Supporting Information

Gold-catalyzed *N*,*O*-functionalizations of 1,4-diyn-3-ols with *N*-hydroxyanilines to form highly functionalized pyrrole derivatives

Yu-Chen Hsu, Shu-An Hsieh, Po-Hsuan Li and Rai-Shung Liu*

Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan, ROC E-mail: <u>rsliu@mx.nthu.edu.tw</u>

Contents:

(1) Table S1 – Catalytic reaction over various Lewis acid	S2
(2) Representative synthetic procedures	S2
(3) Standard procedures for catalytic operations	S6
(4) Spectral data for compounds	S6
(5) X-ray crystallographic structure and data for compound $3a$ and $4c$	S37
(6) ¹ H, ¹³ C Spectral of key compound	S55

Ph	C N	DR + PhNHOH Me Ph 2a 1	E (0.05M) Ph 60°C ►	Ph N 3a Me	O { Ph
Entry	R	Catalyst (mol%)	Lewis acid (mol%)	Time (h)	Yield (%)
1	Bn	JohnPhosAuCl(10)/AgNTf ₂ (10)	PTSA (20)	6.5	14.8
2	Bn	JohnPhosAuCl(10)/AgNTf ₂ (10)	Zn(OTf) ₂ (20)	5	38.5
3	Bn	JohnPhosAuCl(10)/AgNTf ₂ (10)	Cu(OTf) ₂ (20)	13	0
4	Bn	JohnPhosAuCl(10)/AgNTf ₂ (10)	Sc(OTf) ₃ (20)	11	4.2
5 ^a	Н	JohnPhosAuCl(20)/AgNTf ₂ (50)	-	2	78

(1) Table S1-Catalytic reaction over various Lewis acid:

1 (1.0 equiv). 2a (3.0 equiv). ^aRoom temperature.

(2) Representative synthetic procedures:

(A) General procedure:

Unless otherwise noted, all the reaction for the preparation of the substrates were performed in oven-dried glassware under nitrogen atmosphere with freshly distilled solvents, Tetrahydrofuran (THF) and hexane were dried with sodium, benzophenone and distilled before use. Dichloromethane (DCM), ether and 1,2-dichloroethane (DCE) were dried over CaH₂ and distilled before use. All other commercial reagents were used without further purification, unless otherwise indicated. Reactions were magnetically stirred and monitored by thin layer chromatography carried out on 0.25 mm E. Merck silica gel plate (60_f - 254) using UV light as visualizing agents. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker 400 MHz, 600MHz, Varian 400 MHz, 500MHz and 700 MHz. Spectrometers using chloroform-*d* (CDCl₃) and acetone-*d* as the internal standards. The preparations of *N*-phenyl hydroxyl-amines were prepared according to literature procedure.^[S1-3]

[S1] F. G. Bordwell, W.Z. Liu, J. Am. Chem. Soc. 1996, 118, 8777-8781.

[S2] S. Ung, A. Falguieres, A. Guy, C. Ferroud, *Tetrahedron Letters.*, 2005, 46, 5913–5917

[S3] Y. Wang, L. Liu, L. Zhang, Chem. Sci. 2013, 4, 739-746.

(B) Preparation of starting materials:

1. Preparation of 3-methyl-1,5-diphenylpenta-1,4-diyn-3-ol (1a)

Phenylacetylene (2.37 mL, 21.6 mmol) was dissolved into dry THF (10 mL), and the solution was cooled to -78° C. To this solution, *n*-Butyllithium (9.4 mL, 23.5 mmol, 2.5M in hexane) was added. After being stirred for 20 minutes at -78° C, acetic anhydride (0.93 mL, 9.8 mmol) was added. The reaction mixture was stirred at room temperature for 1h, and then the reaction was quenched by saturated NH₄Cl_(aq), and extracted three times with ether. The combined organic layer was dried over MgSO₄, and the solvent was removed under a reduced pressure. The residue was purified by collum chromatography (SiO₂, eluent: EtOAc/hexane) to afford the desired 3-methyl-1,5-diphenylpenta-1,4-diyn-3-ol **1a** (2.1 g, 8.53mmol, 87%). The other symmetric 3-alkyl-1,4-diyne-3-ols **1b-1l** were synthesized by similar procedure using the corresponding alkynes and acetic anhydride or ester.

2.Preparation of (3-methoxy-3-methylpenta-1,4-diyne-1,5-diyl)dibenzene (1aa)

Compound **1a** (0.30 g, 1.2 mmol) was added to a stirred solution of NaH (0.073 g, 3.0 mmol) in THF (5 mL) at 0 °C, and the resulting mixture was stirred at 0 °C for 5 min. MeI (0.86 g, 6.1 mmol) was added, and the resulting mixture was stirred at rt for 3 h. The reaction was quenched with water and extracted with Et₂O. The organic layer was washed with water and brine, dried over MgSO₄, and concentrated. The residue was purified by silica gel chromatography (hexane:EtOAc = 20:1), which furnished (3-methoxy-3-methylpenta-1,4-diyne-1,5-diyl)dibenzene **1aa** (0.21 g, 0.81 mmol, 66%) as a white solid.^[S4] The other substrate **1ab** and **1ac** were synthesized by same procedure.

[S4] K. Tanaka, T. Osaka, K. Noguchi, M. Hirano, *Org. Lett.*, 2007, *9*, 1307-1310.
3. Preparation of 1-(4-chlorophenyl)-3-methyl-5-(*p*-tolyl)penta-1,4- diyn-3-ol (1k)

Compound **s2** was prepared from 1-iodo-4-methylbenzene according to a literature procedure.^[S5]

s2 (2 g, 17.2 mmol) was dissolved into dry THF (20 mL), and the solution was cooled to -78° C. To this solution, *n*-Butyllithium (8.2 mL, 20.6 mmol, 2.5M in hexane) was added. After being stirred for 20 minutes at -78° C, acetic anhydride (2.4 mL, 25.8 mmol) and BF₃OEt₂ (3.2 mL, 25.5 mmol) were added successively. The reaction was quenched by saturated NH₄Cl_(aq), and extracted three times with ether. The combined organic layer was dried over MgSO₄, and the solvent was removed under a reduced pressure. The residue was purified by collum chromatography (SiO₂, eluent: dichloromethane/hexane) to afford the desired s3 (2 g, 12.6mmol, 74%).

1-chloro-4-ethynylbenzene (0.5 g, 3.67 mmol) was dissolved into THF (5 mL), and the solution was cooled to -78°C. To this solution, n-Butyllithium (5.1 mL, 12.8 mmol, 2.5M in hexane) was added. After being stirred for 20 minutes at -78°C, s3 (0.48 g, 3.06 mmol) was added. The reaction mixture was stirred at room temperature for 1h, and then the reaction was quenched by saturated NH₄Cl_(aq), and extracted three times with ether. The combined organic layer was dried over MgSO₄, and the solvent was removed under a reduced pressure. The residue was purified by collum chromatography $(SiO_2,$ eluent: EtOAc/hexane) afford to the desired 1-(4-chlorophenyl)-3-methyl-5-(p-tolyl)penta-1,4-diyn-3-ol 1m (0.51 g, 1.73mmol, 57%).

The other asymmetric 3-alkyl-1,4-diyne-3-ols **1n-1v**, **1x and 1y** were synthesized by similar procedure using the corresponding alkynes and acetic anhydride.

[S5] D. Nishikawa, K. Hirano, M. Miura, J. Am. Chem. Soc. 2015, 137, 15620–15623
4. Preparation of 3-methyl-1-(p-tolyl)penta-1,4-diyn-3-ol (1w)

Compound **s2** was prepared from 1-iodo-4-methoxybenzene according to a literature procedure.^[S5]

s2 (2 g, 17.2 mmol) was dissolved into dry THF (20 mL), and the solution was cooled to -78° C. To this solution, *n*-Butyllithium (8.2 mL, 20.6 mmol, 2.5M in hexane) was added. After being stirred for 20 minutes at -78° C, acetic anhydride (2.4 mL, 25.8 mmol) and BF₃OEt₂ (3.2 mL, 25.5 mmol) were added successively. The reaction was quenched by saturated NH₄Cl_(aq), and extracted three times with ether. The combined organic layer was dried over MgSO₄, and the solvent was removed under a reduced pressure. The residue was purified by collum chromatography (SiO₂, eluent: dichloromethane/hexane) to afford the desired s**3** (2 g, 12.6mmol, 74%).

Trimethylsilylacetylene (0.93mL, 6.51 mmol) was dissolved into THF (5 mL), and the solution was cooled to -78°C. To this solution, n-Butyllithium (2.87 mL, 7.16 mmol, 2.5M in hexane) was added. After being stirred for 20 minutes at -78°C, s3 (567mg, 3.26mmol) was added. The reaction mixture was stirred at room temperature for 1h, and then the reaction was quenched by saturated NH₄Cl_(aq), and extracted three times with ether. The combined organic layer was dried over MgSO₄, and the solvent was removed under a reduced pressure. The residue was purified by collum eluent: EtOAc/hexane) chromatography $(SiO_2,$ to afford the desired 3-methyl-1,4-diyne-3-ols s4 (596 mg, 2.19 mmol, 67%).

This silyl compound was then dissolved in THF (5 mL), added with Bu_4NF (1.0 M THF, 2.6 mL, 2.63 mmol); the mixture was stirred at 0°C for 10 minutes before the treatment of water (5 mL). The solution was concentrated, extracted with diethyl ether,

and the residue was purified by collum chromatography (SiO₂, eluent: EtOAc/hexane) to afford the desired 1-(4-methoxyphenyl)-3-methylpenta-1,4-diyn-3-ol 1w (393 mg, 1.96 mmol, 90%).

(3) Standard procedures for catalytic operations:

A suspension of chloro[(1,1'-biphenyl-2-yl)di-*tert*- butylphosphine] gold(I) (21.6 mg, 0.04 mmol) and silver bis(trifluoromethane-sulfonyl) imide (39.42 mg, 0.10 mmol) in dry DCE (1.5 mL) was fitted with N₂ balloon and to this solution was added DCE (1.5 mL) solution of 3-methyl-1,5-diphenylpenta-1,4-diyn-3-ol **1a** (50 mg, 0.20 mmol) and *N*-phenylhydroxylamine **2a** (33.3 mg, 0.30 mmol) at room temperature. The resulting mixture was stirred for 30 minutes at room temperature. In the TLC, we found *N*-phenylhydroxylamine (33.3 mg, 0.30 mmol) in the solution. The resulting mixture was stirred for another 1.5 h at room temperature. After completion of the reaction it was filtered over a short celite bed. The solvent was evaporated under reduced pressure, and The residue was purified by collum chromatography (SiO₂, eluent: EtOAc/hexane) to afford the desired (3-methyl-1,5-diphenyl-1*H*-pyrrol-2-yl) (phenyl)methanone **3a** (53 mg, 0.16 mmol, 78%) as yellow solid.

(4) Spectral data for compounds:

Spectral data for 3-methyl-1,5-diphenylpenta-1,4-diyn-3-ol (1a)

Yellow solid; mp: 108.5~110.5°C ; (20% ethylacetate/hexane, $R_f = 0.23$, 2.1 g, 8.53 mmol, 87%); ¹H NMR (400 MHz, CDCl₃): δ 7.49~7.46 (m, 4H), 7.34~7.28 (m, 6H), 2.91 (s, 1H), 1.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 131.8, 128.6, 128.2, 122.1, 90.0, 82.6, 60.8, 32.0; FI-MS (M) calcd. for C₁₈H₁₄O:246.1045; Found: 246.1039.

Spectral data for 1-phenyl-3-(phenylethynyl)hex-1-yn-3-ol (1b)

White solid; mp: 74.2~76.3°C ; (20% ethylacetate/hexane, $R_f = 0.33$, 2.4 g, 8.75 mmol, 83%); ¹H NMR (400 MHz, CDCl₃): δ 7.48~7.45 (m, 4H), 7.33~7.30 (m, 6H), 2.63 (s, 1H), 2.08~2.04 (m, 2H), 1.79~1.71 (m, 2H), 1.03 (t, J = 1.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 131.8, 128.6, 128.2, 122.2, 89.4, 83.5, 64.5, 46.1, 18.2, 13.9; ESI-MS (M+Na) calcd. for C₂₀H₁₈ONa:297.1255; Found: 297.1252.

Spectral data for 3-isopropyl-1,5-diphenylpenta-1,4-diyn-3-ol (1c)

Yellow oil;(20% ethylacetate/hexane, $R_f = 0.32$, 3.23 g, 12 mmol, 85%); ¹H NMR (400 MHz, CDCl₃): δ 7.49~7.46 (m, 4H), 7.34~7.29 (m, 6H), 2.66 (s, 1H), 2.26~2.20 (m, 1H), 1.24 (s, 3H), 1.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 131.8, 128.6, 128.2, 122.3, 88.5, 84.1, 68.8, 40.1, 17.6; ESI-MS (M+Na) calcd. for C₂₀H₁₈ONa: 297.1255; Found: 297.1243.

Spectral data for (*E*)-1,5-diphenyl-3-(phenylethynyl)pent-1-en-4-yn-3-ol (1d)

Yellow solid, mp: 136.1~137.5°C; (20% ethylacetate/hexane, $R_f = 0.29$, 5.4 g, 16.1 mmol, 95%); ¹H NMR (400 MHz, CDCl₃): δ 7.55~7.53 (m, 4H), 7.49 (d, J = 7.4Hz, 2H), 7.37~7.27 (m, 9H), 7.17 (d, J = 15.6Hz, 1H), 6.54 (d, J = 15.6Hz, 1H), 3.03 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 135.7, 131.9, 130.9, 129.4, 128.9, 128.6, 128.3, 127.1, 121.9, 87.7, 85.1, 64.1; ESI-MS (M+Na) calcd. for C₂₅H₁₈ONa: 357.1255; Found: 357.1250.

Spectral data for 1,5-bis(4-chlorophenyl)-3-methylpenta-1,4-diyn-3-ol (1e)

White solid; mp: 171.6~172.4°C;(20% ethylacetate/hexane, $R_f = 0.24$, 2.5 g, 7.93 mmol, 80%); ¹H NMR (400 MHz, CDCl₃): δ 7.40~7.36 (m, 4H), 7.29~7.26 (m, 4H), 2.75 (s, 1H), 1.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 134.9, 133.0, 128.7, 120.5, 90.7, 81.7, 60.8, 31.9; FI-MS (M) calcd. for $C_{18}H_{12}Cl_2O$: 314.0265; Found: 314.0260.

Spectral data for 3-methyl-1,5-bis(4-(trifluoromethyl)phenyl)penta-1,4-diyn-3-ol (1f)

White solid; mp: 153.4~156.4°C;(20% ethylacetate/hexane, $R_f = 0.23$, 3.7 g, 9.68 mmol, 74%); ¹H NMR (400 MHz, CDCl₃): δ 7.57 (s, 8H), 2.79 (s, 1H), 1.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 132.1, 125.3, 125.3, 125.2, 125.2, 91.9, 81.6, 60.8, 31.7; FI-MS (M) calcd. for $C_{20}H_{12}F_6O$: 382.0792; Found: 382.0787.

Spectral data for 3-methyl-1,5-di-p-tolylpenta-1,4-diyn-3-ol (1g)

Yellow oil;(20% ethylacetate/hexane, $R_f = 0.26$, 2.7 g, 9.84 mmol, 78%); ¹H NMR (400 MHz, CDCl₃): δ 7.36 (d, J = 7.6Hz, 4H), 7.10 (d, J = 7.6Hz, 4H), 2.71 (s, 1H), 2.33 (s, 6H), 1.94 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.8, 131.7, 129.0, 119.1, 89.5, 82.7, 60.9, 32.1, 21.5; ESI-MS (M+Na) calcd. for C₂₀H₁₈ONa: 297.1255; Found: 297.1252.

Spectral data for 1,5-bis(4-methoxyphenyl)-3-methylpenta-1,4-diyn-3-ol (1h)

Orange solid; mp: $151.6 \sim 152.7$ °C; (20% ethylacetate/hexane, $R_f = 0.21$, 974 mg, 3.18 mmol, 64%); ¹H NMR (400 MHz, CDCl₃): δ 7.41~7.38 (m, 4H), 6.84~6.81 (m, 4H), 3.80 (s, 6H), 2.62 (s, 1H), 1.92 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.8, 133.3, 114.2, 113.9, 89.0, 82.4, 60.9, 55.2, 32.1; ESI-MS (M+Na) calcd. for $C_{20}H_{18}O_3$: 329.1154; Found: 329.1147.

Spectral data for 3-methyl-1,5-di(thiophen-2-yl)penta-1,4-diyn-3-ol (1i)

Red oil; (20% ethylacetate/hexane, $R_f = 0.27$, 674 mg, 2.61 mmol, 53%); ¹H NMR (400 MHz, CDCl₃): δ 7.28~7.24 (m, 4H), 6.98~6.96 (m, 2H), 2.72 (s, 1H), 1.92 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 132.8, 127.8, 127.0, 121.9, 93.3, 76.4, 61.1, 31.6; FI-MS (M) calcd. for C₁₄H₁₀OS₂: 258.0173; Found: 258.0168.

Spectral data for 3-methyl-1,5-di(thiophen-3-yl)penta-1,4-diyn-3-ol (1j)

Red sticky solid; (20% ethylacetate/hexane, $R_f = 0.18$, 620 mg, 2.40 mmol, 49%); ¹H NMR (400 MHz, CDCl₃): δ 7.49~7.48 (m, 2H), 7.26~7.25 (m, 2H), 7.13~7.12 (m, 2H), 2.67 (s, 1H), 1.92 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 129.9, 129.5, 125.4, 121.1, 89.6, 78.0, 60.9, 31.9; FI-MS (M) calcd. for C₁₄H₁₀OS₂: 258.0173; Found: 258.0168.

Spectral data for 1,5-dicyclopropyl-3-methylpenta-1,4-diyn-3-ol (1k)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.29$, 1.2 g, 6.89 mmol, 71%); ¹H NMR (400 MHz, CDCl₃): δ 2.31 (s, 1H), 1.65 (s, 3H), 1.26~1.20 (m, 2H), 0.77~0.71 (m, 4H), 0.70~0.69 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 85.9, 77.3, 60.1, 32.5, 8.2, -0.7; ESI-MS (M+H) calcd. for C₁₂H₁₅O: 175.1123; Found: 175.1117.

Spectral data for 2,5,8-trimethylnona-1,8-dien-3,6-diyn-5-ol (11)

Red oil; (20% ethylacetate/hexane, $R_f = 0.33$, 671 mg, 3.85 mmol, 40%); ¹H NMR (400 MHz, CDCl₃): $\delta 5.32$ (s, 2H), 5.25 (s, 2H), 1.88 (s, 6H), 1.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta 125.9$, 122.9, 89.0, 83.6, 60.6, 31.9, 23.2; FI-MS (M) calcd. for $C_{12}H_{14}O$: 174.1045; Found: 174.1039.

Spectral data for 1-(4-chlorophenyl)-3-methyl-5-(p-tolyl)penta-1,4-diyn-3-ol (1m)

White solid; mp: 172.9~173.8°C;(20% ethylacetate/hexane, $R_f = 0.33$, 0.99 g, 3.36 mmol, 53%); ¹H NMR (600 MHz, CDCl₃): δ 7.38 (d, J = 8.4Hz, 2H), 7.35 (d, J = 8.4Hz, 2H), 7.27 (d, J = 8.4Hz, 2H), 7.10 (d, J = 7.8Hz, 2H), 2.80 (s, 1H), 2.33 (s, 3H), 1.93 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 138.9, 134.7, 133.0, 131.7, 129.0, 128.6, 120.7, 118.9, 91.1, 89.2, 83.0, 81.4, 60.8, 32.0, 21.5; FI-MS (M) calcd. for C₁₉H₁₅ClO: 294.0811; Found: 294.0806.

Spectral data for 1-(4-methoxyphenyl)-3-methyl-5-phenylpenta-1,4-diyn-3-ol (1n)

Yellow solid, mp: 106.0~108.0°C; (20% ethylacetate/hexane, $R_f = 0.24$, 2.11 g, 7.64 mmol, 78%); ¹H NMR (400 MHz, CDCl₃): δ 7.48~7.44 (m, 2H), 7.41~7.38 (m, 2H), 7.32~7.28 (m, 3H), 6.84~6.80 (m, 2H), 3.79 (s, 3H), 1.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.8, 133.3, 131.8, 128.6, 128.2, 122.2, 114.2, 113.9, 90.3, 88.8, 82.6, 82.4, 60.8, 55.2, 32.1; ESI-MS (M+Na) calcd. for C₁₉H₁₆O₂Na: 299.1048; Found: 299.1042.

Spectral data for 1-(4-chlorophenyl)-5-4-methoxyphenyl)-3-methylpenta-1,4iyn-3-ol (10)

White solid, mp: 164.6~165.4°C; (20% ethylacetate/hexane, $R_f = 0.20$, 1.30 g, 4.18 mmol, 73%); ¹H NMR (400 MHz, CDCl₃): δ 7.40~7.37 (m, 4H), 7.29~7.26 (m, 2H), 6.84~6.81 (m, 2H), 3.80 (s, 3H), 2.70 (s, 1H), 1.92 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.0, 134.7, 133.3, 133.1, 128.6, 120.7, 113.9, 91.2, 88.5, 82.9, 81.4, 60.9, 55.3, 32.0; ESI-MS (M+Na) calcd. for C₁₉H₁₅ClO₂Na: 333.0658; Found: 333.0651.

Spectral data for 1-(4-methoxyphenyl)-3-methyl-5-(p-tolyl)penta-1,4-diyn-3-ol (1p)

White solid, mp: 130.3~130.9°C; (20% ethylacetate/hexane, $R_f = 0.29$, 1.48 g, 5.10 mmol, 89%); ¹H NMR (400 MHz, CDCl₃): δ 7.41~7.38 (m, 2H), 7.35 (d, J = 6.8Hz,

2H), 7.10 (d, J = 8Hz, 2H), 6.84~6.81 (m, 2H), 3.80 (s, 3H), 2.71 (s, 1H), 2.33 (s, 3H), 1.93 (s, 3H), ; ¹³C NMR (100 MHz, CDCl₃): δ 159.8, 138.8, 133.3, 131.7, 129.0, 119.1, 114.2, 113.9, 89.6, 88.9, 82.7, 82.6, 60.9, 55.3, 32.1, 21.5; FI-MS (M) calcd. for C₂₀H₁₈O₂: 290.1307; Found: 290.1301.

Spectral data for 3-methyl-1-phenyl-5-(thiophen-3-yl)penta-1,4-diyn-3-ol (1q)

Orange oil; (20% ethylacetate/hexane, $R_f = 0.40$, 0.58 g, 2.30 mmol, 62%); ¹H NMR (400 MHz, CDCl₃): δ 7.49~7.45 (m, 3H), 7.32~7.30 (m, 3H), 7.26~7.25 (m, 1H), 7.13 (t, J = 1.2Hz, 1H), 2.79 (s, 1H), 1.94 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 131.8, 129.9, 129.5, 128.7, 128.3, 125.3, 122.1, 121.1, 90.0, 89.6, 77.9, 60.8, 31.9; ESI-MS (M+Na) calcd. for C₁₆H₁₂OSNa: 275.0507; Found: 275.0501.

Spectral data for 3-methyl-1-phenylnona-1,4-diyn-3-ol (1r)

Orange oil; (20% ethylacetate/hexane, $R_f = 0.36$, 1.11 g, 4.90 mmol, 71%); ¹H NMR (400 MHz, CDCl₃): δ 7.44~7.42 (m, 2H), 7.30~7.28 (m, 3H), 2.56 (s, 1H), 2.25~2.21 (m, 2H), 1.82 (s, 3H), 1.54~1.47 (m, 2H), 1.45~1.38 (m, 2H), 0.93~0.89 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 131.8, 128.5, 128.2, 122.2, 90.7, 83.8, 81.9, 81.5, 60.5, 32.2, 30.4, 21.9, 18.3, 13.6; ESI-MS (M+H) calcd. for C₁₆H₁₉O: 227.1436; Found: 227.1430.

Spectral data for 1-(4-methoxyphenyl)-3-methylnona-1,4-diyn-3-ol (1s)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.20, 0.90$ g, 3.51 mmol, 61%); ¹H NMR (400 MHz, CDCl₃): δ 7.37~7.31 (m, 2H), 6.81~6.79 (m, 2H), 3.77 (s, 3H), 2.68 (s, 1H), 2.23~2.19 (m, 2H), 1.80 (s, 3H), 1.49~1.48 (m, 2H), 1.46~1.35 (m, 2H), 0.91~0.87 (m, 3H); 13C NMR (100 MHz, CDCl3): δ 159.7, 133.2, 133.0, 114.3, 113.8, 89.4, 83.5, 81.8, 60.5, 55.2, 32.3, 30.4, 21.9, 18.3, 13.6; ESI-MS (M+Na) calcd. for C₁₇H₂₀O₂Na: 279.1361; Found: 279.1356.

Spectral data for 3-methyl-1-(p-tolyl)nona-1,4-diyn-3-ol (1t)

Red oil; (20% ethylacetate/hexane, $R_f = 0.32$, 517 mg, 2.15 mmol, 68%); ¹H NMR (400 MHz, CDCl₃): δ 7.35~7.31 (m, 2H), 7.12~7.08 (m, 2H), 2.54 (s, 1H), 2.32 (s, 3H), 2.22 (t, *J* = 7.2Hz, 2H), 1.81 (s, 3H), 1.54~1.47 (m, 2H), 1.45~1.36 (m, 2H), 0.90 (t, *J* = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.6, 131.7, 129.0, 119.2, 90.0, 83.6, 82.1, 81.7, 60.5, 32.3, 30.4, 21.9, 21.5, 18.4, 13.6; FI-MS (M) calcd. for C₁₇H₂₀O: 240.1514; Found: 240.1509.

Spectral data for 1-(4-chlorophenyl)-3-methylnona-1,4-diyn-3-ol (1u)

Orange oil; (20% ethylacetate/hexane, $R_f = 0.34$, 1.12 g, 4.30 mmol, 77%); ¹H NMR (400 MHz, CDCl₃): δ 7.45~7.34 (m, 2H), 7.33~7.24 (m, 2H), 2.52 (s, 1H), 2.22 (t, J = 7.2Hz, 2H), 1.81 (s, 3H), 1.55~1.46 (m, 2H), 1.44~1.35 (m, 2H), 0.90 (t, J = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 133.2, 133.0, 131.5, 128.6, 91.6, 84.0, 81.4, 80.8, 60.5, 32.2, 30.4, 21.9, 18.3, 13.6; ESI-MS (M+Na) calcd. for C₁₆H₁₇ClONa: 283.0866; Found: 283.0856.

Spectral data for 3-methyl-1-(4-(trifluoromethyl)phenyl)nona-1,4-diyn-3-ol (1v)

Yellow solid, mp: 154.2~155.7°C; (20% ethylacetate/hexane, $R_f = 0.31$, 0.96 g, 3.26 mmol, 69%); ¹H NMR (400 MHz, CDCl₃): δ 7.57~7.52 (m, 4H), 2.56 (s, 1H), 2.23 (t, J = 7.2Hz, 2H), 1.82 (s, 3H), 1.54~1.47 (m, 2H), 1.45~1.36 (m, 2H), 0.90 (t, J = 7.1Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 132.0, 126.1, 125.2, 93.0, 84.3, 81.2, 80.5, 60.5, 32.1, 30.4, 21.9, 18.3, 13.6; ESI-MS (M+H) calcd. for C₁₇H₁₈F₃O: 295.1310; Found: 295.1304.

Spectral data for 3-methyl-1-(p-tolyl)penta-1,4-diyn-3-ol (1w)

Orange oil; (20% ethylacetate/hexane, $R_f = 0.20$, 393 mg, 1.96 mmol, 90%); ¹H NMR (500 MHz, CDCl₃): δ 7.37 (d, J = 7.2Hz, 2H), 6.82 (d, J = 6.8Hz, 2H), 3.79 (s, 3H), 2.58 (s, 1H), 1.85 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 159.9, 133.3, 113.9, 88.2, 85.1, 82.8, 70.7, 60.2, 55.3, 31.8; ESI-MS (M+H) calcd. for C₁₃H₁₃O₂: 201.0916; Found: 201.0910.

Spectral data for 3-methyl-1-phenyl-5-(thiophen-2-yl)penta-1,4-diyn-3-ol (1x)

Orange oil; (20% ethylacetate/hexane, $R_f = 0.37$, 878 mg, 3.48 mmol, 50%); ¹H NMR (700 MHz, CDCl₃): δ 7.46 (d, J = 7.1Hz, 2H), 7.32~7.29 (m, 3H), 7.27 (d, J = 5.1Hz, 1H), 7.24 (d, J = 3.7Hz, 1H), 6.96 (t, J = 4Hz, 1H), 2.68 (s, 1H), 1.93 (s, 3H); ¹³C NMR (175 MHz, CDCl₃): δ 132.7, 131.8, 128.7, 128.3, 127.7, 127.0, 122.0, 122.0, 93.6, 89.7, 82.9, 76.2, 61.0, 31.8; ESI-MS (M+Na) calcd. for C₁₆H₁₂OSNa: 275.0507;

Found: 275.0501.

Spectral data for 3,6-dimethyl-1-phenylhepta-6-en-1,4-diyn-3-ol (1y)

Orange oil; (20% ethylacetate/hexane, $R_f = 0.37$, 933 mg, 4.44 mmol, 64%); ¹H NMR (400 MHz, CDCl₃): δ 7.46~7.43 (m, 2H), 7.32~7.28 (m, 3H), 5.35 (q, *J* = 1Hz, 1H), 5.27 (d, *J* = 1.5Hz, 1H), 2.61 (s, 1H), 1.90 (t, *J* = 1.4Hz, 3H), 1.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 131.8, 128.6, 128.2, 125.9, 123.0, 122.1, 90.1, 89.0, 83.8, 82.5, 60.7, 31.9, 23.2; ESI-MS (M+Na) calcd. for C₁₇H₂₀O₂Na: 279.1361; Found: 279.1356.

Spectral data for (3-methoxy-3-methylpenta-1,4-diyne-1,5-diyl)dibenzene (1aa)

White solid, mp: 88.8~90.8°C; (10% ethylacetate/hexane, $R_f = 0.53$, 210 mg, 0.81 mmol, 66%); ¹H NMR (600 MHz, CDCl₃): δ 7.48~7.47 (m, 4H), 7.32~7.30 (m, 6H), 3.60 (s, 3H), 1.91 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 131.9, 128.6, 128.3, 122.2, 87.7, 84.1, 67.4, 53.4, 30.8; ESI-MS (M+H) calcd. for C₁₉H₁₇O: 260.1279; Found: 261.1283.

Spectral data for (3-butoxy-3-methylpenta-1,4-diyne-1,5-diyl)dibenzene (1ab)

White sticky solid; (10% ethylacetate/hexane, $R_f = 0.60$, 356 mg, 1.18 mmol, 58%); ¹H NMR (600 MHz, CDCl₃): δ 7.48~7.46 (m, 4H), 7.32~7.29 (m, 6H), 3.85 (t, J =

6.6Hz, 2H), 1.91 (s, 3H), 1.67~1.62 (m, 2H), 1.48~1.42 (m, 2H), 0.94 (t, J = 7.44Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 131.8, 128.5, 128.2, 122.4, 88.6, 83.6, 66.5, 65.8, 31.9, 31.1, 19.4, 13.9; ESI-MS (M+Na) calcd. for C₂₂H₂₂ONa: 325.1568; Found: 325.1563.

Spectral data for (3-(benzyloxy)-3-methylpenta-1,4-diyne-1,5-diyl)dibenzene (1ac)

White solid, mp: 105.9~107.4°C; (10% ethylacetate/hexane, $R_f = 0.53$, 417 mg, 1.24 mmol, 61%); ¹H NMR (600 MHz, CDCl₃): δ 7.51~7.49 (m, 4H), 7.46~7.45 (m, 2H), 7.37~7.27 (m, 9H), 4.94 (s, 2H), 2.00 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 138.3, 131.9, 128.6, 128.3, 128.1, 127.6, 122.2, 88.2, 84.2, 68.4, 66.9, 31.1; EI-MS (M) calcd. for C₂₅H₂₀O: 336.1514; Found: 336.1510.

Spectral data for (3-methyl-1,5-diphenyl-1*H*-pyrrol-2-yl)(phenyl)methanone (3a)

Yellow solid, mp: 142.6~143.1°C; (20% ethylacetate/hexane, $R_f = 0.41$, 53 mg, 0.157 mmol, 78%); ¹H NMR (600 MHz, CDCl₃): δ 7.73 (d, J = 7.8Hz, 2H), 7.46 (t, J = 7.8Hz, 1H), 7.37 (t, J = 7.8Hz, 2H), 7.20~7.17 (m, 6H), 7.11~7.07 (m, 4H), 6.29 (s, 1H), 1.98 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 187.8, 140.2, 139.8, 139.2, 131.9, 131.9, 131.7, 129.3, 128.8, 128.8, 128.5, 128.2, 128.1, 128.0, 127.3, 113.0, 13.7; ESI-MS (M+H) calcd. for C₂₄H₂₀NO: 338.1545; Found: 338.1539.

Spectral data for (1,5-diphenyl-3-propyl-1*H*-pyrrol-2-yl)(phenyl)methanone (3b)

Red oil; (20% ethylacetate/hexane, $R_f = 0.43$, 36.6 mg, 0.100 mmol, 55%); ¹H NMR (600 MHz, CDCl₃): δ 6.69 (d, J = 7.8Hz, 2H), 7.45~7.42 (m, 1H), 7.33 (t, J = 7.8Hz, 2H), 7.18~7.15 (m, 6H), 7.08~7.07 (m, 4H), 6.33 (s, 1H), 2.30 (t, J = 7.8Hz, 2H), 1.57~1.51 (m, 2H), 0.79 (t, J = 7.8Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 188.4, 140.3, 139.4, 139.1, 133.7, 132.1, 132.0, 131.5, 129.3, 128.8, 128.5, 128.1, 128.1, 128.0, 127.2, 111.5, 29.3, 24.2, 14.0; ESI-MS (M+Na) calcd. for C₂₆H₂₃NONa: 388.1677; Found: 388.1672.

Spectral data for (3-isopropyl-1,5-diphenyl-1*H*-pyrrol-2-yl)(phenyl)methanone (3c)

Red oil; (20% ethylacetate/hexane, $R_f = 0.44$, 32.0 mg, 0.087 mmol, 48%); ¹H NMR (400 MHz, CDCl₃): δ 7.71 (dd, J = 8.0Hz & 1.0Hz, 2H), 7.44 (td, J = 6.7Hz & 1.2Hz, 1H), 7.33 (t, J = 7.8Hz, 2H), 7.19~7.13 (m, 6H), 7.10~7.06 (m, 4H), 6.39 (s, 1H), 2.81~2.71 (m, 1H), 1.17 (s, 3H), 1.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 188.7, 140.3, 140.0, 139.2, 139.0, 132.2, 132.1, 130.5, 129.3, 128.7, 128.5, 128.1, 128.0, 128.0, 127.2, 127.1, 108.6, 25.6, 24.4; ESI-MS (M+H) calcd. for C₂₆H₂₃NONa: 366.1858; Found: 366.1872.

Spectral data for (E)-(1,5-diphenyl-3-styryl-1H-pyrrol-2-yl)(phenyl)methanone (3d)

Orange oil; (20% ethylacetate/hexane, $R_f = 0.41$, 46.4 mg, 0.109 mmol, 73%); ¹H NMR (400 MHz, CDCl₃): δ 7.78 (dd, J = 7.6Hz & 0.6Hz, 2H), 7.50 (t, J = 7.4Hz, 1H), 7.39 (t, J = 7.7Hz, 2H), 7.25~7.19 (m, 8H), 7.18~7.11 (m, 7H), 6.95 (d, J = 16.2Hz, 1H), 6.78 (s, 1H), 6.76 (d, J = 16.5Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 187.5, 140.5, 140.0, 138.7, 137.4, 132.3, 131.7, 131.6, 129.9, 129.8, 128.9, 128.6, 128.5, 128.2, 128.0, 127.6, 127.5, 127.2, 126.1, 121.1, 118.5, 115.0, 107.5; ESI-MS (M+H) calcd. for C₂₆H₂₃NONa: 426.1858; Found: 426.1859.

Spectral data for (4-chlorophenyl)(5-(4-chlorophenyl)-3-methyl-1-phenyl-1*H* -pyrrol-2-yl)methanone (3e)

Orange sticky solid; (20% ethylacetate/hexane, $R_f = 0.47$, 26.4 mg, 0.065 mmol, 41%); ¹H NMR (600 MHz, CDCl₃): δ7.65 (dd, J = 6.6Hz & 1.8Hz, 2H), 7.35~7.33 (m, 2H), 7.23~7.21 (m, 3H), 7.14 (d, J = 6.6Hz, 2H), 7.07~7.06 (m, 2H), 6.98 (d, J = 6.6Hz, 2H), 6.27 (s, 1H), 1.99 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ186.4, 138.8, 138.7, 138.4, 133.5, 131.6, 130.7, 130.2, 129.9, 128.8, 128.8, 128.6, 128.3, 128.1, 127.7, 113.3, 13.7; ESI-MS (M+H) calcd. for C₂₄H₁₈C₁₂NO: 406.0765; Found: 406.0760.

Spectral data for (3-methyl-1-phenyl-5-(4-(trifluoromethyl)phenyl)-1*H*-pyrrol-2-yl)(4-(trifluoromethyl)phenyl)methanone (3f)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.40$, 13.6 mg, 0.029 mmol, 22%); ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, J = 8Hz, 2H), 7.61 (d, J = 8.4Hz, 2H), 7.43 (d, J = 8.4Hz, 2H), 7.23~7.22 (m, 3H), 7.17 (d, J = 8Hz, 2H), 7.09~7.07 (m, 2H), 6.37 (s, 1H), 2.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 186.5, 143.0, 138.6, 138.5, 135.2, 131.9, 129.6, 129.4, 128.9, 128.8, 128.1, 128.0, 125.3, 125.3, 125.1, 125.1, 114.1, 13.8; ESI-MS (M+H) calcd. for C₂₆H₁₈F₆NO: 474.1293; Found: 474.1287.

Spectral data for (3-methyl-1-phenyl-5-(*p*-tolyl)-1*H*-pyrrol-2-yl)(*p*-tolyl) methanone (3g)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.38$, 38.6 mg, 0.106 mmol, 58%); ¹H NMR (500 MHz, CDCl₃): δ 7.65 (d, J = 8Hz, 2H), 7.20~7.16 (m, 5H), 7.11~7.09 (m, 2H), 6.99~6.94 (m, 4H), 6.23 (s, 1H), 2.37 (s, 3H), 2.26 (s, 3H), 1.96 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 187.5, 142.6, 139.7, 139.4, 137.6, 137.1, 131.7, 129.6, 129.1, 128.9, 128.7, 128.6, 128.5, 128.2, 128.2, 127.2, 112.6, 21.6, 21.1, 13.7; ESI-MS (M+H) calcd. for C₂₆H₂₄NO: 366.1858; Found: 366.1852.

Spectral data for (4-methoxyphenyl)(5-(4-methoxyphenyl)-3-methyl-1-phenyl-1*H*-pyrrol-2-yl)methanone (3h)

Orange sticky solid; (40% ethylacetate/hexane, $R_f = 0.28$, 59 mg, 0.148 mmol, 91%); ¹H NMR (400 MHz, CDCl₃): δ 7.76~7.73 (m, 2H), 7.23~7.18 (m, 3H), 7.11~7.09 (m, 2H), 7.01~6.98 (m, 2H), 6.88~6.85 (m, 2H), 6.72~6.70 (m, 2H), 6.20 (s, 1H), 3.83 (s, 3H), 3.74 (s, 3H), 1.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 186.6, 162.9, 158.8, 139.4, 139.3, 133.0, 131.7, 131.5, 130.0, 128.5, 128.1, 127.7, 127.2, 124.6, 113.5, 113.4, 112.2, 55.4, 55.1, 13.6; ESI-MS (M+H) calcd. for C₂₆H₂₄NO₃: 398.1756; Found: 398.1751.

Spectral data for (3-methyl-1-phenyl-5-(thiophen-2-yl)-1*H*-pyrrol-2-yl) (thiophen-2-yl)methanone (3i)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.38$, 33.1 mg, 0.095 mmol, 49%); ¹H NMR (600 MHz, CDCl₃): δ 7.57 (d, J = 4.2Hz, 2H), 7.32~7.29 (m, 3H), 7.26~7.24 (m, 2H), 7.11 (dd, J = 5.4Hz & 1.2Hz, 1H), 7.05 (t, J = 4.2Hz, 1H), 6.82 (dd, J = 5.4Hz & 3.6Hz, 1H), 6.58 (dd, J = 3.6Hz & 1.2Hz, 1H), 6.39 (s, 1H), 2.13 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 179.1, 145.6, 138.7, 133.5, 133.3, 133.1, 132.2, 128.9, 128.7, 128.3, 127.5, 127.2, 127.0, 125.8, 125.5, 112.6, 29.7, 13.6; ESI-MS (M+H) calcd. for C₂₀H₁₆NOS₂: 350.0673; Found: 350.0668.

Spectral data for (3-methyl-1-phenyl-5-(thiophen-3-yl)-1*H*-pyrrol-2-yl) (thiophen-3-yl)methanone (3j)

Red sticky solid; (20% ethylacetate/hexane, $R_f = 0.27$, 46.7 mg, 0.134 mmol, 69%); ¹H NMR (600 MHz, CDCl₃): δ 7.82 (d, J = 3Hz, 1H), 7.36 (d, J = 5.4Hz, 1H), 7.30~7.29 (m, 3H), 7.24~7.23 (m, 1H), 7.21~7.19 (m, 2H), 7.14~7.13 (m, 1H), 6.82 (d, J = 4.8Hz, 1H), 6.64 (t, J = 1.8Hz, 1H), 6.32 (s, 1H), 2.07 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 181.0, 143.9, 139.4, 135.1, 132.2, 128.7, 128.3, 127.9, 127.8, 127.6, 125.8, 124.9, 122.2, 112.3, 13.6; ESI-MS (M+H) calcd. for C₂₀H₁₆NOS₂: 350.0673; Found: 350.0668.

Spectraldataforcyclopropyl(5-cyclopropyl-3-methyl-1-phenyl-1H-pyrrol-2-yl)methanone (3k)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.33$, 23.6 mg, 0.089 mmol, 31%); ¹H NMR (400 MHz, CDCl₃): δ 7.43~7.38 (m, 2H), 7.36~7.32 (m, 1H), 7.28~7.25 (m, 2H), 5.70 (s, 1H), 2.39 (s, 3H), 1.91~1.85 (m, 1H), 1.41~1.35 (m, 1H), 0.97~0.94 (m, 2H), 0.75~0.70 (m, 2H), 0.63~0.58 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 190.5, 143.0, 140.3, 131.8, 129.1, 128.7, 127.9, 127.5, 107.8, 20.3, 14.5, 10.1, 8.0, 7.9; ESI-MS (M+H) calcd. for C₁₈H₂₀NO: 266.1545; Found: 266.1539.

Spectral data for 2-methyl-1-(3-methyl-1-phenyl-5-(prop-1-en-2-yl)-1*H*-pyrrol -2-yl)prop-2-en-1-one (3l)

Orange oil; (20% ethylacetate/hexane, $R_f = 0.46$, 25.1 mg, 0.095 mmol, 33%); ¹H NMR (600 MHz, CDCl₃): δ 7.34~7.29 (m, 3H), 7.16~7.14 (m, 2H), 6.09 (s, 1H), 5.58~5.57 (m, 2H), 4.90 (t, J = 1.8Hz, 1H), 4.67 (d, J = 0.6Hz, 1H), 2.17 (s, 3H), 1.81 (t, J = 1.2Hz, 3H), 1.72 (d, J = 0.6Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 190.0, 146.2, 140.1, 139.8, 135.2, 131.5, 128.6, 127.7, 127.5, 127.0, 124.7, 116.4, 112.0, 22.8, 17.6, 13.4; ESI-MS (M+H) calcd. for C₁₈H₂₀NO: 266.1545; Found: 266.1539.

Spectral data for (4-chlorophenyl)(3-methyl-1-phenyl-5-(*p*-tolyl)-1*H*pyrrol-2-yl)methanone (3m)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.39$, 43.9 mg, 0.114 mmol, 67%); ¹H NMR (400 MHz, CDCl₃): δ 7.65 (d, J = 8.4Hz, 2H), 7.33 (d, J = 8.4Hz, 2H), 7.21~7.20 (m, 3H), 7.09~7.07 (m, 2H), 6.97 (d, J = 8Hz, 2H), 6.95 (d, J = 8Hz, 2H), 6.25 (s, 1H), 2.26 (s, 3H), 1.98 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 186.2, 140.4, 139.2, 138.7, 138.1, 137.3, 130.7, 129.9, 128.8, 128.6, 128.5, 128.5, 128.3, 128.2, 128.1, 127.4, 113.0, 21.1, 13.8; FI-MS (M) calcd. for C₂₅H₂₀ClNO: 385.1223; Found: 385.1228.

Spectral data for (5-(4-methoxyphenyl)-3-methyl-1-phenyl-1*H*-pyrrol-2-yl) (phenyl)methanone (3n)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.34$, 47.2 mg, 0.128 mmol, 71%); ¹H NMR (400 MHz, CDCl₃): δ 7.73~7.71 (m, 2H), 7.47~7.43 (m, 1H), 7.38~7.34 (m, 2H), 7.21~7.18 (m, 3H), 7.13~7.10 (m, 2H), 7.02~6.98 (m, 2H), 6.73~6.70 (m, 2H), 6.22 (s, 1H), 3.74 (s, 3H), 1.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 187.6, 158.9, 140.4, 139.9, 139.3, 131.8, 131.4, 130.0, 129.3, 129.0, 128.5, 128.2, 128.1, 127.2, 124.3, 113.5, 112.5, 55.1, 13.7; ESI-MS (M+Na) calcd. for C₂₅H₂₁NO₂Na: 390.1470; Found: 390.1464.

Spectral data for (4-chlorophenyl)(5-(4-methoxyphenyl)-3-methyl-1-phenyl-1*H*-pyrrol-2-yl)methanone (30)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.33$, 40.1 mg, 0.100 mmol, 62%); ¹H NMR (600 MHz, CDCl₃): δ 7.65~7.63 (m, 2H), 7.34~7.32 (m, 2H), 7.22~7.20 (m, 3H), 7.09~7.07 (m, 2H), 7.00~6.97 (m, 2H), 6.72~6.69 (m, 2H), 6.22 (s, 1H), 3.74 (s, 3H), 1.98 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 186.1, 159.0, 140.3, 139.2, 138.7, 138.1, 131.1, 130.7, 130.0, 129.3, 128.6, 128.5, 128.2, 127.4, 124.2, 113.6, 112.7, 55.2, 13.9; ESI-MS (M+H) calcd. for C₂₅H₂₁CINO₂: 402.1261; Found: 402.1255.

Spectral data for (5-(4-methoxyphenyl)-3-methyl-1-phenyl-1*H*-pyrrol-2-yl) (*p*-tolyl)methanone (3p)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.26$, 43.4 mg, 0.114 mmol, 66%); ¹H NMR (400 MHz, CDCl₃): δ 7.65 (d, J = 8Hz, 2H), 7.23~7.16 (m, 5H), 7.11~7.09 (m, 2H), 7.01~6.98 (m, 2H), 6.72~6.69 (m, 2H), 6.20 (s, 1H), 3.74 (s, 3H), 2.37 (s, 3H), 1.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 187.4, 158.9, 142.6, 139.6, 139.4, 137.7, 131.6, 130.0, 129.6, 128.9, 128.5, 128.3, 128.2, 127.2, 124.5, 113.5, 112.4, 55.1, 21.6, 13.7; ESI-MS (M+H) calcd. for C₂₆H₂₄NO₂: 382.1807; Found: 382.1802.

Spectral data for (3-methyl-1-phenyl-5-(thiophen-3-yl)-1*H*-pyrrol-2-yl)(phenyl) methanone (3q)

Orange oil; (20% ethylacetate/hexane, $R_f = 0.46$, 42.9 mg, 0.125 mmol, 63%); ¹H NMR (600 MHz, CDCl₃): δ 7.70~7.69 (m, 2H), 7.47~7.44 (m, 1H), 7.38~7.30 (m, 2H), 7.30~7.28 (m, 3H), 7.21~7.20 (m, 2H), 7.14~7.13 (m, 1H), 6.83 (dd, J = 5.4Hz & 1.2Hz, 1H), 6.65 (dd, J = 3.0Hz & 1.2Hz, 1H), 6.32 (s, 1H), 1.94 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 187.4, 140.4, 139.5, 135.5, 132.2, 131.9, 129.2, 128.8, 128.7, 128.4, 128.2, 128.0, 127.9, 127.6, 124.9, 122.2, 112.4, 13.7; ESI-MS (M+H) calcd. for C₂₂H₁₈NOS: 344.1109; Found: 344.1104.

Spectral data for 1-(3-methyl-1,5-diphenyl-1*H*-pyrrol-2-yl)pentan-1-one (3r)

White solid, mp: 106.5~107.0°C; (20% ethylacetate/hexane, $R_f = 0.46$, 35.8 mg, 0.113 mmol, 51%); ¹H NMR (400 MHz, CDCl₃): δ 7.29~7.28 (m, 3H), 7.15~7.10 (m, 5H), 7.02~7.00 (m, 2H), 6.24 (s, 1H), 2.44 (s, 3H), 2.42 (t, J = 7.2Hz, 2H), 1.53~1.48 (m, 2H), 1.26~1.17 (m, 2H), 0.81 (t, J = 7.2Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 192.2, 140.1, 139.6, 132.2, 131.9, 128.9, 128.7, 128.6, 128.4, 127.9, 127.7, 127.3, 113.6, 41.7, 26.6, 22.4, 14.9, 13.9; ESI-MS (M+H) calcd. for C₂₂H₂₄NO: 318.1858; Found: 318.1852.

Spectral data for 1-(5-(4-methoxyphenyl)-3-methyl-1-phenyl-1*H*-pyrrol-2-yl) pentan-1-one (3s)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.36$, 31.9 mg, 0.092 mmol, 47%); ¹H NMR (600 MHz, CDCl₃): δ 7.30~7.28 (m, 3H), 7.11~7.10 (m, 2H), 6.94 (dt, J = 9.6Hz & 3Hz, 2H), 6.68~6.66 (m, 2H), 6.18 (s, 1H), 3.72 (s, 3H), 2.44 (s, 3H), 2.42 (t, J = 7.2Hz, 2H), 1.54~1.49 (m, 2H), 1.25~1.20 (m, 2H), 0.82 (t, J = 7.2Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 191.9, 158.9, 140.3, 139.7, 131.9, 130.2, 128.8, 128.6, 128.5, 127.6, 124.4, 113.4, 113.1, 55.1, 41.6, 26.6, 22.4, 15.0, 13.9; ESI-MS (M+H) calcd. for C₂₃H₂₆NO₂: 348.1964; Found: 348.1958.

Spectral data for 1-(3-methyl-1-phenyl-5-(*p*-tolyl)-1*H*-pyrrol-2-yl)pentan-1-one (3t)

Orange sticky solid; (20% ethylacetate/hexane, $R_f = 0.36$, 43.4 mg, 0.131 mmol, 63%); ¹H NMR (600 MHz, CDCl₃): δ 7.30~7.29 (m, 3H), 7.12~7.11 (m, 2H), 6.95~6.94 (m, 2H), 6.90 (dd, J = 6.6Hz & 2.4Hz, 2H), 6.21 (s, 1H), 2.44 (s, 3H), 2.42 (t, J = 7.2Hz, 2H), 2.24 (s, 3H), 1.54~1.49 (m, 2H), 1.25~1.20 (m, 2H), 0.82 (t, J = 7.2Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 192.1, 140.3, 139.8, 137.2, 132.0, 129.0, 128.8, 128.7, 128.5, 128.4, 127.6, 113.3, 41.6, 26.6, 22.4, 21.1, 14.9, 13.9; ESI-MS (M+H) calcd. for C₂₃H₂₆NO: 332.2014; Found: 332.2009.

Spectral data for 1-(5-(4-chlorophenyl)-3-methyl-1-phenyl-1*H*-pyrrol-2-yl) pentan-1-one (3u)

Yellow solid, mp: 142.4~145.0°C; (10% ethylacetate/hexane, $R_f = 0.44$, 21.6 mg, 0.061 mmol, 32%); ¹H NMR (500 MHz, CDCl₃): δ 7.31 (s, 3H), 7.26 (d, J = 7.5Hz, 1H), 7.11~7.10 (m, 3H), 6.93 (d, J = 7.4Hz, 1H), 6.86 (d, J = 7.4Hz, 1H), 6.23 (s, 1H), 2.43~2.41 (m, 5H), 1.54~1.48 (m, 2H), 1.24~1.19 (m, 2H), 0.81 (t, J = 7.3Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 192.2, 139.9, 138.2, 131.1, 130.4, 130.3, 130.0, 128.7, 128.6, 128.3, 128.2, 127.9, 113.7, 41.7, 26.5, 22.4, 14.9, 13.8; ESI-MS (M+H) calcd. for C₂₂H₂₃CINO: 352.1468; Found: 352.1464.

Spectral data for 1-(3-methyl-1-phenyl-5-(4-(trifluoromethyl)phenyl)-1*H*-pyrrol -2-yl)pentan-1-one (3v)

Yellow oil; (10% ethylacetate/hexane, $R_f = 0.44$, 7.9 mg, 0.020 mmol, 12%); ¹H NMR (600 MHz, CDCl₃): δ 7.38 (d, J = 8.4Hz, 2H), 7.33~7.32 (m, 3H), 7.12~7.10 (m, 4H), 6.30 (s, 1H), 2.44~2.41 (m, 5H), 1.55~1.49 (m, 2H), 1.25~1.19 (m, 2H), 0.82 (t, J = 7.2Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 192.5, 139.8, 137.6, 135.5, 132.9, 128.9, 128.3, 128.1, 124.9, 124.9, 114.3, 41.8, 26.5, 22.4, 14.8, 13.8; ESI-MS (M+H) calcd. for C₂₃H₂₃F₃NO: 386.1732; Found: 386.1726.

Spectral data for (4-methoxyphenyl)(3-methyl-1-phenyl-1*H*-pyrrol-2-yl) methanone (3w)

Orange sticky solid; (20% ethylacetate/hexane, $R_f = 0.29$, 67.7 mg, 0.232 mmol, 93%); ¹H NMR (400 MHz, CDCl₃): δ 7.74~7.70 (m, 2H), 7.29~7.25 (m, 2H), 7.19~7.15 (m, 3H), 6.95 (d, J = 2.8Hz, 1H), 6.86~6.82 (m, 2H), 6.17 (d, J = 2.4Hz, 1H), 3.82 (s, 3H), 2.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 186.8, 162.9, 140.7, 132.4, 131.8, 129.7, 128.9, 127.4, 126.6, 124.6, 113.5, 112.0, 55.4, 13.5; ESI-MS (M+H) calcd. for C₁₉H₁₈NO₂: 292.1338; Found: 292.1332.

Spectral data for (3-methyl-1-phenyl-5-(thiophen-2-yl)-1H-pyrrol-2-yl)(phenyl)methanoneand(3-methyl-1,5-diphenyl-1H-pyrrol-2-yl)(thiophen-2-yl)methanone (3x)

Orange oil; (20% ethylacetate/hexane, $R_f = 0.45$, 34.7 mg, 0.101 mmol, 51%); ¹H NMR (600 MHz, CDCl₃) major isomer: δ7.70 (dd, J = 7.9Hz & 0.9Hz, 2H), 7.48~7.45 (m, 1H), 7.37 (t, J = 7.9Hz, 2H), 7.33~7.30 (m, 3H), 7.27~7.24 (m, 2H), 7.04 (t, J = 4.5Hz, 1H), 6.83 (dd, J = 5.1Hz & 3.7Hz, 1H), 6.60 (dd, J = 3.7Hz & 1.1Hz, 1H), 6.39 (s, 1H), 1.93 (s, 3H); ¹H NMR (600 MHz, CDCl₃) minor isomer: δ7.57~7.56 (m, 2H), 7.21~7.19 (m, 3H), 7.18~7.16 (m, 2H), 7.12~7.10 (m, 4H), 7.08~7.07 (m, 2H), 6.30 (s, 1H), 2.17 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) major isomer: δ187.3, 140.3, 139.0, 133.9, 133.6, 133.1, 132.0, 131.9, 129.2, 128.9, 128.7, 128.7, 128.2, 127.2, 127.0, 125.6, 112.7, 13.7; ¹³C NMR (150 MHz, CDCl₃) minor isomer: δ 179.7, 145.7, 139.2, 139.0, 133.5, 132.2, 131.8, 128.6, 128.3, 128.0, 128.0, 127.5, 127.4, 125.9, 112.9, 13.5, (remaining peaks merging with major isomer); ESI-MS (M+H) calcd. for C₂₂H₁₈NOS: 344.1109; Found: 344.1104.

Spectral data for 2-methyl-1-(3-methyl-1,5-diphenyl-1*H*-pyrrol-2-yl)prop-2-en-1-one and (3-methyl-1-phenyl-5-(prop-1-en-2-yl)-1*H*-pyrrol-2-yl)(phenyl)methanone (3y)

Orange oil; (10% ethylacetate/hexane, $R_f = 0.24$, 52.3 mg, 0.174 mmol, 73%); ¹H NMR (600 MHz, CDCl₃) major isomer: δ 7.25~7.24 (m, 3H), 7.17~7.15 (m, 3H), 7.06~7.03 (m, 4H), 6.25 (s, 1H), 5.63~5.61 (m, 2H), 2.25 (s, 3H), 1.85 (s, 3H); ¹H NMR (600 MHz, CDCl₃) minor isomer: δ 7.69 (d, J = 8.2Hz, 2H), 7.46~7.44 (m, 1H), 7.35 (t, J = 7.8Hz, 2H), 6.14 (s, 1H), 4.95~4.73 (m, 2H), 1.90 (s, 3H), 1.76 (s, 3H), (remaining peaks merging with major isomer); ¹³C NMR (150 MHz, CDCl₃) major

isomer: δ 190.1, 146.1, 139.5, 138.7, 132.0, 128.7, 128.6, 128.5, 127.9, 127.8, 127.7, 127.2, 127.1, 124.8, 112.8, 17.6, 13.5; ¹³C NMR (150 MHz, CDCl₃) minor isomer: δ 131.9, 131.4, 129.2, 128.1, 116.7, 112.2, (remaining peaks merging with major isomer); ESI-MS (M+H) calcd. for C₂₁H₂₀NO: 302.1545; Found: 302.1539.

Spectral data for (1-(4-fluorophenyl)-3-methyl-5-phenyl-1*H*-pyrrol-2-yl)(phenyl) methanone (4a)

White solid, mp: 164.0~165.9°C; (20% ethylacetate/hexane, $R_f = 0.48$, 42.6 mg, 0.120 mmol, 59%); ¹H NMR (400 MHz, CDCl₃): δ 7.73~7.71 (m, 2H), 7.50~7.46 (m, 1H), 7.4~7.36 (m, 2H), 7.20~7.18 (m, 3H), 7.10~7.06 (m, 4H), 6.91~6.87 (m, 2H), 6.27 (s, 1H), 1.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 187.7, 140.2, 140.2, 132.1, 131.8, 131.6, 129.8, 129.7, 129.3, 129.0, 128.8, 128.3, 128.1, 127.5, 115.5, 115.4, 113.1, 13.8; ESI-MS (M+H) calcd. for C₂₄H₁₉FNO: 356.1451; Found: 356.1445.

Spectral data for (1-(4-bromophenyl)-3-methyl-5-phenyl-1*H*-pyrrol-2-yl)(phenyl) methanone (4b)

Orange oil; (20% ethylacetate/hexane, $R_f = 0.50$, 75.2 mg, 0.181 mmol, 89%); ¹H NMR (600 MHz, CDCl₃): δ 7.75~7.73 (m, 2H), 7.51~7.48 (m, 1H), 7.41~7.39 (m, 2H), 7.33 (dt, J = 9.6Hz & 3Hz, 2H), 7.22~7.20 (m, 3H), 7.10~7.08 (m, 2H), 6.99 (dt, J = 9.6Hz & 3Hz, 2), 6.28 (s, 1H), 1.95 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 187.6, 140.1, 138.3, 132.1, 131.7, 131.6, 131.5, 129.7, 129.3, 129.2, 128.8, 128.3, 128.2,

127.6, 121.2, 13.8; ESI-MS (M+H) calcd. for $C_{24}H_{19}BrNO$: 416.0650; Found: 416.0645.

Spectral data for (1-(4-chlorophenyl)-3-methyl-5-phenyl-1*H*-pyrrol-2-yl)(phenyl) methanone (4c)

White solid, mp: 146.2~147.3°C; (20% ethylacetate/hexane, $R_f = 0.38$, 55.9 mg, 0.150 mmol, 74%); ¹H NMR (600 MHz, CDCl₃): δ 7.75~7.73 (m, 2H), 7.51~7.48 (m, 1H), 7.41~7.39 (m, 2H), 7.22~7.19 (m, 3H), 7.18 (dt, J = 8.3Hz & 2.9Hz, 2H), 7.09~7.07 (m, 2H), 7.05 (dt, J = 8.3Hz & 2.9Hz, 2H), 6.27 (s, 1H), 1.95 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 187.6, 140.1, 140.1, 137.8, 133.1, 132.2, 131.6, 131.5, 129.3, 129.3, 128.8, 128.7, 128.3, 128.2, 127.6, 113.3, 13.8; ESI-MS (M+H) calcd. for C₂₄H₁₉ClNO: 372.1155; Found: 372.1150.

Spectral data for ethyl 4-(2-benzoyl-3-methyl-5-phenyl-1*H*-pyrrol-1-yl)benzoate (4d)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.42$, 75.6 mg, 0.185 mmol, 91%); ¹H NMR (600 MHz, CDCl₃): δ 7.89 (dt, J = 9Hz & 2.4Hz, 2H), 7.75~7.74 (m, 2H), 7.50~7.47 (m, 1H), 7.40~7.38 (m, 2H), 7.20~7.17 (m, 3H), 7.15 (dt, J = 9Hz & 2.4Hz, 2H), 7.06~7.05 (m, 2H), 6.28 (s, 1H), 4.31 (q, J = 7.2Hz, 2H), 1.96 (s, 3H), 1.33 (t, J = 7.2Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 187.6, 165.9, 143.2, 140.0, 139.9, 132.2,

131.5, 130.0, 129.3, 129.2, 128.8, 128.3, 128.2, 127.9, 127.6, 113.6, 61.0, 14.3, 13.7; ESI-MS (M+H) calcd. for C₂₇H₂₄NO₃: 410.1756; Found: 410.1751.

Spectral data for (3-methyl-5-phenyl-1-(*p*-tolyl)-1*H*-pyrrol-2-yl)(phenyl) methanone (4e)

Orange oil; (20% ethylacetate/hexane, $R_f = 0.46$, 35.0 mg, 0.100 mmol, 49%); ¹H NMR (600 MHz, CDCl₃): δ 7.74~7.73 (m, 2H), 7.48~7.45 (m, 1H), 7.39~7.36 (m, 2H), 7.19~7.17 (m, 3H), 7.11~7.10 (m, 2H), 7.00 (s, 4H), 6.27 (s, 1H), 2.27 (s, 3H), 1.96 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 187.8, 140.3, 139.8, 137.1, 136.6, 132.0, 131.9, 131.8, 129.4, 129.2, 128.8, 128.6, 128.2, 128.0, 127.8, 127.2, 112.9, 21.1, 13.7; ESI-MS (M+H) calcd. for C₂₅H₂₂NO: 352.1701; Found: 352.1696.

Spectral data for (1-(3-chlorophenyl)-3-methyl-5-phenyl-1*H*-pyrrol-2-yl)(phenyl) methanone (4f)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.35$, 43 mg, 0.116 mmol, 57%); ¹H NMR (500 MHz, CDCl₃): δ 7.74 (d, J = 7.7Hz, 2H), 7.49 (t, J = 7.5Hz, 1H), 7.40 (t, J = 6.9Hz, 2H), 7.21 (s, 3H), 7.18 (d, J = 8.1Hz, 1H), 7.14~7.10 (m, 4H), 7.02 (d, J = 7.2Hz, 1H), 6.29 (s, 1H), 1.98 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 187.5, 140.3, 140.0, 140.0, 133.9, 132.0, 131.6, 131.4, 129.3, 129.2, 128.7, 128.3, 128.2, 128.1, 127.6, 127.6, 126.5, 113.4, 13.7; ESI-MS (M+H) calcd. for C₂₄H₁₈ClNO: 372.1155; Found: 372.1154.

Spectral data for (3-methyl-5-phenyl-1-(*m*-tolyl)-1*H*-pyrrol-2-yl)(phenyl) methanone (4g)

Orange oil; (20% ethylacetate/hexane, $R_f = 0.37$, 32.1 mg, 0.091 mmol, 45%); ¹H NMR (500 MHz, CDCl₃): δ 7.72 (d, J = 7.5Hz, 2H), 7.45 (t, J = 7.5Hz, 1H), 7.36 (t, J = 7.5Hz, 2H), 7.18 (s, 3H), 7.09~7.05 (m, 3H), 6.98 (d, J = 7.5Hz, 1H), 6.90~6.89 (m, 2H), 6.28 (s, 1H), 2.20 (s, 3H), 1.99 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 187.9, 140.3, 139.6, 139.0, 138.3, 132.0, 131.8, 131.7, 129.2, 128.8, 128.7, 128.7, 128.2, 128.1, 128.1, 127.9, 127.2, 125.2, 113.0, 21.2, 13.7; ESI-MS (M+H) calcd. for C₂₅H₂₂NO: 352.1701; Found: 352.1696.

Spectral data for (1-(2-chlorophenyl)-3-methyl-5-phenyl-1*H*-pyrrol-2-yl)(phenyl) methanone (4h)

Yellow solid, mp: 191.7~194.3°C; (20% ethylacetate/hexane, $R_f = 0.31$, 42.3 mg, 0.114 mmol, 56%); ¹H NMR (500 MHz, CDCl₃): δ 7.75 (d, J = 7.3Hz, 2H), 7.48 (t, J = 7.6Hz, 1H), 7.40 (t, J = 6.7Hz, 2H), 7.34~7.29 (m, 2H), 7.21~7.18 (m, 5H), 7.14 (s, 2H), 6.32 (s, 1H), 1.92 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 187.4, 140.4, 140.0, 137.4, 132.9, 131.8, 131.5, 131.2, 129.7, 129.3, 129.1, 129.1, 128.5, 128.2, 128.1, 127.6, 126.9, 113.1, 14.0; ESI-MS (M+H) calcd. for C₂₄H₁₉ClNO: 372.1155; Found: 372.1150.

Spectral data for (1-(2-bromophenyl)-3-methyl-5-phenyl-1*H*-pyrrol-2-yl)(phenyl)

methanone (4i)

White solid, mp: 192.5~193.8°C; (20% ethylacetate/hexane, $R_f = 0.34$, 52.4 mg, 0.126 mmol, 62%); ¹H NMR (500 MHz, CDCl₃): δ 7.84 (d, J = 7.5Hz, 2H), 7.56~7.52 (m, 2H), 7.46 (t, J = 7.9Hz, 3H), 7.31 (t, J = 7.5Hz, 1H), 7.25~7.18 (m, 6H), 6.38 (s, 1H), 1.98 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 187.3, 140.3, 140.0, 138.9, 132.8, 131.8, 131.6, 131.5, 131.4, 129.4, 129.4, 129.1, 128.6, 128.2, 128.1, 127.6, 127.4, 123.3, 113.1, 14.1; ESI-MS (M+H) calcd. for C₂₄H₁₉BrNO: 416.0650; Found: 416.0645.

Spectral data for (3-methyl-5-phenyl-1-(*o*-tolyl)-1*H*-pyrrol-2-yl)(phenyl) methanone (4j)

Orange oil; (20% ethylacetate/hexane, $R_f = 0.37$, 15.0 mg, 0.043 mmol, 21%); ¹H NMR (600 MHz, CDCl₃): δ 7.72~7.70 (m, 2H), 7.47 (td, J = 7.9Hz & 1.1Hz, 1H), 7.38 (t, J = 7.4Hz, 2H), 7.23 (s, 1H), 7.17~7.14 (m, 4H), 7.12~7.09 (m, 3H), 7.07 (d, J = 7.5Hz, 1H), 6.32 (s, 1H), 1.94 (s, 3H), 1.93 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 187.3, 140.3, 138.6, 136.0, 131.9, 131.8, 130.4, 129.4, 129.3, 128.6, 128.2, 128.1, 128.1, 127.4, 126.0, 112.6, 17.7, 14.0; ESI-MS (M+H) calcd. for C₂₅H₂₂NO: 352.1701; Found: 352.1696.

Spectral data for ethyl 4-(2-(cyclopropanecarbonyl)-5-cyclopropyl-3-methyl-*1H*-pyrrol-1-yl)benzoate (5a)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.29$, 62.0 mg, 0.184 mmol, 64%); ¹H NMR (600 MHz, CDCl₃): δ 8.09 (dd, J = 8.5Hz & 0.5Hz, 2H), 7.31 (dd, J = =8.5Hz & 0.5Hz, 2H), 5.72 (s, 1H), 4.37 (qd, J = 7.1Hz & 0.7Hz, 2H), 2.41 (s, 3H), 2.02~1.98 (m, 1H), 1.38 (td, J = 7.1Hz & 0.7Hz, 3H), 0.99~0.96 (m, 2H), 0.74~0.67 (m, 4H), 0.62~0.59 (m, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 190.3, 166.0, 144.5, 142.9, 131.6, 130.2, 129.4, 127.7, 108.6, 61.1, 20.2, 14.6, 14.3, 10.2, 8.0, 7.8; ESI-MS (M+H) calcd. for C₂₁H₂₄NO₃: 338.1756; Found: 338.1746.

Spectral data for (*E*)-(1-(4-iodophenyl)-5-phenyl-3-styryl-*1H*-pyrrol-2-yl) (phenyl)methanone (6a)

Orange oil; (20% ethylacetate/hexane, $R_f = 0.33$, 20.61 mg, 0.037 mmol, 25%); ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, J = 7.1Hz, 2H), 7.54 (d, J = 8.5Hz, 3H), 7.42 (t, J = 7.8Hz, 2H), 7.26~7.23 (m, 3H), 7.21 (d, J = 7.6Hz, 2H), 7.17~7.13 (m, 3H), 7.11~7.09 (m, 2H), 6.92 (d, J = 16.2Hz, 1H), 6.87 (dt, J = 8.5Hz & 1.9Hz, 2H), 6.75 (s, 1H), 6.67 (d, J = 16.2Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 187.2, 140.7, 139.9, 138.6, 137.8, 137.3, 132.6, 131.5, 131.2, 130.4, 129.9, 129.0, 128.9, 128.5, 128.4, 128.3, 127.9, 127.8, 127.4, 126.2, 120.9, 107.8, 93.0; ESI-MS (M+H) calcd. for C₃₁H₂₃INO: 552.0824; Found: 552.1790.

Spectral data for 2-benzoyl-1-(4-iodophenyl)-5-phenyl-*1H*-pyrrole-3carbaldehyde (6b)

Red oil; (20% ethylacetate/hexane, $R_f = 0.23$, 36.79 mg, 0.077 mmol, 85%); ¹H NMR (400 MHz, CDCl₃): δ 9.55 (s, 1H), 7.79 (d, J = 7.1Hz, 2H), 7.57~7.54 (m, 3H), 7.42 (t, J = 7.7Hz, 2H), 7.27~7.23 (m, 3H), 7.12~7.08 (m, 2H), 6.94 (s, 1H), 6.85 (dt, J = 8.6Hz & 1.8Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 187.0, 185.7, 139.5, 139.0, 138.1, 138.0, 137.4, 137.2, 133.9, 130.3, 129.8, 129.6, 128.9, 128.7, 128.5, 128.3, 108.9, 94.1; ESI-MS (M+H) calcd. for C₂₄H₁₇INO₂: 478.0304; Found: 478.0293.

Spectral data for 2-benzoyl-1-(4-iodophenyl)-5-phenyl-*1H*-pyrrole-3-carboxylic acid (6c)

Yellow oil; (50% ethylacetate/hexane, $R_f = 0.25$, 21.19 mg, 0.043 mmol, 41%); ¹H NMR (600 MHz, Acentone): $\delta 10.76$ (s, 1H), 7.82 (d, J = 7.3Hz, 2H), 7.67 (dt, J = 8.5Hz & 1.7Hz, 2H), 7.59 (t, J = 7.4Hz, 1H), 7.46 (t, J = 7.9Hz, 2H), 7.30~7.23 (m, 5H), 7.03 (dt, J = 8.5Hz & 1.7Hz, 2H), 6.87 (s, 1H); ¹³C NMR (150 MHz, Acentone): $\delta 190.9$, 165.4, 140.2, 139.8, 139.4, 138.5, 138.2, 135.1, 132.9, 132.2, 131.0, 130.6, 130.3, 130.1, 129.5, 115.6, 112.1, 95.4; ESI-MS (M+H) calcd. for C₂₄H₁₇INO₃: 494.0253; Found: 494.0250.

Spectral data for ethyl 2-benzoyl-1-(4-iodophenyl)-5-phenyl-*1H*-pyrrole-3carboxylate (6d)

Yellow solid, mp: 178.8~180.7°C; (50% ethylacetate/hexane, $R_f = 0.59$, 48.09 mg, 0.092 mmol, 91%); ¹H NMR (600 MHz, CDCl₃): δ 7.82 (dd, J = 8.1Hz & 1.0Hz, 2H), 7.55~7.52 (m, 3H), 7.41 (t, J = 8.2Hz, 2H), 7.23~7.21 (m, 3H), 7.12~7.08 (m, 2H), 6.88 (s, 1H), 6.85 (dt, J = 8.7Hz & 1.9Hz, 2H), 3.92 (q, J = 7.1Hz, 2H), 0.85 (t, J = 7.1Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 189.1, 163.7, 138.6, 138.1, 137.3, 135.2, 133.4, 130.8, 129.8, 129.3, 128.7, 128.5, 128.4, 127.7, 118.9, 114.0, 110.8, 94.1, 60.3, 13.6; ESI-MS (M+H) calcd. for C₂₆H₂₁INO₃: 522.0566; Found: 522.0551.
(5)X-ray crystallographic structure and data for compound 3a and 4ca) X-ray crystallographic structure and data for compound '3a'

Table 1. Crystal data and structure refinement for d18758.

Identification code	d18758	
Empirical formula	C24 H19 N O	
Formula weight	337.40	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	$a = 9.6383(14) \text{ Å}$ $\alpha = 80$	
	b = 9.7333(11) Å	$\beta = 71.715(4)^{\circ}$.
	c = 10.4533(14) Å	$\gamma = 74.791(4)^{\circ}$.
Volume	894.5(2) Å ³	
Z	2	
Density (calculated)	1.253 Mg/m ³ 37	

Absorption coefficient	0.076 mm^{-1}
F(000)	356
Crystal size	0.11 x 0.09 x 0.03 mm ³
Theta range for data collection	2.28 to 25.08°.
Index ranges	-11<=h<=11, -11<=k<=11, -12<=l<=12
Reflections collected	18760
Independent reflections	3156 [R(int) = 0.1026]
Completeness to theta = 25.08°	99.1 %
Absorption correction	multi-scan
Max. and min. transmission	0.9977 and 0.9917
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3156 / 0 / 236
Goodness-of-fit on F ²	1.129
Final R indices [I>2sigma(I)]	R1 = 0.0692, wR2 = 0.1179
R indices (all data)	R1 = 0.1081, wR2 = 0.1303
Largest diff. peak and hole	0.204 and -0.199 e.Å ⁻³

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å 2 x 10³)for d18758. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	У	Z	U(eq)
C(1)	4669(3)	3566(3)	4255(2)	30(1)
C(2)	3311(3)	3148(2)	5239(2)	28(1)
C(3)	2014(3)	4201(3)	5621(3)	34(1)
C(4)	726(3)	3844(3)	6483(3)	43(1)
C(5)	693(3)	2442(3)	6965(3)	44(1)
C(6)	1967(3)	1379(3)	6566(3)	42(1)
C(7)	3270(3)	1738(3)	5712(3)	36(1)
C(8)	6158(3)	2742(2)	4309(2)	28(1)
C(9)	6700(3)	2120(2)	5409(2)	30(1)
C(10)	5850(3)	1993(3)	6886(3)	42(1)
C(11)	8261(3)	1730(3)	4914(3)	32(1)
C(12)	8679(3)	2084(2)	3536(3)	28(1)
C(13)	10197(3)	1823(2)	2588(3)	30(1)
C(14)	11362(3)	2026(3)	3005(3)	38(1)
C(15)	12811(3)	1777(3)	2175(3)	48(1)
C(16)	13131(3)	1322(3)	920(3)	51(1)

C(17)	11993(4)	1096(3)	499(3)	49(1)	
C(18)	10531(3)	1340(3)	1328(3)	42(1)	
C(19)	7321(3)	3265(3)	1816(2)	27(1)	
C(20)	7967(3)	4394(3)	1161(3)	36(1)	
C(21)	7890(3)	4907(3)	-133(3)	45(1)	
C(22)	7147(3)	4325(3)	-755(3)	48(1)	
C(23)	6516(3)	3196(3)	-101(3)	47(1)	
C(24)	6621(3)	2648(3)	1185(3)	36(1)	
N(1)	7392(2)	2718(2)	3166(2)	27(1)	
O(1)	4509(2)	4586(2)	3413(2)	42(1)	

Table 3. Bond lengths [Å] and angles [°] for d18758.

C(1)-O(1)	1.223(3)
C(1)-C(8)	1.461(3)
C(1)-C(2)	1.494(3)
C(2)-C(7)	1.384(3)
C(2)-C(3)	1.388(3)
C(3)-C(4)	1.376(4)
C(3)-H(3)	0.9500
C(4)-C(5)	1.377(4)
C(4)-H(4)	0.9500
C(5)-C(6)	1.382(4)
C(5)-H(5)	0.9500
C(6)-C(7)	1.385(4)
C(6)-H(6)	0.9500
C(7)-H(7)	0.9500
C(8)-C(9)	1.393(3)
C(8)-N(1)	1.395(3)
C(9)-C(11)	1.397(3)
C(9)-C(10)	1.505(3)
C(10)-H(10A)	0.9800
C(10)-H(10B)	0.9800
C(10)-H(10C)	0.9800
C(11)-C(12)	1.377(3)
C(11)-H(11)	0.9500
C(12)-N(1)	1.374(3)
C(12)-C(13)	1.473(4)

C(13)-C(18)	1.386(4)
C(13)-C(14)	1.394(4)
C(14)-C(15)	1.377(4)
C(14)-H(14)	0.9500
C(15)-C(16)	1.373(4)
C(15)-H(15)	0.9500
C(16)-C(17)	1.381(4)
C(16)-H(16)	0.9500
C(17)-C(18)	1.386(4)
C(17)-H(17)	0.9500
C(18)-H(18)	0.9500
C(19)-C(24)	1.370(3)
C(19)-C(20)	1.379(3)
C(19)-N(1)	1.437(3)
C(20)-C(21)	1.379(4)
C(20)-H(20)	0.9500
C(21)-C(22)	1.373(4)
C(21)-H(21)	0.9500
C(22)-C(23)	1.371(4)
C(22)-H(22)	0.9500
C(23)-C(24)	1.385(4)
C(23)-H(23)	0.9500
C(24)-H(24)	0.9500
O(1)-C(1)-C(8)	121.4(2)
O(1)-C(1)-C(2)	119.1(2)
C(8)-C(1)-C(2)	119.5(2)
C(7)-C(2)-C(3)	118.9(2)
C(7)-C(2)-C(1)	122.3(2)
C(3)-C(2)-C(1)	118.7(2)
C(4)-C(3)-C(2)	120.1(2)
C(4)-C(3)-H(3)	119.9
C(2)-C(3)-H(3)	119.9
C(3)-C(4)-C(5)	120.9(3)
C(3)-C(4)-H(4)	119.6
C(5)-C(4)-H(4)	119.6
C(4)-C(5)-C(6)	119.5(3)
C(4)-C(5)-H(5)	120.2

C(6)-C(5)-H(5)	120.2
C(5)-C(6)-C(7)	119.7(3)
C(5)-C(6)-H(6)	120.2
C(7)-C(6)-H(6)	120.2
C(2)-C(7)-C(6)	120.9(2)
C(2)-C(7)-H(7)	119.5
C(6)-C(7)-H(7)	119.5
C(9)-C(8)-N(1)	107.3(2)
C(9)-C(8)-C(1)	130.7(2)
N(1)-C(8)-C(1)	120.8(2)
C(8)-C(9)-C(11)	106.9(2)
C(8)-C(9)-C(10)	128.7(2)
C(11)-C(9)-C(10)	124.1(2)
C(9)-C(10)-H(10A)	109.5
C(9)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
C(9)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
C(12)-C(11)-C(9)	109.3(2)
C(12)-C(11)-H(11)	125.4
C(9)-C(11)-H(11)	125.4
N(1)-C(12)-C(11)	107.3(2)
N(1)-C(12)-C(13)	124.5(2)
C(11)-C(12)-C(13)	128.2(2)
C(18)-C(13)-C(14)	118.6(3)
C(18)-C(13)-C(12)	123.5(2)
C(14)-C(13)-C(12)	117.9(2)
C(15)-C(14)-C(13)	120.7(3)
C(15)-C(14)-H(14)	119.6
C(13)-C(14)-H(14)	119.6
C(16)-C(15)-C(14)	120.3(3)
C(16)-C(15)-H(15)	119.8
C(14)-C(15)-H(15)	119.8
C(15)-C(16)-C(17)	119.6(3)
C(15)-C(16)-H(16)	120.2
C(17)-C(16)-H(16)	120.2
C(16)-C(17)-C(18)	120.5(3)

C(16)-C(17)-H(17)	119.8
C(18)-C(17)-H(17)	119.8
C(13)-C(18)-C(17)	120.2(3)
C(13)-C(18)-H(18)	119.9
C(17)-C(18)-H(18)	119.9
C(24)-C(19)-C(20)	120.5(2)
C(24)-C(19)-N(1)	119.5(2)
C(20)-C(19)-N(1)	120.0(2)
C(21)-C(20)-C(19)	119.3(3)
C(21)-C(20)-H(20)	120.3
C(19)-C(20)-H(20)	120.3
C(22)-C(21)-C(20)	120.5(3)
C(22)-C(21)-H(21)	119.8
C(20)-C(21)-H(21)	119.8
C(23)-C(22)-C(21)	119.8(3)
C(23)-C(22)-H(22)	120.1
C(21)-C(22)-H(22)	120.1
C(22)-C(23)-C(24)	120.2(3)
C(22)-C(23)-H(23)	119.9
C(24)-C(23)-H(23)	119.9
C(19)-C(24)-C(23)	119.6(3)
C(19)-C(24)-H(24)	120.2
C(23)-C(24)-H(24)	120.2
C(12)-N(1)-C(8)	109.2(2)
C(12)-N(1)-C(19)	125.7(2)
C(8)-N(1)-C(19)	125.2(2)

Symmetry transformations used to generate equivalent atoms:

Table 4.Anisotropic displacement parameters (Å $^2x 10^3$) for d18758.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	36(2)	29(1)	25(1)	-8(1)	-6(1)	-6(1)
C(2)	30(2)	31(1)	23(1)	-6(1)	-7(1)	-6(1)
C(3)	35(2)	33(1)	31(2)	-7(1)	-6(1)	-5(1)
C(4)	33(2)	51(2)	39(2)	-11(1)	-2(1)	-5(1)

C(5)	40(2)	57(2)	36(2)	-8(1)	-3(1)	-20(2)
C(6)	51(2)	36(2)	42(2)	-3(1)	-9(2)	-19(1)
C(7)	37(2)	33(2)	37(2)	-10(1)	-8(1)	-4(1)
C(8)	33(2)	29(1)	23(1)	-2(1)	-5(1)	-12(1)
C(9)	36(2)	30(1)	24(1)	-1(1)	-7(1)	-10(1)
C(10)	52(2)	48(2)	25(2)	1(1)	-11(1)	-11(1)
C(11)	36(2)	33(1)	31(2)	0(1)	-17(1)	-7(1)
C(12)	30(2)	26(1)	31(2)	-3(1)	-11(1)	-6(1)
C(13)	31(2)	26(1)	33(2)	-2(1)	-10(1)	-5(1)
C(14)	35(2)	40(2)	40(2)	3(1)	-14(1)	-8(1)
C(15)	32(2)	51(2)	57(2)	2(2)	-13(2)	-7(1)
C(16)	31(2)	45(2)	63(2)	-2(2)	0(2)	-3(1)
C(17)	48(2)	45(2)	44(2)	-11(1)	-1(2)	-3(1)
C(18)	37(2)	40(2)	46(2)	-12(1)	-9(1)	-4(1)
C(19)	23(1)	35(1)	19(1)	-4(1)	-4(1)	-2(1)
C(20)	39(2)	37(2)	32(2)	-1(1)	-11(1)	-10(1)
C(21)	42(2)	49(2)	34(2)	8(1)	-5(1)	-6(1)
C(22)	34(2)	76(2)	23(2)	-1(2)	-5(1)	3(2)
C(23)	36(2)	80(2)	29(2)	-13(2)	-10(1)	-13(2)
C(24)	30(2)	52(2)	30(2)	-9(1)	-6(1)	-15(1)
N(1)	26(1)	33(1)	20(1)	-1(1)	-5(1)	-7(1)
O(1)	40(1)	41(1)	32(1)	5(1)	-3(1)	1(1)

Table 5.Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å $^2x \ 10^3$)for d18758.

	Х	у	Z	U(eq)
H(3)	2015	5171	5286	40
H(4)	-153	4573	6750	52
H(5)	-199	2208	7568	53
H(6)	1949	407	6875	51
H(7)	4148	1007	5448	44
H(10A)	5113	2889	7112	64
H(10B)	6551	1799	7434	64
H(10C)	5332	1207	7074	64
H(11)	8928	1290	5443	38

H(14)	11154	2339	3873	46
H(15)	13594	1921	2473	57
H(16)	14130	1163	344	61
H(17)	12214	770	-366	59
H(18)	9756	1177	1033	50
H(20)	8459	4815	1598	43
H(21)	8355	5668	-599	54
H(22)	7069	4704	-1635	58
H(23)	6006	2790	-532	57
H(24)	6210	1848	1627	43

b) X-ray crystallographic structure and data for compound '4c'

Table 1. Crystal data and structure refinement for 170328LT.

170328LT	
C24 H18 Cl N O	
371.84	
100(2) K	
0.71073 Å	
Monoclinic	
P 21/c	
a = 11.0623(5) Å	α= 90°.
b = 18.5108(9) Å	β=98.868(2)°.
c = 9.7609(4) Å	$\gamma = 90^{\circ}$.
1974.87(15) Å ³	
4	
	170328LT C24 H18 Cl N O 371.84 100(2) K 0.71073 Å Monoclinic P 21/c a = 11.0623(5) Å b = 18.5108(9) Å c = 9.7609(4) Å 1974.87(15) Å ³ 4

Density (calculated)	1.251 Mg/m ³
Absorption coefficient	0.206 mm ⁻¹
F(000)	776
Crystal size	0.15 x 0.02 x 0.01 mm ³
Theta range for data collection	2.164 to 26.391°.
Index ranges	-13<=h<=13, -23<=k<=23, -6<=l<=12
Reflections collected	14743
Independent reflections	4036 [R(int) = 0.0319]
Completeness to theta = 25.242°	100.0 %
Absorption correction	Semi-empirical from equivalents
Absorption correction Max. and min. transmission	Semi-empirical from equivalents 0.9485 and 0.9026
Absorption correction Max. and min. transmission Refinement method	Semi-empirical from equivalents 0.9485 and 0.9026 Full-matrix least-squares on F ²
Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters	Semi-empirical from equivalents 0.9485 and 0.9026 Full-matrix least-squares on F ² 4036 / 0 / 245
Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ²	Semi-empirical from equivalents 0.9485 and 0.9026 Full-matrix least-squares on F ² 4036 / 0 / 245 1.025
Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)]	Semi-empirical from equivalents 0.9485 and 0.9026 Full-matrix least-squares on F ² 4036 / 0 / 245 1.025 R1 = 0.0464, wR2 = 0.1095
Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data)	Semi-empirical from equivalents 0.9485 and 0.9026 Full-matrix least-squares on F ² 4036 / 0 / 245 1.025 R1 = 0.0464, wR2 = 0.1095 R1 = 0.0820, wR2 = 0.1281
Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient	Semi-empirical from equivalents 0.9485 and 0.9026 Full-matrix least-squares on F ² 4036 / 0 / 245 1.025 R1 = 0.0464, wR2 = 0.1095 R1 = 0.0820, wR2 = 0.1281 n/a

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å $^2x \ 10^3$) for 170328LT. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)
Cl(1)	-3279(1)	8520(1)	357(1)	102(1)
O(1)	1422(1)	7380(1)	921(2)	71(1)
N(1)	1993(1)	8687(1)	2496(2)	47(1)
C(1)	3612(3)	5365(2)	3488(4)	94(1)
C(2)	3543(2)	5921(2)	4410(3)	80(1)
C(3)	3122(2)	6587(1)	3914(2)	64(1)
C(4)	2762(2)	6692(1)	2506(2)	52(1)
C(5)	2237(2)	7389(1)	1926(2)	53(1)
C(6)	2722(2)	8069(1)	2562(2)	50(1)
C(7)	2700(2)	9267(1)	3007(2)	50(1)
C(8)	2250(2)	9998(1)	3225(2)	53(1)
C(9)	1091(2)	10146(1)	3542(2)	64(1)
C(10)	739(3)	10844(1)	3801(3)	79(1)
C(11)	1532(3)	11406(1)	3770(3)	89(1)

C(12)	3253(3)	5465(2)	2096(3)	99(1)
C(13)	2823(2)	6122(1)	1610(2)	74(1)
C(14)	3879(2)	9013(1)	3351(2)	59(1)
C(15)	3908(2)	8274(1)	3090(2)	59(1)
C(16)	5053(2)	7824(2)	3302(3)	91(1)
C(17)	2681(3)	11273(1)	3468(3)	89(1)
C(18)	3038(2)	10579(1)	3186(2)	71(1)
C(19)	704(2)	8682(1)	2012(2)	48(1)
C(20)	-63(2)	8336(1)	2784(2)	56(1)
C(21)	-1298(2)	8300(1)	2289(2)	64(1)
C(22)	-1735(2)	8606(1)	1019(3)	64(1)
C(23)	-974(2)	8962(1)	260(2)	68(1)
C(24)	256(2)	8999(1)	756(2)	60(1)

Table 3. Bond lengths [Å] and angles [°] for 170328LT.

Cl(1)-C(22)	1.738(2)
O(1)-C(5)	1.226(2)
N(1)-C(7)	1.376(2)
N(1)-C(6)	1.395(2)
N(1)-C(19)	1.431(2)
C(1)-C(12)	1.368(4)
C(1)-C(2)	1.378(4)
C(1)-H(1)	0.9500
C(2)-C(3)	1.378(3)
C(2)-H(15)	0.9500
C(3)-C(4)	1.384(3)
C(3)-H(16)	0.9500
C(4)-C(13)	1.380(3)
C(4)-C(5)	1.490(3)
C(5)-C(6)	1.468(3)
C(6)-C(15)	1.387(3)
C(7)-C(14)	1.378(3)
C(7)-C(8)	1.468(3)
C(8)-C(18)	1.389(3)
C(8)-C(9)	1.391(3)
C(9)-C(10)	1.384(3)

C(9)-H(7)	0.9500
C(10)-C(11)	1.364(4)
C(10)-H(8)	0.9500
C(11)-C(17)	1.371(4)
C(11)-H(2)	0.9500
C(12)-C(13)	1.363(3)
C(12)-H(18)	0.9500
C(13)-H(17)	0.9500
C(14)-C(15)	1.392(3)
C(14)-H(3)	0.9500
C(15)-C(16)	1.504(3)
C(16)-H(4)	0.9800
C(16)-H(6)	0.9800
C(16)-H(5)	0.9800
C(17)-C(18)	1.384(4)
C(17)-H(10)	0.9500
C(18)-H(9)	0.9500
C(19)-C(20)	1.377(3)
C(19)-C(24)	1.381(3)
C(20)-C(21)	1.379(3)
C(20)-H(14)	0.9500
C(21)-C(22)	1.381(3)
C(21)-H(13)	0.9500
C(22)-C(23)	1.373(3)
C(23)-C(24)	1.375(3)
C(23)-H(12)	0.9500
C(24)-H(11)	0.9500
C(7)-N(1)-C(6)	109.37(16)
C(7)-N(1)-C(19)	127.32(16)
C(6)-N(1)-C(19)	123.28(16)
C(12)-C(1)-C(2)	120.7(2)
C(12)-C(1)-H(1)	119.6
C(2)-C(1)-H(1)	119.6
C(1)-C(2)-C(3)	119.2(2)
C(1)-C(2)-H(15)	120.4
C(3)-C(2)-H(15)	120.4
C(2)-C(3)-C(4)	120.3(2)

C(2)-C(3)-H(16)	119.8
C(4)-C(3)-H(16)	119.8
C(13)-C(4)-C(3)	119.1(2)
C(13)-C(4)-C(5)	118.42(18)
C(3)-C(4)-C(5)	122.32(18)
O(1)-C(5)-C(6)	121.74(18)
O(1)-C(5)-C(4)	119.21(18)
C(6)-C(5)-C(4)	119.05(17)
C(15)-C(6)-N(1)	107.39(18)
C(15)-C(6)-C(5)	130.96(19)
N(1)-C(6)-C(5)	120.85(17)
N(1)-C(7)-C(14)	106.55(18)
N(1)-C(7)-C(8)	125.81(17)
C(14)-C(7)-C(8)	127.50(19)
C(18)-C(8)-C(9)	117.2(2)
C(18)-C(8)-C(7)	118.8(2)
C(9)-C(8)-C(7)	123.93(19)
C(10)-C(9)-C(8)	121.3(2)
C(10)-C(9)-H(7)	119.4
C(8)-C(9)-H(7)	119.4
C(11)-C(10)-C(9)	120.5(3)
C(11)-C(10)-H(8)	119.7
C(9)-C(10)-H(8)	119.7
C(10)-C(11)-C(17)	119.2(3)
C(10)-C(11)-H(2)	120.4
C(17)-C(11)-H(2)	120.4
C(13)-C(12)-C(1)	119.9(3)
C(13)-C(12)-H(18)	120.0
C(1)-C(12)-H(18)	120.0
C(12)-C(13)-C(4)	120.7(2)
C(12)-C(13)-H(17)	119.7
C(4)-C(13)-H(17)	119.7
C(7)-C(14)-C(15)	109.79(18)
C(7)-C(14)-H(3)	125.1
C(15)-C(14)-H(3)	125.1
C(6)-C(15)-C(14)	106.87(18)
C(6)-C(15)-C(16)	128.9(2)
C(14)-C(15)-C(16)	124.2(2)

C(15)-C(16)-H(4)	109.5
C(15)-C(16)-H(6)	109.5
H(4)-C(16)-H(6)	109.5
C(15)-C(16)-H(5)	109.5
H(4)-C(16)-H(5)	109.5
H(6)-C(16)-H(5)	109.5
C(11)-C(17)-C(18)	120.8(3)
C(11)-C(17)-H(10)	119.6
C(18)-C(17)-H(10)	119.6
C(17)-C(18)-C(8)	120.9(2)
C(17)-C(18)-H(9)	119.5
C(8)-C(18)-H(9)	119.5
C(20)-C(19)-C(24)	121.12(19)
C(20)-C(19)-N(1)	119.28(17)
C(24)-C(19)-N(1)	119.56(17)
C(19)-C(20)-C(21)	119.47(19)
C(19)-C(20)-H(14)	120.3
C(21)-C(20)-H(14)	120.3
C(20)-C(21)-C(22)	119.1(2)
C(20)-C(21)-H(13)	120.5
C(22)-C(21)-H(13)	120.5
C(23)-C(22)-C(21)	121.5(2)
C(23)-C(22)-Cl(1)	119.49(18)
C(21)-C(22)-Cl(1)	119.01(19)
C(22)-C(23)-C(24)	119.4(2)
C(22)-C(23)-H(12)	120.3
C(24)-C(23)-H(12)	120.3
C(23)-C(24)-C(19)	119.5(2)
C(23)-C(24)-H(11)	120.3
C(19)-C(24)-H(11)	120.3

Symmetry transformations used to generate equivalent atoms:

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for 170328LT. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

U^{11}	U ²²	U ³³	U ²³	U ¹³	U^{12}

Cl(1)	55(1)	99(1)	138(1)	-19(1)	-26(1)	-11(1)
O (1)	80(1)	66(1)	57(1)	-3(1)	-16(1)	6(1)
N(1)	47(1)	49(1)	43(1)	2(1)	-2(1)	2(1)
C(1)	88(2)	58(2)	129(3)	16(2)	-4(2)	14(1)
C(2)	85(2)	84(2)	71(2)	28(1)	11(1)	13(1)
C(3)	80(2)	66(2)	50(1)	5(1)	15(1)	14(1)
C(4)	54(1)	55(1)	47(1)	0(1)	11(1)	6(1)
C(5)	56(1)	59(1)	43(1)	2(1)	6(1)	6(1)
C(6)	52(1)	52(1)	44(1)	5(1)	0(1)	7(1)
C(7)	52(1)	52(1)	43(1)	3(1)	0(1)	-6(1)
C(8)	62(1)	50(1)	44(1)	4(1)	-1(1)	-4(1)
C(9)	73(2)	53(1)	67(1)	-3(1)	14(1)	-3(1)
C(10)	95(2)	60(2)	85(2)	-5(1)	23(1)	7(1)
C(11)	123(3)	55(2)	90(2)	-5(1)	21(2)	2(2)
C(12)	105(2)	69(2)	113(2)	-26(2)	-18(2)	32(2)
C(13)	80(2)	73(2)	64(1)	-15(1)	-1(1)	21(1)
C(14)	48(1)	64(2)	60(1)	3(1)	-4(1)	-6(1)
C(15)	50(1)	65(2)	58(1)	6(1)	-2(1)	7(1)
C(16)	54(1)	88(2)	126(2)	9(2)	-2(1)	15(1)
C(17)	118(2)	52(2)	94(2)	-1(1)	6(2)	-23(2)
C(18)	74(2)	64(2)	73(2)	2(1)	3(1)	-14(1)
C(19)	45(1)	46(1)	48(1)	-1(1)	-3(1)	1(1)
C(20)	56(1)	58(1)	52(1)	0(1)	3(1)	-3(1)
C(21)	55(1)	63(1)	74(2)	-8(1)	9(1)	-11(1)
C(22)	47(1)	56(1)	82(2)	-15(1)	-9(1)	-2(1)
C(23)	64(1)	66(2)	66(1)	6(1)	-18(1)	3(1)
C(24)	57(1)	62(1)	58(1)	11(1)	-4(1)	0(1)

	Х	у	Z	U(eq)
H(1)	3911	4907	3822	112
H(15)	3783	5847	5377	96
H(16)	3079	6975	4541	77
H(7)	531	9760	3582	77
H(8)	-61	10932	4001	95
H(2)	1291	11884	3955	107
H(18)	3304	5078	1469	119
H(17)	2562	6187	644	89
H(3)	4568	9299	3711	71
H(4)	5129	7580	4203	137
H(6)	5765	8136	3279	137
H(5)	5010	7462	2563	137
H(10)	3239	11662	3452	107
H(9)	3834	10499	2963	86
H(14)	256	8125	3652	68
H(13)	-1840	8066	2813	77
H(12)	-1295	9180	-600	82
H(11)	794	9242	239	72

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å 2 x 10^3) for 170328LT.

Table 6. Torsion angles [°] for 170328LT.

C(12)-C(1)-C(2)-C(3)	-0.8(4)
C(1)-C(2)-C(3)-C(4)	0.6(4)
C(2)-C(3)-C(4)-C(13)	0.4(3)
C(2)-C(3)-C(4)-C(5)	176.5(2)
C(13)-C(4)-C(5)-O(1)	32.3(3)
C(3)-C(4)-C(5)-O(1)	-143.8(2)
C(13)-C(4)-C(5)-C(6)	-146.8(2)
C(3)-C(4)-C(5)-C(6)	37.1(3)
C(7)-N(1)-C(6)-C(15)	-1.5(2)
C(19)-N(1)-C(6)-C(15)	-179.37(16)

C(7)-N(1)-C(6)-C(5)	-172.33(17)
C(19)-N(1)-C(6)-C(5)	9.9(3)
O(1)-C(5)-C(6)-C(15)	-140.2(2)
C(4)-C(5)-C(6)-C(15)	38.9(3)
O(1)-C(5)-C(6)-N(1)	28.1(3)
C(4)-C(5)-C(6)-N(1)	-152.75(17)
C(6)-N(1)-C(7)-C(14)	1.8(2)
C(19)-N(1)-C(7)-C(14)	179.55(17)
C(6)-N(1)-C(7)-C(8)	-174.25(17)
C(19)-N(1)-C(7)-C(8)	3.5(3)
N(1)-C(7)-C(8)-C(18)	-153.69(19)
C(14)-C(7)-C(8)-C(18)	31.0(3)
N(1)-C(7)-C(8)-C(9)	29.8(3)
C(14)-C(7)-C(8)-C(9)	-145.5(2)
C(18)-C(8)-C(9)-C(10)	0.3(3)
C(7)-C(8)-C(9)-C(10)	176.90(19)
C(8)-C(9)-C(10)-C(11)	-0.9(4)
C(9)-C(10)-C(11)-C(17)	0.5(4)
C(2)-C(1)-C(12)-C(13)	0.0(5)
C(1)-C(12)-C(13)-C(4)	1.0(5)
C(3)-C(4)-C(13)-C(12)	-1.3(4)
C(5)-C(4)-C(13)-C(12)	-177.5(2)
N(1)-C(7)-C(14)-C(15)	-1.5(2)
C(8)-C(7)-C(14)-C(15)	174.55(18)
N(1)-C(6)-C(15)-C(14)	0.6(2)
C(5)-C(6)-C(15)-C(14)	170.1(2)
N(1)-C(6)-C(15)-C(16)	-176.6(2)
C(5)-C(6)-C(15)-C(16)	-7.1(4)
C(7)-C(14)-C(15)-C(6)	0.5(2)
C(7)-C(14)-C(15)-C(16)	177.9(2)
C(10)-C(11)-C(17)-C(18)	0.5(4)
C(11)-C(17)-C(18)-C(8)	-1.1(4)
C(9)-C(8)-C(18)-C(17)	0.7(3)
C(7)-C(8)-C(18)-C(17)	-176.1(2)
C(7)-N(1)-C(19)-C(20)	-109.5(2)
C(6)-N(1)-C(19)-C(20)	67.9(2)
C(7)-N(1)-C(19)-C(24)	72.9(2)
C(6)-N(1)-C(19)-C(24)	-109.7(2)

C(24)-C(19)-C(20)-C(21)	0.8(3)
N(1)-C(19)-C(20)-C(21)	-176.81(18)
C(19)-C(20)-C(21)-C(22)	0.5(3)
C(20)-C(21)-C(22)-C(23)	-1.7(3)
C(20)-C(21)-C(22)-Cl(1)	176.87(16)
C(21)-C(22)-C(23)-C(24)	1.6(3)
Cl(1)-C(22)-C(23)-C(24)	-176.94(17)
C(22)-C(23)-C(24)-C(19)	-0.3(3)
C(20)-C(19)-C(24)-C(23)	-0.9(3)
N(1)-C(19)-C(24)-C(23)	176.72(19)

Symmetry transformations used to generate equivalent atoms:

		93.27 77.32 76.68	
Current Data Parameters NAME 20170830 EXPNO 3 PROCNO 1 F2 - Acquisition Parameters Date_ 20170830 Time 21.28 INSTRUM spect PROBHD 5 mm DUL 13C-1 PULPROG 2gpg30 TD 65536 SOLVENT CDC13 NS 85 DS 00 parameters	nadionalist statements and statements and statements	un Lybinolaun u.s. e. Mahristan borfoitela Mahristan aibea hana dh'aistea aibea	nak his met som se blir an star star vär met and same att som star som att som ble an star som store star og be
FIDRES 0.346791 Hz AQ 1.4418420 sec RG 2050 DW 22.000 usec DE 6.00 usec DE 6.00 usec DI 2.0000000 sec DI1 0.0300000 sec DELTA 1.8999998 sec TD0 1	an to be an a feat of a second se	OH Me 1i	na fa fa ta an
PERFECT CHANNEL f2 PERFECt NUC2 1H PCPD2 90.00 usec PL2 -2.40 dB PL12 15.10 dB PL13 18.10 dB SF02 400.1516010 MHz F2 Processing parameters SI 32768 SF 100.6178019 MHz WDW EM SSB 0 LB 3.00 Hz GB 0 PC 1.00	or a to a second a second de la s		
190 180 170 160 150	140 130 120 110	0 100 90 80 70	60 50 40 30 20 ppm

190 180 170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	ppm
F2 - Processing parame SI 3276 SF 100.617801 WDW E SSB LB 3.0 GB PC 1.0	ters 8 0 MHz 0 0 Hz 0 0	ukuloon kitoa atu induksia	Antonikala dan mbarat	a de la d	wina hare here			restances for the second		1		1400m-1000140aa.0111		2.644.7 (m.).942.8 (m.).	rululadaashaarta	hauther actual laws
====== CHANNEL f2 == CPDFRG2 waltz1 PCPD 90.0 PL2 -2.4 PL12 15.1 PL13 18.1 SF02 400.151601	6 0 usec 0 dB 0 dB 0 dB 0 dB 0 dB 0 MHz	hrvaladipsistanujivasi	nyungu uniyiyi u layin	where a discord	holador (nan artica)	alle an investigations	helverforsternise	nen hander an	Last ion-1466/1047/11	nter and the second		hales the first of	64/170/07/17000/000	****	hyseniaantistyd byd	ugodisel ^{jus} ustutiviteer
====== CHANNEL f1 == NUC1 13 P1 9.7 PL1 -0.5 SF01 100.628866	C O usec O dB O MHz			LI							s	/// I	Me [─] ─		S	
DW 22.00 DE 6.0 TE 300. D1 2.000000 d11 0.0300000 DELTA 1.8999999 TD0	0 usec 0 usec 0 K 0 sec 0 sec 8 sec 1											(ЭН			
RG SWH 2012/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2	0 sec 0	****	alian da an	Applant binitist	union and the states	in the section of the	uter and the second states of	uildurananinan	erredriver and the	ullet hat the work of the	perforteristication for the	ian in the state of the	in the second of the	langit ping a page line	a the state of the	nanthelite an
F2 - Acquisition Param Date2017083 Time 21.4 INSTRUM spec PROBHD 5 mm DUL 13C- PULPROG zgpq3 TD 6553 SOLVENT CDCI NS 9 DS 5	eters 0 0 t 1 0 6 3 7 0 0															
Current Data Parameter NAME 2017083 EXPNO PROCNO	s 0 6 1															
				129.	121.			.68	2.77.3 77.3	~ 76.6						

THE PERSON NEW YORK OF															
F2 - Proce SI SF WDW SSB LB GB GB PC	essing parameters 32768 100.6178000 MHz EM 0 3.00 Hz 0 1.00		*****	adverte file file file file file file file fil	under de fan te fan de fan	the state of the			mmulan		₩.₩₩₩₩₩₩₩₩₩₩		417 Mar & 1940 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 194		
CPDPRG2 NUC2 PCPD2 PL12 PL12 PL13 SFO2	CHANNEL f2 ======= waltz16 18 90.00.usec 12.40 dB 15.10 dB 18.10 dB 400.1516010 MHz	1987-yily - 2000 May 100 yil 100	₩₩₽₽₩₩₩₽₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	ter, i jez, de per que l'Attaip	na anna an tha anna an tha anna anna ann		tahindata ayanan	he carres and a start ways	Angli Inwaing ang	and an or a first starting	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	rifilitiophinister	18,400%ar-1986ar-1985ferty	www.	
NUC1 P1 PL1 SF01	CHANNEL f1 ====== 13C 9.70 usec -0.50 dB 100.6288660 MHz			Ме 1k											Ĩ
TE D1 d11 DELTA TD0	300.0 K 2.0000000 sec 0.03000000 sec 1.89999998 sec 1			ОН											
FIDRES AQ RG DW DE	0.346791 Hz 1.4418420 sec 2050 22.000 usec 6.00 usec														
F2 - Acqu Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS	isition Parameters 20170720 22.06 spect 5 mm DUL 13C-1 2gpg30 65536 CDC13 210 0	14-14/10 ⁰⁰ -14/10 ¹ -14/10 ¹ 00			10 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -		n fra de francés de se se se	Handhachurgaga		syndeligen og sillere okjeller				-	wyangelyna de siene
Current Da NAME EXPNO PROCNO	ata Parameters 20170720 4 1							¥	I			I		J	
			.8 10				- 85 _ 77 _ 77	77	60			32			0

19	90 1		170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	ppm
F2 SI SF UI SS LE GE PC	2 - Pro F DW SB B B C	100	g parame 3276 0.617800 E 3.0 1.0	Ters 7 MHz M 0 Hz 0 0	hungstogener	New an and Mary American Street	14 Pro-Vice/Hitzarday		han a free free the	ellaret-teletorarigen	Norma di Sula Prima	wheneved	14 taipatapristor	manufamation	illes/feel argentes/feel	nort-famous bringerburg	and the second second	elantiteterar re	uanyamany/hityofigareshiyidaya
PI PI SH	L13 F02	40	15.1 18.1 0.151601	0 dB 0 MHz															
CE NU PC	PDPRG2 JC2 CPD2 L2		waltz1 1 90.0	6 H O usec O dB	1841,0800,11180,011,114,	and the second secon					al frank for the second		une angle from the second	liter Providence in State in the	~~	upped are appropriate or the	united and the	ณาการการการการการการการการการการการการการ	mound
NU P1 PI SF	JC1 1 L1 F01	10 CHANNI	13 9.7 -0.5 0.628866 EL f2 ==	C O usec O dB O MHz				 M 11	e	F									
DE TI	ELTA D0		.0300000 .8999999	0 sec 8 sec 1				o ↓	Н										
DV DE TE D1	W 5 5 1	2	22.00 6.0 300.	0 usec 0 usec 0 K 0 sec															
AC RC	nn IDRES 2 3 3	trikely to starting	0.34679 1.441842 205	0 sec	4 644444444444444444444444444444444444	n na harang ta bang ta	udiyetayikikisykiqtarifika	erstelligtontleasurthertyldy	***	A. 24 A. Style & March	weeks yeeks address of the	jræðdigi fræði er fræði er skalda	n hi an fan de sen an de sen a	****	ntrational and the second s	ų ar angeli i stati angeli ar at	manyappeninen		Haynan Mary Jawa Madana
F2 Da Ti IN PI PU TI SC NS SS	2 - Acq ate_ ime NSTRUM ROBHD JLPROG D DLVENT S S WH	uisiti 5 mm 1	Dn Param 2017083 8.4 spec DUL 13C- zgpg3 6553 CDC1 11	eters 1 5 t 1 0 6 3 0 0 0 3 Hz													Ī	1	
Cu NZ EX PF	AME AME KPNO ROCNO	Data Pa	arameter 2017083	s 1 2 1				1			1			,			1	,	
							125.	122.			.68	83.6 77.3	~ 76.6	60.5			31.8	23	

		134.74 133.32 133.32 133.06		91.20	82.90 82.90 81.37 77.32 77.00	60.88 60.88		
Current Data Parameters NAME 20170802 EXPNO 4 PROCNO 1 F2 - Acquisition Parameter Date_ 20170802 Time 21.32 INSTRUM spect PROBHD 5 mm DUL 13C-1 PULPROG zgpg30 TD 65536 SOLVENT CDC13 NS 419 PS 4000000000000000000000000000000000000	915 1015	h the star before such a successful have such the successful have	1111-111-11-11-11-11-11-11-11-11-11-11-	Las annu (no investigations and the sub-	andy is a state of a st	selevilie and videsily, and endow	nan Januar na sua ka sana malimbi	weelte Actuellon and a sources and a source a
Comment <t< td=""><td>Enter of the latent of the lat</td><td>a me ter une ne Mendel a de en stitues</td><td></td><td>सम् । सम्बद्धाः । सः विस्त के सिर्वन्त के सिर्वन्त के सिर्वन्त के सिर्वन्त के सिर्वन्त के सिर्वन्त के सिर्वन्त</td><td>a uthat is a tank is do</td><td>MeO</td><td></td><td></td></t<>	Enter of the latent of the lat	a me ter une ne Mendel a de en stitues		सम् । सम्बद्धाः । सः विस्त के सिर्वन्त	a uthat is a tank is do	MeO		
====== CHANNEL f2 ==== PECNOL NUC2 1H PCPD2 90.00 1 PL2 -2.40 c PL12 15.10 c PL12 15.10 c PL13 18.10 c SF02 400.1516010 M F2 - Processing parameter SI 32768 SF 100.617791 M WDW EM SSB 0 LB 3.00 H GB 0 PC 1.00	nec ny fakaona ang ang ang ang ang ang ang ang ang a				*****		9699969769769769769769769769769769769769	۳۰.48.26.0.00.00.00.00.00.00.00.00.00.00.00.00.
190 180 170) 160 150	140 130	120 11	0 100 90) <u>80</u>	70 60	50 40	30 20 ppm

3.858 3.847 3.836

 2.316 2.303 2.290 1.5681.5561.5421.5421.5421.5181.5181.5180.805 0.793 0.780

.2.002

		139.29 132.98 131.73 131.73 129.96 128.13 128.13 128.13 128.13	1124.55 113.44 113.44 112.21	77.32 77.00	55.38 55.14		
Current Data Parameters NAME 20170725 EXPNO 5 PROCNO 1							
F2 - Acquisition Parameters Date_ 20170725 Time 21.00 INSTRUM spect PROBHD 5 mm DUL 13C-1 PULPROG zqpg30 TD 65536 SOLVENT CDC13 NS 692 DS 0 SWH 22727.273 Hz							
AQ 1.4418420 sec RG 2050 DW 22.000 usec DE 6.00 usec TE 300.0 K D1 2.0000000 sec dl1 0.0300000 sec DELTA 1.89999998 sec TD0 1					MeO		
CHANNEL f1 II NUC1 13C P1 9.70 usec PL1 -0.50 dB SF01 100.6288660 MHz CEDPEG2 waltz16				1	Me 3h	OMe	
NGC2 90.00 usec PCPD2 90.00 usec PL2 -2.40 dB PL12 15.10 dB PL13 18.10 dB SF02 400.1516010 MHz	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					*****	
F2 - Processing parameters SI 32768 SF 100.6178011 MHz WDW EM SSB 0 LB 3.00 Hz GB 0 PC 1.00						une ange al a superior of the contraction of the co	
210 200 190 180	170 160 150	140 130 120	D 110 100	90 80	70 60 50	40 30 20) ppm

2.441 2.417 2.399 2.399 1.552 1.514 1.514 1.242 1.242 1.242 1.242 1.242 1.242 1.242 1.242 0.832 0.794

	6 7 9	•	52.94		40.65 32.40	29.69 28.94 28.94	26.57	l3.45 l1.98			7.32	. 00	r c	10.1			0	ο 4. Ο
		1	16									1	ŭ					,
Current D NAME EXPNO PROCNO	ata Parameters 201710052 6 1										>							
F2 - Acqu Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES	isition Parameter 20171005 spect 5 mm DUL 13C-1 2gpg30 65536 CDC13 219 0 22727.273 Hz 0.346791 Hz	S							[N Me 3w		OMe		l				
AQ RG DW DE TE D1 d11 DELTA TD0	1.4418420 se 2050 22:000 us 6.00 us 300.0 K 2.00000000 se 0.03000000 se 1.8999998 se 1	c ec ec c c	alla, la frança de la	nterre detre equile et	5904,Augustona										****	_~		
NUC1 P1 PL1 SFO1	CHANNEL f1 ====== 13C 9.70 us -0.50 dB 100.6288660 MH CHANNEL f2 ======	== ec z																
CP DPR02 NUC2 PCPD2 PL2 PL12 PL13 SF02	90.00 us -2.40 dB 15.10 dB 18.10 dB 400.1516010 MH	ec z	****	*****	****	مىيەماسىمامىللى	hay a way baga	مىرىيەتمەرلىلىر	*****			92009/10-96-99-99-99	*****		****		*****	900-0
F2 - Proc SI SF WDW SSB LB GB PC	essing parameters 32768 100.6178030 MH EM 0 3.00 Hz 1.00	Z							1649-yan, 2014-00-10-19-10-19-			Land Speech of Star Star		-	augharp-adapida/bit	schartmastermann	han sayaha sa	Marina and a frequencies of the second se
21	10 200 190	180 1	70 160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	ppm

S178

S181

				·····				
F2 - Processing paramete SI 65536 SF 150.4678014 WDW EM SSB 0 LB 3.00 GB 0 PC 2.00	rs MHz Hz			I		1		
CHANNEL F2 CHANNEL F2 CPDPRG2 waltz16 NUC2 1H PCPD2 92.00 PL2 120.00 PL12 5.50 PL13 9.00 SF02 598.4029920	usec dB dB dB MHz							
MCWRK 0.01500000 	sec ==== usec MHz							
DS 0 SWH 45045.047 FIDRES 1.374666 AQ 0.3637748 RG 4096 DW 11.100 DE 6.50 TE 302.9 D1 3.5000000 dil 0.3300000 DELTA 3.4000010 MCREST 0 sec	Hz Hz sec usec usec K sec sec sec		. 1					
F2 Acquisition Paramet Date_ 20171101 Time 5.48 INSTRUM spect PROBHD 5 mm QNP PULPROG zgpg TD 32768 SOLVENT CDC13 NS 1024	ers	100000-1000-1000-1000-1000-1000-1000-1					5a	
Current Data Parameters NAME Yu-7-166 EXPNO 2 PROCNO 1						A		
		144	131	108	77. 77.		CO ₂ Et	20. 141 144 114 124 7 2

S186

3.936 3.924 3.912 3.900

V

S190