mmol) with 1,3dibromopropane (3m) (25 μ L, 0.246 mmol) at 0 °C for 15 min. Purification by flash column chromatography (silica gel, EtOAc:MeOH, 94:6) to give 91% yield (100.1 mg, 0.225 mmol) of 4am as pale yellow solid.

¹H NMR (400 MHz, CDCl₃) δ 7.69 (dd, J = 10.4, 7.2 Hz, 8H), 7.50–7.47 (m, 4H), 7.44–7.40 (m, 8H), 2.50 (dt, J = 10.4, 7.6 Hz, 4H), 2.07–1.97 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 132.5 (d, $J_{P-C} = 97.5$ Hz), 131.7 (d, $J_{P-C} = 2.5$ Hz), 130.6 (d, $J_{P-C} = 8.8$ Hz), 128.6 (d, $J_{P-C} = 11.2$ Hz), 29.9 (dd, $J_{P-C} = 57.0$, 11.2 Hz), 18.8 (t, $J_{P-C} = 3.8$ Hz); ³¹P NMR (202 MHz, CDCl₃) δ 33.1.

butane-1,4-diylbis(diphenylphosphine oxide) (4an)¹⁸

Prepared from triphenylphosphine oxide (1a) (139.0 mg, 0.500 mmol) and 1,4dibromobutane (3n) (28.0 μ L, 0.234 mmol) at 0 °C for 30 min. Purification by recrystallization (CHCl₃:*n*-Hex) to give 55% yield (59.5 mg, 0.130 mmol) of 4an as white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.71–7.66 (m, 8H), 7.52–7.49 (m, 4H), 7.46–7.42 (m, 8H), 2.27–2.21 (m, 4H), 1.73–1.71 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 132.7 (d, $J_{P-C} = 98.4$ Hz), 131.7 (d, $J_{P-C} = 2.6$ Hz), 130.6 (d, $J_{P-C} = 9.3$ Hz), 128.6 (d, $J_{P-C} = 11.6$ Hz), 29.3 (d, $J_{P-C} = 71.6$ Hz), 22.8 (d, $J_{P-C} = 19.5$ Hz); ³¹P NMR (162 MHz, CDCl₃) δ 32.0.

(1,3-phenylenebis(methylene))bis(diphenylphosphine oxide) (4ao)¹⁹

Prepared from triphenylphosphine oxide (1a) (139.5 mg, 0.501 mmol) with 1,3bis(bromomethyl)benzene (3o) (65.4 mg, 0.248 mmol) at 0 °C for 10 min. Purification by flash column chromatography (silica gel, EtOAc:MeOH, 90:10) to give 92% yield (115.1 mg, 0.227 mmol) of **4ao** as white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.67–7.62 (m, 8H), 7.51–7.47 (m, 4H), 7.43–7.39 (m, 8H), 7.02–6.91 (m, 4H), 3.65 (d, *J* = 13.7 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 132.2 (d, *J*_{*P*-*C*} = 99.0 Hz), 132.0 (t, *J*_{*P*-*C*} = 5.4 Hz), 131.6, 131.2 (d, *J*_{*P*-*C*} = 10.2 Hz), 131.00, 131.00 (d, *J*_{*P*-*C*} = 9.4 Hz), 128.4 (d, *J*_{*P*-*C*} = 12.1 Hz), 128.3 (d, *J*_{*P*-*C*} = 11.3 Hz), 37.8 (d, *J*_{*P*-*C*} = 66.8 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 29.5.

(pyridine-2,6-diylbis(methylene))bis(diphenylphosphine oxide) (4ap)

Prepared from triphenylphosphine oxide (1a) (139.5 mg, 0.501 mmol) and 2,6bis(bromomethyl)pyridine (3p) (65.8 mg, 0.248 mmol) at 0 °C for 25 min. Purification by flash column chromatography (silica gel, EtOAc:MeOH, 90:10) to give 49% yield (62.0 mg, 0.123 mmol) of 4ap as white solid.

¹H NMR (500 MHz, CDCl₃) δ 7.69 (dd, J = 11.7, 7.0 Hz, 8H), 7.48 (td, J = 7.2, 1.2 Hz, 4H), 7.42–7.37 (m, 8H), 7.34 (t, J = 7.8 Hz, 1H), 7.11 (d, J = 7.8 Hz, 2H), 3.79 (d, J = 14.4 Hz, 4H); ¹³C NMR (100MHz, CDCl₃) δ 152.2 (d, $J_{P-C} = 7.0$ Hz), 136.8, 132.4 (d, $J_{P-C} = 100.0$ Hz), 131.8 (d, $J_{P-C} = 2.0$ Hz), 131.2 (d, $J_{P-C} = 10.0$ Hz), 128.4 (d, $J_{P-C} = 12.0$ Hz), 122.9, 40.5(d, $J_{P-C} = 64.6$ Hz); ³¹P NMR (162 MHz, CDCl₃) δ 30.6; ESIHRMS: Found m/z 508.1598; Calcd for C₃₁H₂₈NO₂P₂ [M + H]⁺ 508.1595.

isopropyldiphenylphosphine oxide (4aq)²⁰

Prepared from triphenylphosphine oxide (1a) (139.7 mg, 0.502 mmol) with 2-bromopropane (3q) (50 μ L, 0.532 mmol) at 60 °C for 14 h. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 55:45:2) to give 61% yield (74.1 mg, 0.303 mmol) of 4aq as white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.79 (ddd, J = 10.5, 7.6, 1.6 Hz, 4H), 7.52–7.43 (m, 6H), 2.59–2.47 (m, 1H), 1.18 (dd, J = 16.4, 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 132.3 (d,

 $J_{P-C} = 94.0 \text{ Hz}$), 131.5 (d, $J_{P-C} = 2.0 \text{ Hz}$), 131.0 (d, $J_{P-C} = 8.0 \text{ Hz}$), 128.6 (d, $J_{P-C} = 11.0 \text{ Hz}$), 27.1 (d, $J_{P-C} = 73.0 \text{ Hz}$), 15.3 (d, $J_{P-C} = 3.0 \text{ Hz}$); ³¹P NMR (162 MHz, CDCl₃) δ 36.9.

cyclohexyldiphenylphosphine oxide (4ar)²⁰

Prepared from triphenylphosphine oxide (1a) (139.1 mg, 0.500 mmol) with iodocyclohexane (3r) (70 μ L, 0.541 mmol) at 60 °C for 18 h. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 55:45:2) to give 57% yield (80.9 mg, 0.284 mmol) of 4ar as white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.78 (ddd, J = 13.5, 8.0, 1.6 Hz, 4H), 7.52–7.43 (m, 6H), 2.28-2.19 (m, 1H), 1.81–1.71 (m, 5H), 1.55–1.51 (m, 2H), 1.32–1.21 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 132.1 (d, J_{P-C} = 94.0 Hz), 131.3 (d, J_{P-C} = 3.0 Hz), 131.0 (d, J_{P-C} = 8.0 Hz), 128.4 (d, J_{P-C} = 12.0 Hz), 37.1 (d, J_{P-C} = 73.0 Hz), 26.3 (d, J_{P-C} = 13.0 Hz), 25.7, 24.7 (d, J_{P-C} = 2.0 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 30.6.

(hydroxy(4-methoxyphenyl)methyl)diphenylphosphine oxide (6aa)²¹

Prepared from triphenylphosphine oxide (1a) (139.2 mg, 0.500 mmol) with anisaldehyde (5a) (70 μ L, 0.575 mmol) at 0 °C for 18 h. Purification by recrystallization (*n*-Hex:CH₂Cl₂, 8:1) gave 65% yield (110.5 mg, 0.327 mmol) of **6aa** as white solid.

¹H NMR (500 MHz, CDCl₃) δ 7.77 (dd, J = 11.0, 7.5, Hz, 2H), 7.64 (dd, J = 11.0, 7.5, Hz, 2H), 7.54 (dd, J = 7.5, 7.5 Hz, 1H), 7.48 (dd, J = 7.5, 7.5 Hz, 1H), 7.43 (ddd, J = 7.5, 7.5, 2.5 Hz, 2H), 7.36 (ddd, J = 7.5, 7.5, 2.5 Hz, 2H), 7.06 (d, J = 8.0 Hz, 2H), 6.70 (d, J = 8.0 Hz, 2H), 4.51 (d, J = 4.0 Hz, 2H), 4.39 (brs, 1H), 3.74 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.4 (d, $J_{P-C} = 2.5$ Hz), 132.2 (d, $J_{P-C} = 9.0$ Hz), 132.0 (d, $J_{P-C} = 2.5$ Hz), 131.9 (d, $J_{P-C} = 9.0$ Hz), 131.8, 130.1 (d, $J_{P-C} = 95.6$ Hz), 129.4 (d, $J_{P-C} = 94.6$ Hz), 128.8 (d, $J_{P-C} = 4.6$ Hz), 128.20 (d, $J_{P-C} = 1.8$ Hz), 128.19 (d, $J_{P-C} = 20.9$ Hz), 128.10, 113.4 (d, $J_{P-C} = 1.6$ Hz), 73.5 (d, $J_{P-C} = 81.9$ Hz), 55.1; ³¹P NMR (202 MHz, CDCl₃) δ 31.2.

(1-hydroxy-3-methylbutyl)diphenylphosphine oxide (6ab)

Prepared from triphenylphosphine oxide (1a) (138.8 mg, 0.499 mmol) with isobutyraldehyde (5b) (60 μ L, 0.559 mmol) at 0 °C for 30 min. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 65:35:2) to give 69% yield (99.6 mg, 0.345 mmol) of **6ab** as white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.88 (dd, J = 10.8, 7.2 Hz, 2H), 7.79 (dd, J = 10.8, 7.2 Hz, 2H), 7.56–7.52 (m, 2H), 7.49–7.45 (m, 4H), 4.50 (dd, J = 11.6, 1.6 Hz, 1H), 1.97–1.88 (m, 2H), 1.72–1.62 (m, 1H), 1.48–1.41 (m, 1H), 0.89 (d, J = 6.4 Hz, 3H), 0.88 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 131.9 (d, $J_{P-C} = 8.0$ Hz), 131.74 (d, $J_{P-C} = 2.0$ Hz), 131.72 (d, $J_{P-C} = 2.0$ Hz), 131.4 (d, $J_{P-C} = 9.0$ Hz), 131.2 (d, $J_{P-C} = 93.0$ Hz), 130.5 (d, $J_{P-C} = 94.0$ Hz), 128.4 (d, $J_{P-C} = 11.0$ Hz), 128.3 (d, $J_{P-C} = 11.0$ Hz), 68.6 (d, $J_{P-C} = 84.0$ Hz), 38.9 (d, $J_{P-C} = 3.0$ Hz), 24.1 (d, $J_{P-C} = 12.0$ Hz), 23.5, 20.9; ³¹P NMR (162 MHz, CDCl₃) δ 32.3; ESIHRMS: Found *m*/*z* 289.1359; Calcd for C₁₇H₂₂O₂P [M + H]⁺ 289.1357.

N-((diphenylphosphoryl)(phenyl)methyl)-4-methylbenzenesulfonamide (**6ac**)

Prepared from triphenylphosphine oxide (1a) (139.1 mg, 0.500 mmol) with *N*-benzylidene-4methylbenzenesulfonamide²² (5c) (142.6 mg, 0.550 mmol) at 0 °C for 30 min. Purification by recrystallization (*n*-Hex:CH₂Cl₂, 8:1) gave 68% yield (157.8 mg, 0.342 mmol) of 6ac as white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.01 (dd, J = 11.2, 7.6 Hz, 2H), 7.78 (br s, 1H), 7.59 (t, J = 7.2 Hz, 1H), 7.53–7.49 (m, 2H), 7.37 – 7.33 (m, 5H), 7.22 (td, J = 7.6, 3.2 Hz, 2H), 6.96– 6.95 (m, 3H), 6.83–6.80 (m, 4H), 5.35 (dd, J = 9.8, 9.8 Hz, 1H), 2.21(s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 142.1, 138.3 (d, $J_{P-C} = 2.0$ Hz), 132.4, 132.1 (d, $J_{P-C} = 2.0$ Hz), 131.9, 131.7, 131.3 (d, $J_{P-C} = 9.0$ Hz), 130.3 (d, $J_{P-C} = 99.0$ Hz), 129.6 (d, $J_{P-C} = 100.0$ Hz), 129.1 (d, $J_{P-C} = 5.0$ Hz), 128.8 (d, $J_{P-C} = 12.0$ Hz), 128.6, 128.1 (d, $J_{P-C} = 12.0$ Hz), 127.5 (d, $J_{P-C} = 2.0$ Hz), 127.1 (d, $J_{P-C} = 3.0$ Hz), 127.0, 57.4 (d, $J_{P-C} = 2.0$ Hz), 21.3; ³¹P NMR (162 MHz, CDCl₃) δ 32.4; ESIHRMS: Found *m*/*z* 462.1298; Calcd for C₂₆H₂₅NO₃PS [M + H]⁺ 462.1293.

((benzylamino)(4-methoxyphenyl)methyl)diphenylphosphine oxide (6ad)

Prepared from triphenylphosphine oxide (1a) (138.8 mg, 0.499 mmol) with *N*-benzyl-1-(4-methoxyphenyl)methanimine²³ (5d) (122.5 mg, 0.543 mmol) at 0 °C for 14 h. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 20:80:2) to give 78% yield (164.2 mg, 0.390 mmol) of **6ad** as white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.79–7.74 (m, 2H), 7.54–7.42 (m, 1H) , 7.47–7.42 (m, 4H), 7.36–7.34 (m, 1H), 7.28–7.23 (m, 5H), 7.12–7.08 (m, 4H), 6.76 (d, *J* = 8.6 Hz, 2H), 4.31 (d, *J* = 10.2 Hz, 1H), 3.82 (d, *J* = 13.3 Hz, 1H), 3.76 (s, 3H), 3.49 (d, *J* = 13.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2 (d, *J*_{P-C} = 2.2 Hz), 139.2, 132.0 (d, *J*_{P-C} = 9.1 Hz), 131.9, 131.8 (d, *J*_{P-C} = 3.2 Hz), 131.6 (d, *J*_{P-C} = 8.7 Hz), 131.5 (d, *J*_{P-C} = 9.5 Hz), 130.8 (d, *J*_{P-C} = 29.0 Hz), 130.3 (d, *J*_{P-C} = 5.3 Hz), 128.7, 128.30 (d, *J*_{P-C} = 11.5 Hz), 128.28, 128.0 (d, *J*_{P-C} = 11.4 Hz), 127.1, 126.9 (d, *J*_{P-C} = 2.4 Hz), 113.7 (d, *J*_{P-C} = 1.7 Hz), 60.5 (d, *J*_{P-C} = 81.4 Hz), 55.2, 50.8 (d, *J*_{P-C} = 14.4 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 31.5; ESIHRMS: Found *m*/z 428.1779; Calcd for C₂₇H₂₇NO₂P [M + H]⁺ 428.1779.

((4-methoxyphenyl)(phenylamino)methyl)diphenylphosphine oxide (6ae)

Prepared from triphenylphosphine oxide (1a) (142.5 mg, 0.512 mmol) with 1-(4methoxyphenyl)-*N*-phenylmethanimine²³ (5e) (115.6 mg, 0.547 mmol) at 0 °C for 4 h. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 55:45:2 -40:60:2) to give 88% yield (181.5 mg, 0.439 mmol) of **6ae** as white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.88–7.83 (m, 2H), 7.55–7.39 (m, 6H), 7.30–7.26 (m, 2H), 7.10–7.06 (m, 4H), 6.68 (m, 1H), 6.62 (dd, J = 29.8, 8.0 Hz, 4H), 5.15–5.10 (m, 2H), 3.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.1 (d, $J_{P-C} = 2.0$ Hz), 146.2 (d, $J_{P-C} = 12.0$ Hz), 132.3 (d, $J_{P-C} = 3.0$ Hz), 131.9 (d, $J_{P-C} = 3.0$ Hz), 131.7, 131.6, 131.0 (d, $J_{P-C} = 95.0$ Hz), 130.4 (d, $J_{P-C} = 100.0$ Hz), 129.5 (d, $J_{P-C} = 4.0$ Hz), 129.2, 128.8 (d, $J_{P-C} = 12.0$ Hz), 128.2 (d, $J_{P-C} = 12.0$ Hz), 126.9, 118.4, 114.0, 113.7 (d, $J_{P-C} = 2.0$ Hz), 56.7 (d, $J_{P-C} = 76.0$ Hz), 55.2; ³¹P NMR (162 MHz, CDCl₃) δ 33.0; ESIHRMS: Found *m*/*z* 436.1444; Calcd for C₂₆H₂₄NO₂PNa [M + Na]⁺ 436.1442.

(*R*)-*N*-((diphenylphosphoryl)(4-methoxyphenyl)methyl)-2-methylpropane-2-sulfinamide (**6af**)

Prepared from triphenylphosphine oxide (1a) (141.6 mg, 0.509 mmol) with (*R*)-*N*-(4-methoxybenzylidene)-2-methylpropane-2-sulfinamide²⁴ (131.5 mg, 0.549 mmol) at 0 °C for 2 h. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 50:50:2–40:60:2) to give 76% yield (170.5 mg, 0.386 mmol, dr = 72:28) of **6af** as white solid. The relative stereochemistry was not determined.

Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.96–7.91 (m, 2H), 7.63–7.52 (m, 2H), 7.49– 7.44 (m, 2H), 7.38–7.24 (m, 1H), 7.08 (dd, J = 8.6, 1.8 Hz, 2H), 6.73 (d, J = 8.4 Hz, 2H), 5.18 (dd, J = 5.8 Hz, 1.6 Hz, 1H), 4.21 (d, J = 4.3 Hz, 1H), 3.76 (s, 3H), 1.11 (s, 9H, major); ¹³C NMR (100 MHz, CDCl₃) δ 159.7 (d, J_{P-C} = 2.3 Hz), 132.7 (d, J_{P-C} = 2.7 Hz), 132.11 (d, J_{P-C} = 8.6 Hz), 131.8 (d, J_{P-C} = 8.8 Hz), 131.1 (d, J_{P-C} = 5.0 Hz), 130.0 (d, J_{P-C} = 5.2 Hz), 129.5 (d, J_{P-C} = 99.0 Hz), 129.1 (d, J_{P-C} = 94.6 Hz), 129.0 (d, J_{P-C} = 11.4 Hz), 128.3 (d, J_{P-C} = 12.0 Hz), 127.6, 113.6 (d, J_{P-C} = 1.9 Hz), 56.9 (d, J_{P-C} = 74.3 Hz), 55.8, 55.2, 22.4; ³¹P NMR (162 MHz, CDCl₃) δ 30.5; ESIHRMS: Found *m*/*z* 464.1417; Calcd for C₂₄H₂₈NO₃PSNa [M + Na]⁺ 464.1425.

Minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.96–7.91 (m, 2H), 7.63–7.52 (m, 2H), 7.49– 7.44 (m, 2H), 7.38–7.24 (m, 3H), 6.75 (d, J = 8.4 Hz, 2H), 5.02 (dd, J = 10.0, 8.1 Hz, 1H), 4.28 (dd, J = 10.0, 3.8 Hz, 1H), 3.73 (s, 3H), 0.95 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 159.5 (d, $J_{P-C} = 2.4$ Hz), 132.15 (d, $J_{P-C} = 8.9$ Hz), 131.9 (d, $J_{P-C} = 2.8$ Hz), 131.7 (d, $J_{P-C} =$ 9.1 Hz), 131.2 (d, $J_{P-C} = 8.9$ Hz), 130.2, 129.5 (d, $J_{P-C} = 99.0$ Hz), 129.1 (d, $J_{P-C} = 94.6$ Hz), 128.6 (d, $J_{P-C} = 11.6$ Hz), 127.6, 124.7 (d, $J_{P-C} = 5.8$ Hz), 114.0 (d, $J_{P-C} = 1.3$ Hz), 59.1 (d, $J_{P-C} = 79.0$ Hz), 56.8, 55.2, 22.2; ³¹P NMR (162 MHz, CDCl₃) δ 31.5; ESIHRMS: Found m/z464.1417; Calcd for C₂₄H₂₈NO₃PSNa [M + Na]⁺ 464.1425. (*R*)-*N*-(1-(diphenylphosphoryl)-3-methylbutyl)-2-methylpropane-2-sulfinamide (**6ag**)

Prepared from triphenylphosphine oxide (1a) (139.2 mg, 0.500 mmol) with (*R*)-2-methyl-*N*-(3-methylbutylidene)propane-2-sulfinamide²⁵ (5g) (104.9 mg, 0.554 mmol) at 0 °C for 30 min. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 55:45:2–40:60:2) to give 63% yield (123.4 mg, 0.315 mmol, dr = 90:10) of **6ag** as white solid. The relative stereochemistry was not determined.

Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.93 (dd, J = 9.6, 8.0 Hz, 2H), 7.86–7.82 (m, 2H), 7.56–7.50 (m, 6H), 4.21–4.18 (m, 1H), 3.97 (dd, J = 7.2, 7.2 Hz, 1H), 1.86–1.82 (m, 1H), 1.80–1.74 (m, 1H), 1.49–1.44 (m, 1H), 1.11 (s, 9H), 0.88–0.86 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 132.3 (d, $J_{P-C} = 3.0$ Hz), 132.1 (d, $J_{P-C} = 3.0$ Hz), 131.9 (d, $J_{P-C} = 9.0$ Hz), 131.1 (d, $J_{P-C} = 9.0$ Hz), 131.0 (d, $J_{P-C} = 95.0$ Hz), 129.7 (d, $J_{P-C} = 97.0$ Hz), 128.8 (d, $J_{P-C} = 12.0$ Hz), 128.6 (d, $J_{P-C} = 12.0$ Hz), 56.8, 51.3 (d, $J_{P-C} = 74.0$ Hz), 39.5, 24.5 (d, $J_{P-C} = 10.0$ Hz), 23.3, 22.5, 20.9; ³¹P NMR (162 MHz, CDCl₃) δ 33.3; ESIHRMS: Found *m/z* 414.1633; Calcd for C₂₁H₃₀NO₂PSNa [M + Na]⁺ 414.1633.

Minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.86–7.82 (m, 4H), 7.56–7.50 (m, 6H), 4.21– 4.18 (m, 1H), 3.52 (d, *J* = 8.8 Hz, 1H), 1.80–1.74 (m, 2H), 1.49–1.44 (m, 1H), 0.88–0.86 (m, 15H); ³¹P NMR (162 MHz, CDCl₃) δ 32.2; ESIHRMS: Found *m*/*z* 414.1633; Calcd for C₂₁H₃₀NO₂PSNa [M + Na]⁺ 414.1633.

diethyl 2-(1-(diphenylphosphoryl)ethyl)malonate (6ah)

Prepared from triphenylphosphine oxide (1a) (139.4 mg, 0.501 mmol) with diethyl ethylidenemalonate (5h) (100 μ L, 0.548 mmol) at -10 °C for 20 min. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 50:50:2) to give 85% yield (165.8 mg, 0.427 mmol, dr = 90:10) of 6ah as white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.89–7.79 (m, 4H), 7.56–7.42 (m, 6H), 4.16 (q, *J* = 7.1 Hz, 2H), 3.98–3.92 (m, 1H), 3.87–3.76 (m, 2H), 3.34–3.31 (m, 1H), 1.28 (dd, *J* = 14.8, 7.2 Hz,

3H), 1.25 (t, J = 7.1 Hz, 3H), 1.13 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0 (d, $J_{P-C} = 9.3$ Hz), 167.6 (d, $J_{P-C} = 8.9$ Hz), 131.89 (d, $J_{P-C} = 2.9$ Hz), 131.87 (d, $J_{P-C} = 2.5$ Hz), 131.7 (d, $J_{P-C} = 40.7$ Hz), 131.4 (d, $J_{P-C} = 9.4$ Hz), 131.3 (d, $J_{P-C} = 8.6$ Hz), 130.8 (d, $J_{P-C} = 42.9$ Hz), 128.3 (d, $J_{P-C} = 11.6$ Hz), 128.5 (d, $J_{P-C} = 11.3$ Hz), 61.7 (d, $J_{P-C} = 16.0$ Hz), 50.6, 32.7 (d, $J_{P-C} = 71.1$ Hz), 13.9 (d, $J_{P-C} = 17.0$ Hz), 11.0, 10.9; ³¹P NMR (162 MHz, CDCl₃) δ 34.2.

diphenyl(4-(trifluoromethyl)phenyl)phosphine oxide (6ai)²⁶

Prepared from triphenylphosphine oxide (1a) (139.2 mg, 0.500 mmol) with 4-fluorobenzotrifluoride (5i) (70 μ L, 0.552 mmol) at 85 °C for 24 h. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 35:15:1) to give 66% yield (113.8 mg, 0.329 mmol) of **6ai** as colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.82 (dd, J = 11.2, 8.0 Hz, 2H), 7.72 (dd, J = 8.0, 1.6 Hz, 2H), 7.66 (dd, J = 12.4, 7.6 Hz, 4H), 7.58 (td, J = 7.6, 1.6 Hz, 2H), 7.49 (td, J = 7.6, 2.8 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 137.1 (d, $J_{P-C} = 101.0$ Hz), 133.7 (qd, $J_{F-C} = 33.0$ Hz, $J_{P-C} = 2.0$ Hz), 132.5 (d, $J_{P-C} = 10.0$ Hz), 132.3 (d, $J_{P-C} = 3.0$ Hz), 132.0 (d, $J_{P-C} = 10.0$ Hz), 131.6 (d, $J_{P-C} = 105.0$ Hz), 128.7 (d, $J_{P-C} = 12.0$ Hz), 123.6 (dq, $J_{P-C} = 12.0$ Hz, $J_{F-C} = 4.0$ Hz), 123.5 (q, $J_{F-C} = 272.0$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.2; ³¹P NMR (162 MHz, CDCl₃) δ 28.0.

diphenyl(pyridin-2-yl)phosphine oxide (6aj)²⁶

Prepared from triphenylphosphine oxide (1a) (139.0 mg, 0.500 mmol) with 2-chloropyridine (5j) (60 μ L, 0.539 mmol) at 85 °C for 11 h. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 25:25:1) to give 71% yield (99.6 mg, 0.357 mmol) of **6aj** as pale yellow solid.

¹H NMR (400 MHz, CDCl₃) δ 8.78 (d, J = 4.4 Hz, 1H), 8.31 (dd, J = 6.8, 6.0 Hz, 1H), 7.91– 7.83 (m, 5H), 7.42–7.50 (m, 2H), 7.47–7.42 (m, 4H), 7.40–7.37 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 156.2 (d, J_{P-C} = 132.0 Hz), 150.0 (d, J_{P-C} = 19.0 Hz), 136.1 (d, J_{P-C} = 9.0 Hz), 132.00 (d, J_{P-C} = 103.0 Hz), 131.96 (d, J_{P-C} = 9.0 Hz), 131.8 (d, J_{P-C} = 3.0 Hz), 128.22 (d, J_{P-C} = 8.0 Hz), 128.20 (d, J_{P-C} = 19.0 Hz), 125.2 (d, J_{P-C} = 3.0 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 21.0.

6. Dearylative-functionalization of diaryl(alkyl)phosphine oxides (Scheme 5)

6.1. A general procedure for the reaction of *tert*-butyldiphenylphosphine oxide (1f)

To a mixture of *tert*-butyldiphenylphosphine oxide (**1f**) (0.5 mmol), NaH (60.0 mg, 1.5 mmol) and LiI (100.3 mg, 0.75 mmol) in 25 mL reaction vessel was added THF (2.5 mL) and the reaction was stirred at 60 °C for 16 h. The reaction was then cooled to 0 °C and the corresponding electrophile **3** or **5** (1.1 equiv) was added. Upon completion of the reaction based on TLC analysis (the reaction temperature and time were indicated below), the reaction was quenched with saturated aqueous NH₄Cl at 0 °C. The organic material was extracted with EtOAc (3 x 10 mL) and the combined organic extracts were washed with brine, dried over MgSO₄ and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography to give the corresponding unsymmetrical tertiary phosphine oxide **4** or **6**.

6.2. Characterization of the products

tert-butyl(phenyl)(3-phenylpropyl)phosphine oxide (4fa)

Prepared from *tert*-butyldiphenylphosphine oxide (**1f**) (129.5 mg, 0.501 mmol) with (3bromopropyl)benzene (**3a**) (80 μ L, 0.526 mmol) at 0 °C for 1 h. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 50:50:2) to give 93% yield (140.2 mg, 0.467 mmol) of **4fa** as white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.63–7.59 (m, 2H), 7.52–7.48 (m, 1H), 7.46–7.41 (m, 2H), 7.27–7.24 (m, 2H), 7.19–7.16 (m, 1H), 7.13–7.11 (m, 2H), 2.80–2.75 (m, 1H), 2.68–2.61 (m, 1H), 2.11–1.98 (m, 3H), 1.69–1.60 (m, 1H), 1.09 (d, *J* = 14.4 Hz, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 141.0, 131.8 (d, *J*_{P-C} = 7.5 Hz), 131.3 (d, *J*_{P-C} = 2.5 Hz), 129.9 (d, *J*_{P-C} = 85.0 Hz),

128.4, 128.3, 128.1 (d, $J_{P-C} = 11.2$ Hz), 126.0, 36.8 (d, $J_{P-C} = 1.2$ Hz), 32.6 (d, $J_{P-C} = 68.8$ Hz), 23.0 (d, $J_{P-C} = 3.8$ Hz), 22.3, 21.8; ³¹P NMR (162 MHz, CDCl₃) δ 49.8; ESIHRMS: Found *m*/*z* 301.1723; Calcd for C₁₉H₂₆OP [M + H]⁺ 301.1721.

(2-(1,3-dioxolan-2-yl)ethyl)(tert-butyl)(phenyl)phosphine oxide (4fc)

Prepared from *tert*-butyldiphenylphosphine oxide (**1f**) (129.2 mg, 0.500 mmol) with 2-(2-bromoethyl)-1,3-dioxolane (**3c**) (70 μ L, 0.572 mmol) at 0 °C for 20 min. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 10:90:2) to give 67% yield (95.1 mg, 0.337 mmol) of **4fc** as white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, J = 8.0, 8.0 Hz, 2H), 7.52–7.47 (m, 3H), 4.93 (t, J = 4.0 Hz, 1H), 3.95–3.83 (m, 4H), 2.19–2.08 (m, 3H), 1.67–1.61 (m, 1H), 1.14 (d, J = 14.4 Hz, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 131.8 (d, J_{P-C} = 8.0 Hz), 131.3 (d, J_{P-C} = 2.0 Hz), 129.6 (d, J_{P-C} = 87.0 Hz), 128.2 (d, J_{P-C} = 11.0 Hz), 103.7 (d, J_{P-C} = 14.0 Hz), 64.9 (d, J_{P-C} = 4.0 Hz), 32.6 (d, J_{P-C} = 69.0 Hz), 25.8 (d, J_{P-C} = 4.0 Hz), 24.4, 16.6 (d, J_{P-C} = 65.0 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 50.0; ESIHRMS: Found *m*/*z* 283.1463; Calcd for C₁₅H₂₄O₃P [M + H]⁺ 283.1463.

tert-butyl(isopropyl)(phenyl)phosphine oxide (4fq)

Prepared from *tert*-butyldiphenylphosphine oxide (**1f**) (129.6 mg, 0.502 mmol) with 2bromopropane (**3q**) (50 μ L, 0.533 mmol) at 60 °C for 16 h. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 50:50:2) to give 62% yield (69.4 mg, 0.309 mmol) of **4fq** as white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, J = 8.0, 8.0 Hz, 2H), 7.52–7.44 (m, 3H), 2.44–2.36 (m, 1H), 1.40 (dd, J = 14.4, 7.2 Hz, 3H), 1.16 (d, J = 14.4 Hz, 9H), 1.02 (dd, J = 14.4, 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 131.42 (d, J_{P-C} = 83.0 Hz), 131.38 (d, J_{P-C} = 8.0 Hz), 130.9 (d, J_{P-C} = 3.0 Hz), 128.0 (d, J_{P-C} = 10.0 Hz), 33.3 (d, J_{P-C} = 65.0 Hz), 25.7, 24.8 (d, J_{P-C} = 63.0 Hz), 17.4 (d, J_{P-C} = 3.0 Hz), 16.5 (d, J_{P-C} = 3.0 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 52.4; ESIHRMS: Found *m*/*z* 225.1412; Calcd for C₁₃H₂₂OP [M + H]⁺ 225.1408.

tert-butyl(phenyl)(4-(trifluoromethyl)phenyl)phosphine oxide (6fi)

Prepared from *tert*-butyldiphenylphosphine oxide (**1f**) (129.0 mg, 0.499 mmol) with 4-fluorobenzotrifluoride (**5i**) (70 μ L, 0.552 mmol) at 85 °C for 22 h. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 75:25:2) to give 76% yield (123.4 mg, 0.378 mmol) of **6fi** as white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.11 (dd, J = 8.8, 8.8 Hz, 2H), 7.96 (ddd, J = 8.8, 8.4, 1.6 Hz, 2H), 7.74 (dd, J = 8.8, 1.6 Hz, 2H), 7.56–7.48 (m, 3H), 1.27 (d, J = 15.2 Hz, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 135.9 (d, J_{P-C} = 86.0 Hz), 133.2 (qd, J_{F-C} = 33.0 Hz, J_{P-C} = 3.0 Hz), 132.6 (d, J_{P-C} = 8.0 Hz), 132.0 (d, J_{P-C} = 8.0 Hz), 131.8 (d, J_{P-C} = 3.0 Hz), 130.3 (d, J_{P-C} = 90.0 Hz), 128.4 (d, J_{P-C} = 11.0 Hz), 125.0 (dq, J_{P-C} = 11.0 Hz, J_{F-C} = 4.0 Hz), 123.6 (q, J_{F-C} = 271.0 Hz), 34.0 (d, J_{P-C} = 70.0 Hz), 25.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.2; ³¹P NMR (162 MHz, CDCl₃) δ 37.9; ESIHRMS: Found *m*/*z* 327.1135; Calcd for C₁₇H₁₉F₃OP [M + H]⁺ 327.1126.

6.3. A general procedure for the reaction of (adamantan-1-yl)diphenylphosphine oxide (1g)

To a mixture of (adamantan-1-yl)diphenylphosphine oxide (**1g**) (0.5 mmol), NaH (60.0 mg, 1.5 mmol) and LiI (100.3 mg, 0.75 mmol) in 25 mL reaction vessel was added THF (2.5 mL) and the reaction was stirred at 85 °C for 12 h. The reaction was then cooled to 0 °C and the corresponding electrophile **3** or **5** (1.1 equiv) was added. Upon completion of the reaction based on TLC analysis (the reaction temperature and time were indicated below), the reaction was quenched with saturated aqueous NH₄Cl at 0 °C. The organic material was extracted with EtOAc (3 x 10 mL) and the combined organic extracts were washed with brine, dried over MgSO₄ and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography to give the corresponding unsymmetrical tertiary phosphine oxide **4** or **6**.

6.4. Characterization of the products

(adamantan-1-yl)(phenyl)(3-phenylpropyl)phosphine oxide (4ga)

Prepared from (adamantan-1-yl)diphenylphosphine oxide (**1g**) (166.0 mg, 0.493 mmol) with (3-bromopropyl)benzene (**3a**) (80 μ L, 0.526 mmol) at 0 °C for 1 h. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 70:30:2) to give 80% yield (149.0 mg, 0.394 mmol) of **4ga** as colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, J = 9.6, 8.0 Hz, 2H), 7.52–7.48 (m, 1H), 7.45–7.42 (m, 2H), 7.27–7.23 (m, 2H), 7.18 – 7.15 (m, 1H), 7.11 (d, J = 7.2 Hz, 2H), 2.79 – 2.72 (m, 2H), 2.66–2.59 (m, 1H), 2.01–1.90 (m, 6H), 1.82–1.80 (m, 3H), 1.71–1.60 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 141.0, 131.8 (d, $J_{P-C} = 8.0$ Hz), 131.2 (d, $J_{P-C} = 2.0$ Hz), 129.0 (d, $J_{P-C} = 86.0$ Hz), 128.6, 128.3, 128.0 (d, $J_{P-C} = 11.0$ Hz), 125.9, 36.8 (d, $J_{P-C} = 13.0$ Hz), 36.3, 35.4 (d, $J_{P-C} = 70.0$ Hz), 34.9, 27.2 (d, $J_{P-C} = 9.0$ Hz), 22.7 (d, $J_{P-C} = 4.0$ Hz), 20.8 (d, $J_{P-C} = 64.0$ Hz); ³¹P NMR (162 MHz, CDCl₃) δ 46.7; ESIHRMS: Found *m*/*z* 379.2197; Calcd for C₂₅H₃₂OP [M + H]⁺ 379.2191.

(adamantan-1-yl)(isopropyl)(phenyl)phosphine oxide (4gq)

Prepared from ((3*s*,5*s*,7*s*)-adamantan-1-yl)diphenylphosphine oxide (**1g**) (167.9 mg, 0.499 mmol) with 2-bromopropane (**3q**) (50 μ L, 0.533 mmol) at 60 °C for 6 h. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 50:50:2) to give 64% yield (96.2 mg, 0.318 mmol) of **4gq** as colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.71–7.67 (m, 2H), 7.52–7.44 (m, 3H), 2.40–2.32 (m, 1H), 1.99–1.96 (m, 6H), 1.80–1.79 (m, 3H), 1.80–1.64 (m, 6H), 1.41 (dd, *J* = 14.4, 7.2 Hz, 3H), 0.99 (dd, *J* = 14.4, 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 131.5 (d, *J*_{*P*-*C*} = 7.3 Hz), 130.9 (d, *J*_{*P*-*C*} = 83.2 Hz), 130.8 (d, *J*_{*P*-*C*} = 2.5 Hz), 128.0 (d, *J*_{*P*-*C*} = 10.2 Hz), 36.6 (d, *J*_{*P*-*C*} = 66.4 Hz), 36.4, 36.0 (d, *J*_{*P*-*C*} = 1.5 Hz), 27.5 (d, *J*_{*P*-*C*} = 9.5 Hz), 24.3 (d, *J*_{*P*-*C*} = 63.7 Hz), 17.5 (d, *J*_{*P*-*C*} = 4.7 Hz), 17.0 (d, *J*_{*P*-*C*} = 3.5 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 48.8; ESIHRMS: Found *m*/*z* 303.1875; Calcd for C₁₉H₂₈OP [M + H]⁺ 303.1878. (adamantan-1-yl)(phenyl)(4-(trifluoromethyl)phenyl)phosphine oxide (6gi)

Prepared from (adamantan-1-yl)diphenylphosphine oxide (**1g**) (168.7 mg, 0.502 mmol) with 4-fluorobenzotrifluoride (**5i**) (70 μ L, 0.552 mmol) at 85 °C for 10 h. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 80:20:2) to give 77% yield (156.4 mg, 0.388 mmol) of **6gi** as white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.11 (dd, J = 8.8, 8.8 Hz, 2H), 7.99–7.94 (m, 2H), 7.75 (d, J = 7.2 Hz, 2H), 7.55–7.49 (m, 3H), 1.96–1.91 (m, 9H), 1.73–1.64 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 135.3 (d, $J_{P-C} = 85.0$ Hz), 133.2 (qd, $J_{F-C} = 33.0$ Hz, $J_{P-C} = 3.0$ Hz), 132.7 (d, $J_{P-C} = 8.0$ Hz), 132.1 (d, $J_{P-C} = 8.0$ Hz), 131.8 (d, $J_{P-C} = 2.0$ Hz), 129.8 (d, $J_{P-C} = 90.0$ Hz), 128.4 (d, $J_{P-C} = 11.0$ Hz), 125.0 (dq, $J_{P-C} = 10.0$ Hz, $J_{F-C} = 3.0$ Hz), 123.7 (q, $J_{F-C} = 271.0$ Hz), 37.1 (d, $J_{P-C} = 72.0$ Hz), 36.3, 35.3 (d, $J_{P-C} = 1.0$ Hz), 27.4 (d, $J_{P-C} = 10.0$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1; ³¹P NMR (162 MHz, CDCl₃) δ 33.0; ESIHRMS: Found *m*/*z* 405.1607; Calcd for C₂₃H₂₅F₃OP [M + H]⁺ 405.1595.

6.5 A general procedure for the reaction of 5-phenylbenzo[b]phosphindole 5-oxide (1h)

To a mixture of 5-phenylbenzo[*b*]phosphindole 5-oxide (1h) (0.5 mmol), NaH (40.0 mg, 1.0 mmol) and LiI (66.9 mg, 0.5 mmol) in 25 mL reaction vessel was added THF (2.5 mL) and the reaction was stirred at 60 °C for 6 h. The reaction was then cooled to 0 °C and then the corresponding electrophile **3** or **5** (1.1–1.2 equiv) was added. Upon completion of the reaction based on TLC analysis (the reaction temperature and time were noted below), the reaction was quenched with saturated aqueous NH₄Cl at 0 °C. The organic material was extracted with EtOAc (3 x 10 mL) and the combined organic extracts were washed with brine, dried over MgSO₄ and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography to give the trisubstituted phosphine oxide **4** or **6**.

6.6. Characterization of the products

[1,1'-biphenyl]-2-yl(phenyl)(3-phenylpropyl)phosphine oxide (4ha)

Prepared from 5-phenylbenzo[*b*]phosphindole 5-oxide (**1h**) (137.1 mg, 0.496 mmol) with (3-bromopropyl)benzene (**3a**) (80 μ L, 0.526 mmol) at 0 °C for 1.5 h. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 70:30:2) to give 94% yield (185.7 mg, 0.468 mmol) of **4ha** as white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.00–7.95 (m, 1H), 7.51–7.41 (m, 2H), 7.39–7.35 (m, 1H), 7.30–7.10 (m, 11H), 7.03–6.94 (m, 4H), 2.52 (t, *J* = 6.6 Hz, 2H), 1.93–1.69 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 145.8 (d, *J*_{*P*-*C*} = 9.3 Hz), 141.0, 140.6 (d, *J*_{*P*-*C*} = 3.4 Hz), 134.0 (d, *J*_{*P*-*C*} = 99.1 Hz), 133.0 (d, *J*_{*P*-*C*} = 8.9 Hz), 131.5 (d, *J*_{*P*-*C*} = 99.5 Hz), 131.4, 131.3, 131.1 (d, *J*_{*P*-*C*} = 2.7 Hz), 130.7 (d, *J*_{*P*-*C*} = 9.3 Hz), 129.6, 128.5, 128.4, 128.2 (d, *J*_{*P*-*C*} = 11.8 Hz), 127.61, 127.56, 127.1 (d, *J*_{*P*-*C*} = 11.0 Hz), 126.0, 36.7 (d, *J*_{*P*-*C*} = 15.5 Hz), 28.1 (d, *J*_{*P*-*C*} = 72.4 Hz), 23.2 (d, *J*_{*P*-*C*} = 3.2 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 33.7; ESIHRMS: Found *m*/*z* 397.1724; Calcd for C₂₇H₂₆OP [M + H]⁺ 397.1721.

[1,1'-biphenyl]-2-yl(isopropyl)(phenyl)phosphine oxide (4hq)

Prepared from 5-phenylbenzo[*b*]phosphindole 5-oxide (**1h**) (138.2 mg, 0.500 mmol) with 2bromopropane (**3q**) (50 μ L, 0.533 mmol) at 60 °C for 13 h. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 60:40:2) to give 84% yield (134.5 mg, 0.420 mmol) of **4hq** as colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.12 (ddd, J = 12.0, 7.2, 1.6 Hz, 1H), 7.53–7.46 (m, 2H), 7.37 (td, J = 7.2, 1.2 Hz, 1H), 7.32–7.20 (m, 6H), 7.17 (t, J = 7.2 Hz, 2H), 7.01 (d, J = 7.2 Hz, 2H), 2.21–2.12 (m, 1H), 1.09 (dd, J = 7.6, 7.6 Hz, 3H), 1.05 (dd, J = 7.6, 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.8 (d, J_{P-C} = 9.0 Hz), 140.7 (d, J_{P-C} = 3.0 Hz), 132.9 (d, J_{P-C} = 8.0 Hz), 132.1 (d, J_{P-C} = 94.0 Hz), 131.5 (d, J_{P-C} = 10.0 Hz), 131.2 (d, J_{P-C} = 9.0 Hz), 131.1 (d, J_{P-C} = 2.0 Hz), 130.8 (d, J_{P-C} = 3.0 Hz), 130.7 (d, J_{P-C} = 92.0 Hz), 129.5, 127.8 (d, J_{P-C} = 9.0

Hz), 127.41, 127.36, 126.9 (d, $J_{P-C} = 9.0$ Hz), 25.9 (d, $J_{P-C} = 72.0$ Hz), 16.1 (d, $J_{P-C} = 2.0$ Hz), 15.4 (d, $J_{P-C} = 3.0$ Hz); ³¹P NMR (162 MHz, CDCl₃) δ 39.4; ESIHRMS: Found m/z321.1405; Calcd for C₂₁H₂₂OP [M + H]⁺ 321.1408.

[1,1'-biphenyl]-2-yl(phenyl)(4-(trifluoromethyl)phenyl)phosphine oxide (6hi)

Prepared from 5-phenylbenzo[*b*]phosphindole 5-oxide (**1h**) (94.7 mg, 0.343 mmol) with 4fluorobenzotrifluoride (**5i**) (70 μ L, 0.552 mmol) at 85 °C for 24 h. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 75:25:2 for isolation of **6hi**, followed by *n*-Hex:EtOAc:MeOH, 70:30:2 for isolation of **2h**) to give 62% yield (90.1 mg, 0.213 mmol) of **6hi** as colorless oil and 20% yield (20.0 mg, 0.0725 mmol) of **2h** as colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.66–7.57 (m, 5H), 7.50–7.41 (m, 4H), 7.39–7.35 (m, 4H), 7.19 (d, *J* = 6.4 Hz, 2H), 7.09–7.01 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.7 (d, *J*_{*P*-*C*} = 9.0 Hz), 140.0 (d, *J*_{*P*-*C*} = 4.0 Hz), 137.8 (d, *J*_{*P*-*C*} = 100.0 Hz), 133.9 (d, *J*_{*P*-*C*} = 12.0 Hz), 132.6 (qd, *J*_{*F*-*C*} = 32.0 Hz, *J*_{*P*-*C*} = 3.0 Hz), 132.14 (d, *J*_{*P*-*C*} = 2.0 Hz), 132.11 (d, *J*_{*P*-*C*} = 98.0 Hz), 132.0 (d, *J*_{*P*-*C*} = 10.0 Hz), 131.8 (d, *J*_{*P*-*C*} = 9.0 Hz), 131.6 (d, *J*_{*P*-*C*} = 10.0 Hz), 130.8 (d, *J*_{*P*-*C*} = 96.0 Hz), 130.1, 128.4 (d, *J*_{*P*-*C*} = 12.0 Hz), 127.33, 127.28, 126.7 (d, *J*_{*P*-*C*} = 13.0 Hz), 124.7 (dq, *J*_{*P*-*C*} = 12.0 Hz, *J*_{*F*-*C*} = 3.0 Hz), 123.6 (q, *J*_{*F*-*C*} = 271.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.2; ³¹P NMR (162 MHz, CDCl₃) δ 39.4; ESIHRMS: Found *m*/*z* 423.1122; Calcd for C₂₅H₁₉F₃OP [M + H]⁺ 423.1126.

[1,1'-biphenyl]-2-yl(phenyl)phosphine oxide (**2h**)^[27]

¹H NMR (400 MHz, CDCl₃) δ 7.91 (dd, J = 14.0, 7.6 Hz, 1H), 7.87 (d, J = 495.4 Hz, 1H), 7.59 (td, J = 7.4, 1.2 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.43–7.40 (m, 1H), 7.35–7.26 (m, 8H), 7.24–7.21 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 145.7 (d, J_{P-C} = 10.0 Hz), 139.0 (d, J_{P-C} = 6.0 Hz), 132.5 (d, J_{P-C} = 9.0 Hz), 132.1 (d, J_{P-C} = 2.0 Hz), 131.7

(d,
$$J_{P-C} = 2.0$$
 Hz), 131.3 (d, $J_{P-C} = 98.0$ Hz), 130.5 (d, $J_{P-C} = 10.0$ Hz), 130.2 (d, $J_{P-C} = 9.0$ Hz), 130.0 (d, $J_{P-C} = 99.0$ Hz), 129.2, 128.2 (d, $J_{P-C} = 13.0$ Hz), 128.0, 127.8, 127.3 (d, $J_{P-C} = 12.0$ Hz); ³¹P NMR (162 MHz, CDCl₃) δ 18.4 (d, $J = 495.4$ Hz).

7. Competition studies (Scheme 6a)

7.1 The reaction of 6fi

The reaction of **6fi** (98.5 mg, 0.302 mmol) was conducted by following the general procedure (Section 6.1) at 85 °C for 24 h for dearylation with subsequent treatment with (3-bromopropyl)benzene (**3a**) (50 μ L, 0.329 mmol) at 0 °C for 1 h. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 65:35:2) to give 72% yield (65.9 mg, 0.219 mmol) of **4fa** as white solid.

7.2 The reaction of 7

The reaction of 7 (104.7 mg, 0.384 mmol) was conducted by following the general procedure (Section 6.1) at 85 °C for 24 h for dearylation with subsequent treatment with (3-bromopropyl)benzene (**3a**) (65 μ L, 0.427 mmol) at 0 °C for 1 h. Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc:MeOH, 70:30:2) to give inseparable mixture of **10** and **4fa** (77.4 mg) in 45% and 20% yields, respectively. The yields were calculated based on ³¹P NMR analysis of the mixture.

tert-butyl(3-phenylpropyl)(*p*-tolyl)phosphine oxide (10)

¹H NMR (400 MHz, CDCl₃) δ 7.49 (dd, J = 16.4, 8.0 Hz, 2H), 7.26–7.23 (m, 4H), 7.18–7.14 (m, 1H), 7.12–7.10 (m, 2H), 2.80–2.75 (m, 1H), 2.68–2.61 (m, 1H), 2.38 (s, 3H), 2.08–1.96 (m, 3H), 1.69–1.61 (m, 1H), 1.08 (d, J = 14.4 Hz, 9H); ³¹P NMR (162 MHz, CDCl₃) δ 50.1; ESIHRMS: Found *m*/*z* 315.1880; Calcd for C₂₀H₂₈OP [M + H]⁺ 315.1878.

7.3 The reaction of 8

The reaction of **8** (142.3 mg, 0.494 mmol) was conducted by following the general procedure (Section 4) at 85 °C for 36 h for dearylation with quenching by water. Purification by flash column chromatography (silica gel, EtOAc:MeOH, 99:1) to give an inseparable mixture of **11** and **12** (77.4 mg) in 45% and 20% yields, respectively. The yields were calculated based on ¹H NMR analysis of the mixture.

tert-butyl(4-methoxyphenyl)phosphine oxide (11)²⁸

¹H NMR (400 MHz, CDCl₃) δ 7.61 (dd, J = 11.8, 8.8 Hz, 1H), 7.00 (dd, J = 8.8, 1.8 Hz, 1H), 6.99 (d, J = 450.4 Hz, 1H), 3.86 (s, 3H), 1.13 (d, J = 16.6 Hz, 9H); ³¹P NMR (162 MHz, CDCl₃) δ 46.9 (d, J = 450.4 Hz).

tert-butyl(phenyl)phosphine oxide (**12**)⁹

¹H NMR (400 MHz, CDCl₃) δ 7.71–7.66 (m, 2H), 7.60–7.56 (m, 1H), 7.52–7.48 (m, 2H), 7.04 (d, *J* = 453.2 Hz, 1H), 1.14 (d, *J* = 16.8 Hz, 9H); ³¹P NMR (162 MHz, CDCl₃) δ 47.5 (d, *J* = 453.2 Hz).

8. Deuterium labeling experiments

Employment of NaD²⁹ in place of NaH resulted in 39% of deuterium incorporation on 1,3dimethoxybenzene (Scheme S2).

Scheme S2. The reactions were performed at 0.5 mmol scale according to general procedure for dearylation of triarylphosphine oxides **1** (Section 4). *NaD contains ca 9% of metallic Na.

1,3-dimethoxybenzene-5-d

Purification by flash column chromatography (silica gel, *n*-Hex:EtOAc, 90:10) to give 82% yield (56.9 mg, 0.412 mmol) of 1,3-dimethoxybenzene-5-*d* with 39% D-content as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.18 (t, *J* = 8.0 Hz, 0.61H), 6.52–6.50 (m, 2H), 6.47 (t, *J* = 2.4 Hz, 1H), 3.79 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 160.8, 129.8, 106.2, [106.4 as *ortho*-carbon with respect to deuterated carbon], 100.5, 55.2. GCMS (EI) *m/z* 138.08 [M] for 1,3-dimethoxybenzene, 139.10 [M] for 1,3-dimethoxybenzene-5-d.

9. DFT calculation

9.1 Computational details

All calculations were carried with the Gaussian $16^{[30]}$ program package and the GRRM 11 (Version 11.03) program.³¹ The molecular structures and harmonic vibrational frequencies were obtained using the long-range corrected hybrid density functional including a version of Grimme's D2 dispersion model developed by Chai and Head-Gordon (ω B97X-D).³² We used 6–31+G* basis set.³³ All stationary points were optimized without any symmetry assumptions, and characterized by normal coordinate analysis at the ω B97X-D/6-31+G* of theory (number of imaginary frequencies, NIMAG, 0 for minima and 1 for TSs). The intrinsic reaction coordinate (IRC) method was used to track minimum energy paths from transition structures to the corresponding local minima.³⁴ The self-consistent reaction field (SCRF) method based on the Polarizable Continuum Model (PCM)³⁵ was employed to evaluate the solvent reaction field (THF; $\varepsilon = 7.58$).

9.2 Reaction pathway 1: nucleophilic attack of hydride on the P center-elimination of phenylsodium

Figure S1. All calculations were performed at ω B97X-D/6-31+G* level of theory. The bulk solvent effect of THF was described with an implicit model (SCRF (solvent = THF, PCM)). The energies of intermediates (**IM**s) and transition states (**TS**s) were calculated with **IM-0** as a standard energy (ΔG (**IM-0**) = 0 kcal/mol).

9.3 Reaction pathway 1-2: the subsequent deprotonation step by phenylsodium in the pathway of nucleophilic attack of hydride on the P center-elimination

The following deprotonation of the P–H moiety of **IM-3** should lead to the sodium phosphinite; the competitive action of phenylsodium and NaH as a base was suggested by the deuterated label experiment (Scheme S2). In the former case (Figure S2.), through the smooth flipping of phenylsodium (Na–Ph) to the hydride side of P=O moiety (*i.e.* **IM-3–IM-3'**), the deprotonation was found to take place with a low activation barrier ($\Delta G^{\ddagger} = +3.6$ kcal/mol). Given 39% deuterium incorporation in the deuterium labelling experiment described in the previous section, the deprotonation by co-existing NaH should proceed with a similar activation barrier.

9.4 Reaction pathway 2: nucleophilic aromatic substitution (S_NAr)

We also found the other reaction pathway, that is, nucleophilic aromatic substitution (S_NAr) mechanism (Figure S3). In this case, nucleophilic addition of hydride at the *ipso*-position of a phenyl ring of **1a** proceeded with a reasonable but slightly higher activation barrier ($\Delta G^{\ddagger} = +23.9$ kcal/mol) than that of the above-mentioned pathway. Although this step afforded the transient Meisenheimer-type intermediate, **IM**_{SNAr}-**1**, the following elimination was an almost barrier-less step ($\Delta G^{\ddagger} = +1.1$ kcal/mol). Finally, the corresponding sodium phosphinite product **IM**_{SNAr}-**2** was obtained with a large energy stabilization. At this moment, we consider this pathway less likely to take place, judged by the lower D-incorporation rate in the reaction of **1c** with NaD-LiI composite.

Figure S3.

9.5 Cartesian coordinates and energies

IM-0 H-18 1.82 1.82 1.82 1.81

Energy (RwB97XD): -1274.20473804 A.U. Gibbs Free Energy: -1273.970192 A.U. C -1.041872 2.812155 -2.176483 С -0.5427761.655979 -1.586155 С -0.591026 1.501668 -0.195682 -1.142461C 2.511835 0.595714 С -1.643347 3.669400 0.001224 С -1.593033 3.819566 -1.382466 Η -1.005073 2.926417 -3.255612 Η -0.127067 0.873680 -2.215628 Η -2.074457 4.450044 0.620573 Η -1.984999 4.720310 -1.845584 Р 0.057590 0.020058 0.629403 0 -0.198837 0.076086 2.122422 Na -2.297542 -0.282437 2.997151 Η -1.178270 2.392504 1.674469-0.728347 -1.405421 -0.171189 С С -0.087271 -2.650929 -0.169264 С -2.028325 -1.298313 -0.679807 С -0.735760 - 3.771580 - 0.6798700.919754 -2.749323 0.227377 Η -2.675451 -2.422569 -1.186791 С Η -2.540759 -0.340085 -0.682637 -2.029052 -3.657414 -1.189865 С -0.231520 -4.733163 -0.680161 Η Η -3.683932 -2.332002 -1.578263 Η -2.533787 -4.532537 -1.588425 С 1.831241 -0.069028 0.262234 С 2.317618 -0.466969 -0.988335 С 2.725789 0.319821 1.263567 С 3.687435 -0.468228 -1.234783 Η 1.635494 -0.793923 -1.768582 С 4.096710 0.316041 1.013923 Η 2.346248 0.618660 2.236357 С 4.577115 -0.075149 -0.234544 4.060418 -0.781570 -2.205170 Η

H 4.788221 0.616526 1.795318 H 5.645721 -0.079032 -0.428257 H -4.419294 0.015563 2.736581

TS-1

Ene	ergy (RwB97)	KD): -1274.18	465020 A.U.
Gib	bs Free Ene	rgy: -1273.9	47159 A.U.
	• • • • • • • • • • • • • • • • • • • •	1 00175	
C	-2.677886	-1.081756	-2.294883
C	-1.513669	-0.729245	-1.612695
С	-1.442711	-0.866285	-0.223937
С	-2.565900	-1.312505	0.476748
С	-3.735885	-1.639886	-0.201492
С	-3.791865	-1.536822	-1.592554
Η	-2.714774	-0.989227	-3.376743
Η	-0.666429	-0.346851	-2.175042
Η	-4.603601	-1.983504	0.354915
Η	-4.700990	-1.803353	-2.123964
Р	0.015307	-0.335688	0.739591
0	-0.074175	-0.371690	2.263324
Na	0.346027	-2.435969	3.078973
Η	-2.514177	-1.415018	1.557363
С	1.618884	-0.646435	-0.082978
С	2.719122	0.073017	0.390412
С	1.784625	-1.519244	-1.160672
С	3.973958	-0.087037	-0.198295
Н	2.599826	0.768680	1.217725
С	3.027789	-1.654146	-1.769795
Н	0.944282	-2.115495	-1.503639
С	4.128720	-0.943233	-1.285666
Н	4.825182	0.466623	0.187893
Н	3.143368	-2.328531	-2.613673
Н	5.102049	-1.061097	-1.753515
С	-0.128779	1.491455	0.372046
С	0.356084	2.071615	-0.806773
С	-0.823616	2.305220	1.273485
С	0.151366	3.423284	-1.078649

```
H0.9141021.472779-1.522464C-1.0313763.6583871.006834H-1.1973941.8714852.196302C-0.5454834.221472-0.172123H0.5408633.853470-1.997483H-1.5714894.2731621.722064H-0.7044225.275712-0.381807H0.140827-2.5014870.908841
```

IM-1

Energy (RwB97XD): -1274.19449919 A.U. Gibbs Free Energy: -1273.953749 A.U. C -2.884503 -1.278463 -2.172072 C -1.678063 -1.149140 -1.484848 C -1.644746 -0.582282 -0.207270 C -2.843572 -0.156896 0.372311 C -4.052801 -0.291107 -0.309772 C -4.076719 -0.850839 -1.586696 Н -2.893152 -1.714401 -3.167737 Н -0.758187 -1.492134 -1.952835 H -4.975578 0.047788 0.154113 Η -5.016338 -0.952123 -2.122744 Р -0.100984 - 0.450125 0.799156O -0.171590 -0.194052 2.338288 Na -0.510127 -2.067778 3.481841 Η -2.829717 0.297633 1.360859 С 1.409366 -0.919376 -0.207167 С 1.773546 -0.281075 -1.399165 С 2.215358 -1.962113 0.256338 С 2.895130 -0.692937 -2.117290 1.175089 0.542976 -1.777125 Η С 3.364890 -2.350110 -0.431508 Η 1.937032 -2.481737 1.171382 С 3.701602 -1.721280 -1.629219 Η 3.146020 -0.201416 -3.053549 3.988635 -3.149490 -0.040165 Η Η 4.586062 -2.030375 -2.179632 С 0.184059 1.436630 0.426619

С	-0.582317	2.225205	-0.438782
С	1.284392	2.059388	1.040404
С	-0.276262	3.570398	-0.677900
Η	-1.439272	1.796217	-0.951745
С	1.604359	3.393650	0.807335
Η	1.910298	1.480818	1.717077
С	0.819549	4.161591	-0.057615
Н	-0.897939	4.151280	-1.355723
Η	2.466151	3.839164	1.299406
Η	1.062912	5.204708	-0.242969
Н	-0.242736	-1.956523	1.045261

TS-2

Ene	rgy (RwB97)	KD): -1274.19	301450 A.U.
Gib	bs Free Ene	rgy: -1273.9	52535 A.U.
С	-2.541348	-2.442299	-1.569156
С	-1.410011	-1.898290	-0.960950
С	-1.533576	-0.901076	0.011507
С	-2.814465	-0.466518	0.366145
С	-3.947974	-1.008691	-0.238887
С	-3.814758	-1.999151	-1.211549
Η	-2.426697	-3.213965	-2.326103
Η	-0.425854	-2.256346	-1.253092
Η	-4.935413	-0.654535	0.046356
Η	-4.695362	-2.422241	-1.687073
Р	-0.092684	-0.180236	0.921944
Ο	-0.315568	0.774562	2.139417
Na	-1.043464	1.386318	4.075070
Η	-2.926031	0.314841	1.115353
С	1.520429	-0.905145	0.285333
С	1.951383	-0.803840	-1.043586
С	2.328967	-1.599920	1.188893
С	3.140738	-1.400489	-1.458914
Η	1.351073	-0.258993	-1.766880
С	3.542792	-2.161773	0.792171
Η	2.000272	-1.705798	2.221236
С	3.946866	-2.071442	-0.538724

Η	3.443804	-1.332009	-2.500449
Η	4.164595	-2.679823	1.517692
Η	4.882714	-2.521963	-0.858398
С	0.087063	1.359933	-0.271200
С	-0.750682	1.667535	-1.348942
С	1.151835	2.246655	-0.030728
С	-0.546490	2.802332	-2.144695
Η	-1.585569	1.015534	-1.593238
С	1.371289	3.374467	-0.815384
Η	1.834210	2.041383	0.792705
С	0.515824	3.661377	-1.883741
Η	-1.220993	3.006418	-2.973587
Η	2.210159	4.032502	-0.598725
Η	0.680891	4.540347	-2.501766
Η	-0.146183	-1.369795	1.830147

IM-2

Energy (RwB97XD): -1274.19796838 A.U. Gibbs Free Energy: -1273.956100 A.U. C -2.313746 -2.506867 -1.619119 C -1.265615 -1.749717 -1.095662 C -2.439440 -1.568550 0.993140 C -3.501014 -2.304412 0.468101 C -3.438720 -2.779995 -0.841701 Н -2.253760 -2.877249 -2.639230 H -0.408533 -1.529708 -1.725405 H -4.372480 -2.513324 1.083240 Н -4.259247 -3.361999 -1.252419 Р 0.041960 -0.303489 1.034649 0 -0.254202 0.668622 2.230185 Na -0.888324 2.792088 2.141127 Η -2.484257 -1.218270 2.022804 С 1.705639 -0.774951 0.303366 С 2.061935 -0.598234 -1.039813 С 2.641596 -1.368421 1.156222 С 3.299292 -1.025506 -1.518628 Η 1.372445 -0.115602 -1.726284

С	3.897274	-1.763527	0.695141
Н	2.381068	-1.526217	2.201019
С	4.225677	-1.601791	-0.649685
Η	3.543756	-0.897998	-2.569953
Η	4.612557	-2.207307	1.382546
Η	5.196166	-1.922093	-1.019027
С	-0.156765	1.239203	-0.179648
С	-1.360235	1.566934	-0.820244
С	0.871562	2.197641	-0.256141
С	-1.534598	2.778220	-1.499393
Η	-2.192964	0.867844	-0.794683
С	0.713107	3.408188	-0.929310
Η	1.827236	1.992652	0.224409
С	-0.498758	3.707181	-1.557334
Η	-2.483993	2.991107	-1.985663
Н	1.536034	4.118383	-0.967922
Η	-0.628274	4.647251	-2.086992
С	-1.312526	-1.276183	0.218528
Η	0.222048	-1.432339	1.973022

TS-3

Energy (RwB97XD): -1274.17489933 A.U.							
Gibbs Free Energy: -1273.933875 A.U.							
-3.434992	-1.298981	-1.634108					
-2.275442	-1.559590	-0.905730					
-2.740791	0.329830	0.517622					
-3.914826	0.573931	-0.189744					
-4.258169	-0.233026	-1.274828					
-3.700353	-1.936366	-2.472619					
-1.657767	-2.414507	-1.172913					
-4.556038	1.402246	0.098010					
-5.167227	-0.034339	-1.835265					
-0.442356	-1.159544	1.145610					
-0.315723	-0.657744	2.579142					
-0.102996	1.561590	2.832380					
-2.454324	0.980444	1.338063					
1.057324	-1.408838	0.145435					
1.119773	-1.184450	-1.232998					
	rgy (RwB97) bs Free Ene -3.434992 -2.275442 -2.740791 -3.914826 -4.258169 -3.700353 -1.657767 -4.556038 -5.167227 -0.442356 -0.315723 -0.102996 -2.454324 1.057324 1.119773	rgy (RwB97XD): -1274.17 bs Free Energy: -1273.9 -3.434992 -1.298981 -2.275442 -1.559590 -2.740791 0.329830 -3.914826 0.573931 -4.258169 -0.233026 -3.700353 -1.936366 -1.657767 -2.414507 -4.556038 1.402246 -5.167227 -0.034339 -0.442356 -1.159544 -0.315723 -0.657744 -0.102996 1.561590 -2.454324 0.980444 1.057324 -1.408838 1.119773 -1.184450					
С	2.181913	-1.896488	0.814571	Н	-1.080300	0.723806	0.199753
---	-----------	-----------	-----------	---	-----------	-----------	-----------
С	2.295663	-1.439615	-1.929173	С	1.370294	-1.423129	-0.164885
Η	0.263000	-0.772467	-1.757416	С	1.145738	-1.238384	-1.531792
С	3.367454	-2.133883	0.117849	С	2.659350	-1.265745	0.355999
Η	2.142134	-2.077410	1.886220	С	2.202877	-0.891559	-2.369342
С	3.425816	-1.908170	-1.254979	Н	0.145910	-1.342053	-1.943796
Η	2.337181	-1.255546	-2.999006	С	3.713876	-0.919553	-0.483961
Η	4.242085	-2.497623	0.649974	Н	2.835082	-1.398307	1.420196
Η	4.347063	-2.093935	-1.799916	С	3.484921	-0.730481	-1.846768
С	0.339455	1.380920	0.348518	Н	2.021966	-0.735576	-3.428550
С	-0.248222	2.072205	-0.729343	Н	4.711407	-0.790509	-0.074876
С	1.708895	1.673434	0.534787	Н	4.305959	-0.451836	-2.500872
С	0.453888	2.949880	-1.565169	С	0.644350	2.422603	1.116269
Η	-1.305097	1.909349	-0.956472	С	-0.546775	3.189271	1.077772
С	2.438591	2.553721	-0.271061	С	1.162335	2.142262	-0.171809
Η	2.261147	1.157657	1.328373	С	-1.174761	3.614516	-0.100664
С	1.809149	3.195308	-1.339324	Н	-1.036728	3.463800	2.016866
Η	-0.053621	3.441045	-2.395182	С	0.562423	2.550634	-1.369635
Η	3.496610	2.729374	-0.078675	Н	2.073241	1.545383	-0.264261
Η	2.364961	3.872401	-1.984397	С	-0.621823	3.288358	-1.340054
С	-1.909617	-0.731491	0.159805	Н	-2.098882	4.190966	-0.054728
Η	-0.760849	-2.540882	1.304970	Н	1.009854	2.279671	-2.325844
				Н	-1.104961	3.601430	-2.263526

IM-3

Ene	rgy (RwB97)	KD): -1274.18	981313 A.U.
Gib	bs Free Ene	rgy: -1273.9	51618 A.U.
С	-3.671603	-2.021250	-0.714823
С	-2.461249	-2.382004	-0.125325
С	-1.804018	-0.048629	-0.049054
С	-3.014931	0.305235	-0.635528
С	-3.947211	-0.678537	-0.968630
Η	-4.397083	-2.786984	-0.972376
Η	-2.252426	-3.430467	0.073051
Η	-3.222688	1.352268	-0.834465
Η	-4.890654	-0.397682	-1.428007
Р	0.037202	-1.864107	0.978889
0	0.281263	-1.323015	2.371998
Na	1.011696	0.808766	2.950431

Η	0.145910	-1.342053	-1.943796
С	3.713876	-0.919553	-0.483961
Η	2.835082	-1.398307	1.420196
С	3.484921	-0.730481	-1.846768
Η	2.021966	-0.735576	-3.428550
Η	4.711407	-0.790509	-0.074876
Η	4.305959	-0.451836	-2.500872
С	0.644350	2.422603	1.116269
С	-0.546775	3.189271	1.077772
С	1.162335	2.142262	-0.171809
С	-1.174761	3.614516	-0.100664
Η	-1.036728	3.463800	2.016866
С	0.562423	2.550634	-1.369635
Η	2.073241	1.545383	-0.264261
С	-0.621823	3.288358	-1.340054
Η	-2.098882	4.190966	-0.054728
Η	1.009854	2.279671	-2.325844
Η	-1.104961	3.601430	-2.263526
С	-1.524789	-1.397379	0.206357
Η	-0.030492	-3.271996	0.962615

Ene	ergy (RwB97)	KD): -1274.25	214511 A.U.
Gił	obs Free Ene	rgy: -1274.0	13201 A.U.
С	-4.929355	0.272815	-0.712822
С	-3.578170	0.191402	-1.040949
С	-3.260535	-1.494408	0.644520
С	-4.615833	-1.420544	0.975009
С	-5.453998	-0.535517	0.299119
Η	-5.576494	0.964439	-1.246599
Η	-3.181509	0.825056	-1.833631
Η	-5.017359	-2.055333	1.761482
Η	-6.508919	-0.476689	0.553726

Р	-0.924272	-0.827291	-0.827431	Н	-2.077383	0.846982	-1.869654
0	-0.318663	-1.813958	0.241427	Н	-5.562619	-1.711016	0.572382
Na	1.682538	-2.051222	1.039809	Н	-6.180961	-0.316270	-1.384673
Н	-2.600711	-2.182104	1.168369	Р	-0.760402	-0.628523	0.302125
С	-0.450025	0.878115	-0.223931	0	-0.613908	-1.465553	1.555841
С	-0.362212	1.163465	1.144327	Na	1.460242	-2.302406	2.225964
С	-0.127505	1.886625	-1.135204	Н	-3.190708	-1.836794	1.305092
С	0.032003	2.422412	1.590574	С	-0.146277	1.066019	0.407398
Н	-0.606500	0.383623	1.863415	С	-0.834263	2.015039	1.175299
С	0.265997	3.153800	-0.696890	С	1.027691	1.423941	-0.261209
Н	-0.172649	1.678416	-2.203259	С	-0.347425	3.314002	1.272313
С	0.348754	3.423437	0.667806	Н	-1.752817	1.742672	1.689806
Н	0.091502	2.629054	2.656428	С	1.509282	2.728701	-0.163410
Н	0.517140	3.924791	-1.420829	Н	1.577096	0.689880	-0.844987
Н	0.660425	4.405624	1.012840	С	0.824628	3.670607	0.600836
С	2.977841	-0.128734	-1.117974	Н	-0.881436	4.049811	1.866112
С	3.108648	0.618750	0.054288	Н	2.424510	3.000992	-0.680547
С	3.903368	-1.130600	-1.415469	Н	1.202348	4.686324	0.676020
С	4.164869	0.361494	0.930510	С	2.931954	-1.578736	0.370491
Н	2.386132	1.397813	0.279994	С	3.856352	-0.512157	0.488226
С	4.959627	-1.386793	-0.539064	С	2.620260	-1.889215	-0.975832
Н	3.800580	-1.710291	-2.328400	С	4.399707	0.187342	-0.596874
С	5.089766	-0.641886	0.634181	Н	4.169638	-0.184413	1.483992
Н	4.268925	0.945784	1.840639	С	3.140350	-1.211005	-2.086531
Н	5.681526	-2.164826	-0.771132	Н	1.917732	-2.701739	-1.187758
Н	5.913574	-0.839577	1.314394	С	4.036763	-0.156896	-1.900055
С	-2.723315	-0.685515	-0.360015	Н	5.099039	1.006340	-0.428583
Н	2.150268	0.068771	-1.793368	Н	2.846459	-1.500042	-3.095599
				Н	4.445292	0.382407	-2.752237

IM-3'

Energy (RwB97XD): -1274.18794882 A.U. Gibbs Free Energy: -1273.952489 A.U. - -C -4.163974 0.345152 -1.750117 C -2.836880 0.278801 -1.337187 C -3.469182 -1.227402 0.450182

- C -4.799072 -1.155044 0.036556 C -5.145218 -0.371400 -1.062360 H -4.434204 0.957720 -2.604989
- TS-4 Na \cap 2.62 1 54 Energy (RwB97XD): -1274.17577629 A.U. Gibbs Free Energy: -1273.946709 A.U.

C -2.486845 -0.510189 -0.235362 H -0.054449 -1.139476 -0.802758

- -3.367780 -1.475812 -2.004269 С -2.326575 -0.773242 -1.404303 С C -2.666808 -2.015610 0.640741
- S38

- - - - -

С	-3.711657	-2.716857	0.039033				
С	-4.062039	-2.449049	-1.283127	С	2.375443	-1.586543	-2.303546
Η	-3.640814	-1.262196	-3.033729	С	1.504962	-0.747128	-1.612093
Н	-1.796187	-0.011357	-1.971279	С	1.129422	-1.056500	-0.300862
Η	-4.252441	-3.470802	0.604150	С	1.634059	-2.208064	0.313321
Η	-4.875658	-2.995105	-1.752077	С	2.507573	-3.042214	-0.378619
Р	-0.562010	-0.188227	0.707586	С	2.877104	-2.731955	-1.687208
0	-0.556023	-0.421201	2.226545	Н	2.667559	-1.341072	-3.320079
Na	1.655063	-1.146967	2.657120	Н	1.126855	0.150761	-2.093789
Н	-2.394193	-2.216319	1.673252	Н	2.903508	-3.930193	0.104633
С	-0.779160	1.560770	0.251970	Н	3.561502	-3.381152	-2.225317
С	-1.776177	2.346233	0.842995	Р	-0.024937	-0.026359	0.644788
С	0.069779	2.126988	-0.703860	0	0.277931	-0.060688	2.128947
С	-1.925335	3.680281	0.475652	Na	2.297929	0.056762	3.193196
Н	-2.435711	1.911857	1.590371	Н	1.350068	-2.445901	1.335000
С	-0.083387	3.463403	-1.075205	С	0.099781	1.641342	-0.059505
Н	0.857743	1.527469	-1.154119	С	-0.975271	2.269674	-0.693837
С	-1.079676	4.238667	-0.485867	С	1.320484	2.318438	0.070269
Н	-2.700741	4.286118	0.935811	С	-0.831470	3.563740	-1.193559
Н	0.578583	3.897434	-1.818990	Н	-1.926674	1.756742	-0.800661
Н	-1.197951	5.279931	-0.772094	С	1.460019	3.609062	-0.428144
С	2.557238	-0.886462	0.208830	Н	2.167758	1.837548	0.553452
С	3.279868	0.326524	0.181244	С	0.383116	4.232288	-1.061217
С	3.132573	-1.922944	-0.556686	Н	-1.670290	4.047210	-1.685130
С	4.474911	0.501254	-0.526835	Н	2.408410	4.127425	-0.325267
Н	2.891258	1.191795	0.727735	Н	0.493334	5.239916	-1.451151
С	4.322691	-1.778342	-1.279886	С	-1.696539	-0.628585	0.286246
Η	2.633570	-2.894636	-0.603679	С	-2.027795	-1.198884	-0.947398
С	5.003086	-0.559154	-1.264978	С	-2.678418	-0.481541	1.271318
Η	4.991697	1.460130	-0.509296	С	-3.334419	-1.612128	-1.194640
Н	4.720614	-2.612373	-1.856818	Н	-1.269998	-1.326694	-1.715730
Η	5.927987	-0.436323	-1.824117	С	-3.984140	-0.897344	1.020913
С	-1.970769	-1.037584	-0.075603	Н	-2.418021	-0.048298	2.232768
Η	0.820200	-0.620351	0.231343	С	-4.312262	-1.460487	-0.211760
				Н	-3.587225	-2.056842	-2.152407
IM	SNAr-0			Н	-4.743554	-0.783968	1.788652

Energy (RwB97XD): -1274.20538668 A.U. Gibbs Free Energy: -1273.970547 A.U.

TS_{SNAr}-1

H -5.330174 -1.785782 -0.405738

H 4.430434 0.297784 2.994149

Energy (RwB97XD): -1274.16665566 A.U. Gibbs Free Energy: -1273.932396 A.U. -----C -2.307175 -1.673718 -2.237061 C -1.179099 -1.263083 -1.552710 С -1.232269 -1.050506 -0.132424 С -2.550693 -0.851181 0.406615 С -3.667205 -1.264863 -0.298931 С -3.563761 -1.742630 -1.612824 Η -2.218005 -1.924490 -3.292709 Η -0.220228 -1.234068 -2.064177 Η -4.646717 -1.185606 0.169989 Η -4.444471 -2.057908 -2.164227 Р 0.077983 -0.131993 0.724446 0 0.074025 - 0.363261 2.227466Na -0.857725 -2.395926 2.817473 Η -2.661682 -0.470730 1.420233 С 1.666731 -0.559279 -0.043208 С 2.106156 0.063751 -1.216479 С 2.459570 -1.545916 0.550471 С 3.316967 -0.307357 -1.796433 1.507336 0.842856 -1.680803 Η С 3.673999 -1.911698 -0.026487 Η 2.125983 -2.019182 1.468600 С 4.101091 -1.295770 -1.202187 Η 3.649575 0.178684 -2.708911 Η 4.286028 -2.677392 0.441320 Η 5.047191 -1.581956 -1.652822 С -0.151125 1.642963 0.372423 С -0.885714 2.103608 -0.725515 С 2.568751 1.224299 0.463873 С -0.997817 3.472028 -0.969203 Η -1.376661 1.395260 -1.386442 С 0.350552 3.934617 0.979423 Η 1.028451 2.218070 2.083955 С -0.3800774.387687 -0.119576 Η -1.572599 3.820972 -1.822259

Η

0.830287

H -0.470014 5.453373 -0.310475 H -0.535472 -2.406400 0.572684

IM_{SNAr}-1

Energy (RwB97XD): -1274.20123524 A.U. Gibbs Free Energy: -1273.959346 A.U. C -2.333686 -0.857424 -2.242794 С -1.014393 -1.132240 -1.993410 С -0.573685 -1.673979 -0.662466 С -1.716389 -2.381225 0.020111 С -3.025107 -2.070983 -0.288474 С -3.378746 -1.204415 -1.344622 -2.592216 -0.397921 -3.197797 Η Η -0.257348 -0.934277 -2.749645-3.819188 -2.578749 0.264347 Η -4.419197 -1.022495 -1.597142 Η Р 0.242032 -0.394934 0.522477 0 0.029318 -0.791891 1.985394 Na -2.135999 -1.242664 2.548625 Η -1.484987 -3.180478 0.722281 С 2.009235 -0.357972 0.100761 2.429193 0.048608 -1.172625 С С 2.952235 -0.822781 1.020697 С 3.777002 -0.005684 -1.516206 1.705076 0.419150 -1.894328 Η С 4.302656 -0.875224 0.675666 2.624064 -1.140200 Η 2.006579 С 4.715432 -0.467423 -0.591610 Η 4.096112 0.314284 -2.503922 5.031579 -1.233665 1.396934 Η Η 5.767111 -0.508188 -0.860591 С -0.356208 1.304416 0.237720 С -1.722111 1.520622 0.021704 С 2.405890 0.353029 0.500045 С -2.220802 2.817215 -0.078138 Η -2.401142 0.677127 -0.102154 С -0.000568 3.703072 0.252981

4.645274 1.646275

Η	1.563392	2.257829	0.520926
С	-1.362129	3.910292	0.037494
Η	-3.281193	2.972854	-0.257175
Η	0.673811	4.549952	0.342885
Η	-1.752322	4.920981	-0.044246
Η	0.285575	-2.352352	-0.781064

TS_{SNAr}-2

Energy (RwB97XD): -1274.19616257 A.U. Gibbs Free Energy: -1273.955394 A.U. -----С 0.243547 3.134447 -1.196225 С -0.376333 2.685727 -0.049354 С 0.360275 1.880852 0.931663 С 1.813866 2.063324 0.845127 С 2.398689 2.530924 -0.314993 С 1.634087 3.007478 -1.397653 Η -0.358033 3.645298 -1.948503 Η -1.446118 2.826995 0.085900 Η 3.486730 2.562346 -0.376137 Η 2.110099 3.398869 -2.292158 Р -0.155164 - 0.188092 0.8288730 -0.176491 -0.808775 2.243160 Na 1.189316 -0.247410 3.897751 Η 2.435916 1.725386 1.673366 C -1.792592 -0.368479 0.053973 C -2.001983 -0.001903 -1.282558 С -2.889956 -0.740833 0.838961 С -3.283400 -0.032815 -1.827927 Η -1.163680 0.303629 -1.903214 С -4.171261 -0.774492 0.291092 Н -2.729577 -1.014342 1.878496 С -4.370410 -0.420497 -1.043529 Η -3.434074 0.247709 -2.866789 Η -5.014606 - 1.078347 0.905490Η -5.369029 -0.444441 -1.470866 С 0.961831 -1.159943 -0.242308 С 1.524566 -0.603792 -1.395460

С	1.292580	-2.471982	0.117078
С	2.381097	-1.361354	-2.193729
Η	1.316386	0.430461	-1.663827
С	2.150909	-3.227153	-0.679170
Η	0.868682	-2.900179	1.021981
С	2.694545	-2.672749	-1.839139
Η	2.813012	-0.919967	-3.087920
Η	2.394060	-4.248158	-0.397266
Η	3.365991	-3.259609	-2.459984
Η	-0.039172	1.936863	1.952706

IM_{SNAr}-2

Energy (RwB97XD): -1274.24860280 A.U. Gibbs Free Energy: -1274.012845 A.U.

С	4.075660	1.019003	-0.311094
С	3.267431	1.802951	0.513320
С	2.783743	1.283937	1.714519
С	3.111074	-0.018221	2.093334
С	3.923374	-0.800066	1.272129
С	4.405126	-0.281994	0.069620
Н	4.445290	1.421056	-1.250339
Н	3.008225	2.815462	0.215496
Н	4.172069	-1.816692	1.563546
Н	5.031047	-0.894394	-0.573645
Р	-1.174225	-0.372800	1.017382
0	-2.572896	-1.057921	1.245434
Na	-3.826592	-2.314816	2.469424
Н	2.723784	-0.425879	3.022685
С	-1.566948	1.194319	0.080638
С	-0.558616	2.105515	-0.259885
С	-2.887809	1.511795	-0.247405
С	-0.858543	3.288837	-0.931552
Н	0.475872	1.888334	-0.000592
С	-3.195403	2.698500	-0.916162
Н	-3.674464	0.811803	0.024739
С	-2.181389	3.590569	-1.262562

Η	-0.060762	3.979906	-1.193119
Н	-4.228536	2.927093	-1.167515
Η	-2.418173	4.515580	-1.781663
С	-0.431972	-1.270752	-0.441559
С	0.898418	-1.047799	-0.816845
С	-1.176620	-2.212821	-1.157438
С	1.461726	-1.726365	-1.895984
Η	1.508687	-0.340963	-0.259424
С	-0.616770	-2.899229	-2.236272
Η	-2.206563	-2.399232	-0.860566
С	0.704667	-2.655374	-2.611748
Η	2.496385	-1.534852	-2.170381
Η	-1.212072	-3.624675	-2.786026
Η	1.143433	-3.189795	-3.450344
Η	2.141940	1.888772	2.348977

10. NMR spectra for new compounds

¹H NMR spectrum of *tert*-butyl(4-methoxyphenyl)(phenyl)phosphine oxide (8)

¹³C NMR spectrum of *tert*-butyl(4-methoxyphenyl)(phenyl)phosphine oxide (8)

³¹P NMR spectrum of *tert*-butyl(4-methoxyphenyl)(phenyl)phosphine oxide (8)

¹H NMR spectrum of diphenylphosphine oxide (2a)

¹³C NMR spectrum of diphenylphosphine oxide (2a)

³¹P NMR spectrum of diphenylphosphine oxide (**2a**)

¹H NMR spectrum of bis(4-methoxyphenyl)phosphine oxide (**2b**)

¹³C NMR spectrum of bis(4-methoxyphenyl)phosphine oxide (**2b**)

³¹P NMR spectrum of bis(4-methoxyphenyl)phosphine oxide (**2b**)

¹H NMR spectrum of bis(3,5-dimethoxyphenyl)phosphine oxide (**2c**)

¹³C NMR spectrum of bis(3,5-dimethoxyphenyl)phosphine oxide (2c)

³¹P NMR spectrum of bis(3,5-dimethoxyphenyl)phosphine oxide (**2c**)

¹H NMR spectrum of di-*o*-tolylphosphine oxide **2d**

¹³C NMR spectrum of di-*o*-tolylphosphine oxide (**2d**)

³¹P NMR spectrum of di-*o*-tolylphosphine oxide (**2d**)

¹H NMR spectrum of bis(4-(trifluoromethyl)phenyl)phosphine oxide (2e)

¹³C NMR spectrum of bis(4-(trifluoromethyl)phenyl)phosphine oxide (2e)

³¹P NMR spectrum of bis(4-(trifluoromethyl)phenyl)phosphine oxide (2e)

¹H NMR spectrum of diphenyl(3-phenylpropyl)phosphine oxide (4aa)

¹³C NMR spectrum of diphenyl(3-phenylpropyl)phosphine oxide (4aa)

³¹P NMR spectrum of diphenyl(3-phenylpropyl)phosphine oxide (4aa)

O Ph-P Ph ∼__ Ph

¹H NMR spectrum of ethyl 5-(diphenylphosphoryl)pentanoate (**4ab**)

¹³C NMR spectrum of ethyl 5-(diphenylphosphoryl)pentanoate (**4ab**)

¹H NMR spectrum of (2-(1,3-dioxolan-2-yl)ethyl)diphenylphosphine oxide (4ac)

S67

¹³C NMR spectrum of (2-(1,3-dioxolan-2-yl)ethyl)diphenylphosphine oxide (4ac)

³¹P NMR spectrum of (2-(1,3-dioxolan-2-yl)ethyl)diphenylphosphine oxide (4ac)

¹H NMR spectrum of pent-4-en-1-yldiphenylphosphine oxide (4ad)

¹³C NMR spectrum of pent-4-en-1-yldiphenylphosphine oxide (4ad)

³¹P NMR spectrum of pent-4-en-1-yldiphenylphosphine oxide (**4ad**)

O Ph-P Ph

shoules and month part is white the spillane waters of	in áitin lákersik keltárjasárák feletett	gun, and at the office of the other state states in the Harrow	- 1945 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	á án bastili Ballast án sen terranday ál b bhas	tel a star og så så svelsta fjör til så ere svil det sjudiske forske	n bahasa la kansilan kan patani kan polalaran ana da	n with the provided between the set of the second set of the second second second second second second second s	a ba fa ya a ^b arayi da da ya ya ya ku da da ya
			· · · · · · · · · · · · · · · · · · ·	an office of the first of the second of the				· · · · · · · · · · · · · · · · · · ·
200	150	100	50	0	-50	-100	-150	ppm

- 32.48
¹H NMR spectrum of but-3-yn-1-yldiphenylphosphine oxide (4ae)

¹³C NMR spectrum of but-3-yn-1-yldiphenylphosphine oxide (**4ae**)

-30.61

¹H NMR spectrum of benzyldiphenylphosphine oxide (**4af**)

¹³C NMR spectrum of benzyldiphenylphosphine oxide (**4af**)

³¹P NMR spectrum of benzyldiphenylphosphine oxide (**4af**)

O Ph-P Ph

-29.43

200 15	50 100	50	0	-50	-100	-150	-200	ppm

¹H NMR spectrum of (2-bromobenzyl)diphenylphosphine oxide (4ag)

¹³C NMR spectrum of (2-bromobenzyl)diphenylphosphine oxide (4ag)

³¹P NMR spectrum of (2-bromobenzyl)diphenylphosphine oxide (**4ag**)

200

150

100

0

-50

-100

-150

-200

ppm

50

-29.53

¹H NMR spectrum of allyldiphenylphosphine oxide (**4ah**)

S82

¹³C NMR spectrum of allyldiphenylphosphine oxide **4ah**

S83

³¹P NMR spectrum of allyldiphenylphosphine oxide **4ah**

O Ph-P Ph

-29.61

¹H NMR spectrum of cinnamyldiphenylphosphine oxide (4ai)

¹³C NMR spectrum of cinnamyldiphenylphosphine oxide (4ai)

³¹P NMR spectrum of cinnamyldiphenylphosphine oxide (4ai)

¹H NMR spectrum of (3-methylbut-2-en-1-yl)diphenylphosphine oxide (**4aj**)

S88

¹³C NMR spectrum of (3-methylbut-2-en-1-yl)diphenylphosphine oxide (**4aj**)

³¹P NMR spectrum of (3-methylbut-2-en-1-yl)diphenylphosphine oxide (**4aj**)

¹H NMR spectrum of (methoxymethyl)diphenylphosphine oxide (**4ak**)

¹³C NMR spectrum of (methoxymethyl)diphenylphosphine oxide (**4ak**)

³¹P NMR spectrum of (methoxymethyl)diphenylphosphine oxide (**4ak**)

¹H NMR spectrum of ((benzyloxy)methyl)diphenylphosphine oxide (**4a**l)

¹³C NMR spectrum of ((benzyloxy)methyl)diphenylphosphine oxide (**4al**)

³¹P NMR spectrum of ((benzyloxy)methyl)diphenylphosphine oxide (4al)

¹H NMR spectrum of propane-1,3-diylbis(diphenylphosphine oxide) (4am)

¹³C NMR spectrum of propane-1,3-diylbis(diphenylphosphine oxide) (4am)

³¹P NMR spectrum of propane-1,3-diylbis(diphenylphosphine oxide) (4am)

¹H NMR spectrum of butane-1,4-diylbis(diphenylphosphine oxide) (4an)

¹³C NMR spectrum of of butane-1,4-diylbis(diphenylphosphine oxide) (4an)

³¹P of NMR spectrum of of butane-1,4-diylbis(diphenylphosphine oxide) (4an)

¹H NMR spectrum of (1,3-phenylenebis(methylene))bis(diphenylphosphine oxide) (4ao)

¹³C NMR spectrum of (1,3-phenylenebis(methylene))bis(diphenylphosphine oxide) (4ao)

³¹P NMR spectrum of (1,3-phenylenebis(methylene))bis(diphenylphosphine oxide) (4ao)

 $O_{P}^{I} P_{P}^{I} P_{P}^{I}$

-29.50

¹H NMR spectrum of (pyridine-2,6-diylbis(methylene))bis(diphenylphosphine oxide) (4ap)

¹³C NMR spectrum of (pyridine-2,6-diylbis(methylene))bis(diphenylphosphine oxide) (4ap)

³¹P NMR spectrum of (pyridine-2,6-diylbis(methylene))bis(diphenylphosphine oxide) (**4ap**)

Ν `Ph Ph⁻Ph 0 Ph[^]

- 30.60
¹H NMR spectrum of isopropyldiphenylphosphine oxide (4aq)

¹³C NMR spectrum of isopropyldiphenylphosphine oxide (4aq)

³¹P NMR spectrum of isopropyldiphenylphosphine oxide (4aq)

-36.92

¹H NMR spectrum of cyclohexyldiphenylphosphine oxide (**4ar**)

¹³C NMR spectrum of cyclohexyldiphenylphosphine oxide (4ar)

³¹P NMR spectrum of cyclohexyldiphenylphosphine oxide (4ar)

-34.30

¹H NMR spectrum of (hydroxy(4-methoxyphenyl)methyl)diphenylphosphine oxide (6aa)

¹³C NMR spectrum of (hydroxy(4-methoxyphenyl)methyl)diphenylphosphine oxide (6aa)

³¹P NMR spectrum of (hydroxy(4-methoxyphenyl)methyl)diphenylphosphine oxide (6aa)

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
200	150	100	50	0	-50	-100	-150	-200	ppm

¹H NMR spectrum of (1-hydroxy-3-methylbutyl)diphenylphosphine oxide (**6ab**)

¹³C NMR spectrum of (1-hydroxy-3-methylbutyl)diphenylphosphine oxide (6ab)

³¹P NMR spectrum of (1-hydroxy-3-methylbutyl)diphenylphosphine oxide (6ab)

¹H NMR spectrum of *N*-((diphenylphosphoryl)(phenyl)methyl)-4-methylbenzenesulfonamide (**6ac**)

¹³C NMR spectrum of *N*-((diphenylphosphoryl)(phenyl)methyl)-4-methylbenzenesulfonamide (6ac)

³¹P NMR spectrum of *N*-((diphenylphosphoryl)(phenyl)methyl)-4-methylbenzenesulfonamide (6ac)

¹H NMR spectrum of ((benzylamino)(4-methoxyphenyl)methyl)diphenylphosphine oxide (6ad)

¹³C NMR spectrum of ((benzylamino)(4-methoxyphenyl)methyl)diphenylphosphine oxide (6ad)

³¹P NMR spectrum of ((benzylamino)(4-methoxyphenyl)methyl)diphenylphosphine oxide (6ad)

-31.47 ,OMe 0 Ph∽ Ph ŃНВп

¹³C NMR spectrum of ((4-methoxyphenyl)(phenylamino)methyl)diphenylphosphine oxide (6ae)

³¹P NMR spectrum of ((4-methoxyphenyl)(phenylamino)methyl)diphenylphosphine oxide (6ae)

-33.03

¹H NMR spectrum of (*R*)-*N*-((diphenylphosphoryl)(4-methoxyphenyl)methyl)-2-methylpropane-2-sulfinamide (6af)

S130

¹³C NMR spectrum of (*R*)-*N*-((diphenylphosphoryl)(4-methoxyphenyl)methyl)-2-methylpropane-2-sulfinamide (**6af**)

 31 P NMR spectrum of (*R*)-*N*-((diphenylphosphoryl)(4-methoxyphenyl)methyl)-2-methylpropane-2-sulfinamide (6af)

¹³C NMR spectrum of (*R*)-*N*-(1-(diphenylphosphoryl)-3-methylbutyl)-2-methylpropane-2-sulfinamide (**6ag**)

³¹P NMR spectrum of (*R*)-*N*-(1-(diphenylphosphoryl)-3-methylbutyl)-2-methylpropane-2-sulfinamide (**6ag**)

¹H NMR spectrum of diethyl 2-(1-(diphenylphosphoryl)ethyl)malonate (**6ah**)

S136

¹³C NMR spectrum of diethyl 2-(1-(diphenylphosphoryl)ethyl)malonate (6ah)

³¹P NMR spectrum of diethyl 2-(1-(diphenylphosphoryl)ethyl)malonate (6ah)

¹H NMR spectrum of diphenyl(4-(trifluoromethyl)phenyl)phosphine oxide (6ai)

¹³C NMR spectrum of diphenyl(4-(trifluoromethyl)phenyl)phosphine oxide (6ai)

¹⁹F NMR spectrum of diphenyl(4-(trifluoromethyl)phenyl)phosphine oxide (6ai)

³¹P NMR spectrum of diphenyl(4-(trifluoromethyl)phenyl)phosphine oxide (6ai)

¹H NMR spectrum of diphenyl(pyridin-2-yl)phosphine oxide (**6aj**)

¹³C NMR spectrum of diphenyl(pyridin-2-yl)phosphine oxide (6aj)

-21.04

¹H NMR spectrum of *tert*-butyl(phenyl)(3-phenylpropyl)phosphine oxide (4fa)

¹³C NMR spectrum of *tert*-butyl(phenyl)(3-phenylpropyl)phosphine oxide (**4fa**)

³¹P NMR spectrum of of *tert*-butyl(phenyl)(3-phenylpropyl)phosphine oxide (**4fa**)

¹H NMR spectrum of (2-(1,3-dioxolan-2-yl)ethyl)(*tert*-butyl)(phenyl)phosphine oxide (4fc)

¹³C NMR spectrum of (2-(1,3-dioxolan-2-yl)ethyl)(*tert*-butyl)(phenyl)phosphine oxide (4fc)

³¹P NMR spectrum of (2-(1,3-dioxolan-2-yl)ethyl)(*tert*-butyl)(phenyl)phosphine oxide (**4fc**)

¹H NMR spectrum of *tert*-butyl(isopropyl)(phenyl)phosphine oxide (**4fq**)

¹³C NMR spectrum of *tert*-butyl(isopropyl)(phenyl)phosphine oxide (**4fq**)

³¹P NMR spectrum of *tert*-butyl(isopropyl)(phenyl)phosphine oxide (**4fq**)

¹H NMR spectrum of *tert*-butyl(phenyl)(4-(trifluoromethyl)phenyl)phosphine oxide (6fi)

¹³C NMR spectrum of *tert*-butyl(phenyl)(4-(trifluoromethyl)phenyl)phosphine oxide (6fi)

¹⁹F NMR spectrum of *tert*-butyl(phenyl)(4-(trifluoromethyl)phenyl)phosphine oxide (6fi)

-63.17

O ⊫ Ph∽P、 t-Bu CF₃

³¹P NMR spectrum of *tert*-butyl(phenyl)(4-(trifluoromethyl)phenyl)phosphine oxide (6fi)

¹H NMR spectrum of ((3s,5s,7s)-adamantan-1-yl)(phenyl)(3-phenylpropyl)phosphine oxide (4ga)

¹³C NMR spectrum of ((3*s*,5*s*,7*s*)-adamantan-1-yl)(phenyl)(3-phenylpropyl)phosphine oxide (**4ga**)

¹³C NMR spectrum of ((3s,5s,7s)-adamantan-1-yl)(isopropyl)(phenyl)phosphine oxide (4gq)

³¹P NMR spectrum of ((3*s*,5*s*,7*s*)-adamantan-1-yl)(isopropyl)(phenyl)phosphine oxide (**4gq**)

-48.83

0

¹H NMR spectrum of ((3*s*,5*s*,7*s*)-adamantan-1-yl)(phenyl)(4-(trifluoromethyl)phenyl)phosphine oxide (**6gi**)

¹³C NMR spectrum of ((3*s*,5*s*,7*s*)-adamantan-1-yl)(phenyl)(4-(trifluoromethyl)phenyl)phosphine oxide (**6gi**)

¹⁹F NMR spectrum of ((3*s*,5*s*,7*s*)-adamantan-1-yl)(phenyl)(4-(trifluoromethyl)phenyl)phosphine oxide (**6gi**)

-63.13

³¹P NMR spectrum of ((3*s*,5*s*,7*s*)-adamantan-1-yl)(phenyl)(4-(trifluoromethyl)phenyl)phosphine oxide (**6gi**)

¹H NMR spectrum of [1,1'-biphenyl]-2-yl(phenyl)(3-phenylpropyl)phosphine oxide (**4ha**)

¹³C NMR spectrum of [1,1'-biphenyl]-2-yl(phenyl)(3-phenylpropyl)phosphine oxide (4ha)

³¹P NMR spectrum of [1,1'-biphenyl]-2-yl(phenyl)(3-phenylpropyl)phosphine oxide (**4ha**)

-33.73 0 Ph Ρh

¹H NMR spectrum of [1,1'-biphenyl]-2-yl(isopropyl)(phenyl)phosphine oxide (**4hq**)

¹³C NMR spectrum of [1,1'-biphenyl]-2-yl(isopropyl)(phenyl)phosphine oxide (**4hq**)

³¹P NMR spectrum of [1,1'-biphenyl]-2-yl(isopropyl)(phenyl)phosphine oxide (**4hq**)

- 39.36

Ö `Ph∖

¹H NMR spectrum of [1,1'-biphenyl]-2-yl(phenyl)(4-(trifluoromethyl)phenyl)phosphine oxide (6hi)

¹³C NMR spectrum of [1,1'-biphenyl]-2-yl(phenyl)(4-(trifluoromethyl)phenyl)phosphine oxide (6hi)

¹⁹F NMR spectrum of [1,1'-biphenyl]-2-yl(phenyl)(4-(trifluoromethyl)phenyl)phosphine oxide (6hi)

-63.25

O

³¹P NMR spectrum of [1,1'-biphenyl]-2-yl(phenyl)(4-(trifluoromethyl)phenyl)phosphine oxide (6hi)

-26.87

Ο Ph CF₃

¹H NMR spectrum of [1,1'-biphenyl]-2-yl(phenyl)phosphine oxide (**2h**)

¹³C NMR spectrum of 1,1'-biphenyl]-2-yl(phenyl)phosphine oxide (**2h**)

³¹P NMR spectrum of 1,1'-biphenyl]-2-yl(phenyl)phosphine oxide (**2h**)

Т

¹H NMR spectrum of *tert*-butyl(3-phenylpropyl)(*p*-tolyl)phosphine oxide (10) and *tert*-butyl(phenyl)(3-phenylpropyl)phosphine oxide (4fa)

 31 P NMR spectrum of *tert*-butyl(3-phenylpropyl)(*p*-tolyl)phosphine oxide (**10**) and *tert*-butyl(phenyl)(3-phenylpropyl)phosphine oxide (**4fa**)

¹H NMR spectrum of *tert*-butyl(4-methoxyphenyl)phosphine oxide **11** and *tert*-butyl(phenyl)phosphine oxide **12**

³¹P NMR spectrum of *tert*-butyl(4-methoxyphenyl)phosphine oxide **11** and *tert*-butyl(phenyl)phosphine oxide **12**

¹H NMR spectrum of 1,3-dimethoxybenzene-5-*d*

11. References

- 1. W. L. F. Armarego, C. L. L. Chai, in *Purification of Laboratory Chemicals (Sixth Edition)*, Butterworth-Heinemann, Oxford, 2009.
- 2. R. M. Denton, J. An, B. Adeniran, A. J. Blake, W. Lewis, A. M. Poulton, J. Org. Chem., 2011, 76, 6749.
- 3. D. Sinou, D. Maillard, A. Aghmiz, A. M. Masdeu i-Bultó, *Adv. Synth. Catal.*, 2003, **345**, 603.
- 4. C. A. Busacca, R. Raju, N. Grinberg, N. Haddad, P. James-Jones, H. Lee, J. C. Lorenz, A. Saha, C. H. Senanayake, *J. Org. Chem.*, 2008, **73**, 1524.
- 5. S. E. Vaillard, C. Mück-Lichtenfeld, S. Grimme, A. Studer, *Angew. Chem. Int. Ed.*, 2007, **46**, 6533.
- 6. R. A. Rossi, S. M. Palacios, A. N. Santiago, J. Org. Chem., 1982, 47, 4654.
- 7. M. Onoda, Y. Koyanagi, H. Saito, M. Bhanuchandra, Y. Matano, H. Yorimitsu, *Asian J. Org. Chem.*, 2017, **6**, 257.
- 8. M. Stankevič, J. Pisklak, K. Włodarczyk, *Tetrahedron*, 2016, **72**, 810.
- 9. R. Beaud, R. J. Phipps, M. J. Gaunt, J. Am. Chem. Soc., 2016, 138, 13183.
- C. A. Busacca, J. C. Lorenz, N. Grinberg, N. Haddad, M. Hrapchak, B. Latli, H. Lee, P. Sabila, A. Saha, M. Sarvestani, S. Shen, R. Varsolona, X. Wei, C. H. Senanayake, *Org. Lett.*, 2005, 7, 4277.
- 11. S.-F. Zhou, D.-P. Li, K. Liu, J.-P. Zou, O. T. Asekun, J. Org. Chem., 2015, 80, 1214.
- 12. P.-Y. Renard, P. Vayron, E. Leclerc, A. Valleix, C. Mioskowski, Angew. Chem. Int. Ed., 2003, 42, 2389.
- 13. W.-L. Duan, Y.-R. Chen, Synthesis, 2014, 46, 1067.
- 14. W. Dabkowski, A. Ozarek, S. Olejniczak, M. Cypryk, J. Chojnowski, J. Michalski, *Chem. Eur. J.*, 2009, **15**, 1747.
- 15. Y.-G. Zhang, X.-L. Liu, Z.-Y. He, X.-M. Li, H.-J. Kang, S.-K. Tian, *Chem. Eur. J.*, 2014, **20**, 2765.
- 16. K. Takaki, G. Koshoji, K. Komeyama, M. Takeda, T. Shishido, A. Kitani, K. Takehira, J. Org. Chem., 2003, 68, 6554.
- 17. J. N. Ngwendson, C. M. Schultze, J. W. Bollinger, A. Banerjee, *Can. J. Chem.*, 2008, **86**, 668.
- 18. M. J. Petersson, W. A. Loughlin, I. D. Jenkins, Chem. Commun. 2008, 4493.
- 19. D. Duncan, E. G. Hope, K. Singh, A. M. Stuart, *Dalton Transactions*, 2011, 40, 1998.
- 20. Y. Mitsuji, T. Kenji, S. Motoyuki, O. Tatsuo, I. Saburo, *Chem. Lett.*, 1983, **12**, 1673.
- 21. J. Zheng, X. Feng, Y. Yu, X. Zhen, Y. Zhao, *Phosphorus, Sulfur, and Silicon and the Related Elements*, 2013, **188**, 1080.
- 22. D. G. Stark, T. J. C. O'Riordan, A. D. Smith, Org. Lett., 2014, 16, 6496.
- 23. Dar'in, O. Bakulina, S. Nikolskaya, I. Gluzdikov, M. Krasavin, RSC Adv., 2016, 6, 49411.
- 24. D. Morton, D. Pearson, R. A. Field, R. A. Stockman, Synlett, 2003, 1985.
- 25. M.-C. Frantz, J. G. Pierce, J. M. Pierce, L. Kangying, W. Qingwei, M. Johnson, P. Wipf, *Org. Lett.*, 2011, **13**, 2318.
- 26. J. Yang, J. Xiao, T. Chen, S.-F. Yin, L.-B. Han, Chem. Commun., 2016, 52, 12233.
- 27. Y. Kuninobu, T. Yoshida, K. Takai, J. Org. Chem., 2011, 76, 7370.
- 28. Z. S. Han, H. Wu, Y. Xu, Y. Zhang, B. Qu, Z. Li, D. R. Caldwell, K. R. Fandrick, L. Zhang, F. Roschangar, J. J. Song, C. H. Senanayake, *Org. Lett.*, 2017, **19**, 1796.
- 29. D. Y. Ong, C. Tejo, K. Xu, H. Hirao, S. Chiba, Angew. Chem. Int. Ed., 2017, 56, 1840.
- 30. Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H.

Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts,
B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D.
Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T.
Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang,
M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E.
Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N.
Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J.
C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R.
Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and
D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

- 31. (a) S. Maeda, Y. Osada, K. Morokuma, K. Ohno, *GRRM 11, Version 11.03* (2012);
 (b) S. Maeda, K. Ohno, K. Morokuma, *Phys. Chem. Chem. Phys.*, 2013, 15, 3683; (c)
 K. Ohno, S. Maeda, *Chem. Phys. Lett.*, 2004, 384, 277; (d) S. Maeda, K. Ohno, *J. Phys. Chem. A*, 2005, 109, 5742; (e) K. Ohno, S. Maeda, *J. Phys. Chem. A*, 2006, 110, 8933.
- 32. (a) J.-D. Chai, M. Head-Gordon, *Phys. Chem. Chem. Phys.* 2008, **10**, 6615; (b) J.-D. Chai, M. Head-Gordon, *J. Chem. Phys.*, 2009, **131**, 174105.
- 33. M. J. Frisch, J. A. Pople, J. S. Binkley, J. Chem. Phys., 1984, 80, 3265.
- 34. (a) K. Fukui, Acc. Chem. Res., 1981, 14, 363; (b) K. Ishida, K. Morokuma, A. Komornicki, J. Chem. Phys., 1977, 66, 2153; (c) C. Gonzalez, H. B. Schlegel, J. Chem. Phys., 1989, 90, 2154; (d) H. B. Schlegel, C. J. Gonzalez, Phys. Chem., 1990, 94, 5523.
- 35. (a) J. Tomasi, B. Mennucci, R. Cammi, *Chem. Rev.*, 2005, **105**, 2999; (b) S. Miertuš, E. Scrocco, J. Tomasi, *Chem. Phys.*, 1981, **55**, 117.