ELECTRONIC SUPPLEMENTARY INFORMATION

Geminal cross-coupling synthesis, ion-induced emission and

lysosome imaging of cationic tetraarylethene oligoelectrolytes

Qi-Yuan Zhou, \# Bo Xin, \# Ya-Long Wang,\# Chong Li,* Ze-Qiang Chen, Qi Yu, Zhen-Li Huang, and MingQiang Zhu*

CONTENTS

1. EXPERIMENTAL:
(a) MATERIALS AND INSTRUMENTATION
(b) SYNTHESIS PROCEDURES
(c) CELL CULTURE AND IMAGING
2. SUPPLEMENTARY NOTES
3. ${ }^{1} \mathrm{H}$ NMR SPECTRA of OF_{n} AND $\mathrm{OF}_{\mathrm{n}}+$
4. UV AND FL SPECTRA OF OF_{n} AND $\mathrm{OF}_{\mathrm{n}}+$ IN THF OR WATER
5. DENSITY FUNCTIONAL THEORY CALCULATIONS
6. FLUORESCENCE SPECTRA
7. FLUORESCENCE COLOCALIZATION IMAGING OF HELA CELLS
8. FLUORESCENCE QUANTUM YIELDS
9. NMR SPECTRA
10. MASS SPECTRA
11. REFERENCES

1. EXPERIMENTAL

(a) MATERIALS AND INSTRUMENTATION

All commercially available starting materials, reagents and solvents were used as supplied, unless otherwise stated, and were purchased from Energy, Aladdin, Alfa Aesar, J\&K and Sinopharm Chemical Reagent Co. Ltd. All reactions were carried out under a dry nitrogen atmosphere and the temperatures were measured externally. Toluene, dioxane and tetrahydrofuran (THF) were dried using sodium wire and benzophenone as the indicator. Other solvents were dried over CaH_{2} with stirring overnight followed by distillation under reduced pressure. Reported yields are isolated yields. Purification of all final products was accomplished by gravity column chromatography, using silica gel. For qualitative purity tests of all intermediates and final products, a single spot (visualized using UV-light at 254 nm and 365 nm) was obtained on thin film chromatography plate. The UV-Vis absorption and photoluminescence emission of the compounds were recorded on Shimadzu UV-VIS-NIR Spectrophotometer (UV-3600) and Edinburgh instruments (FLS 920 spectrometers), respectively. The NMR spectra were recorded using a 600 M Bruker AscendTM 600 MHz in CDCl_{3} or $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and an internal standard of tetramethylsilane was used. The relative fluorescence quantum yields were estimated using $\mathrm{N}, \mathrm{N}^{\prime}$-di(2,6 -diisopropylpheny)terrylene-3,4:11,12-tetracarboxdiimides in chloroform as standard material. The Mass spectra were recorded using an Agilent 1100 LC/MSD Trap. MALDI TOF mass spectra were recorded with a MALDI-TOF-TOF (Bruker ultrafleXtreme).

(b) SYNTHESIS PROCEDURES

The 9-(dibromomethylene)-9H-xanthene was synthesized via the Corey-Fuchs reaction from 9 H -xanthen9 -one with a high yield according to previous works. ${ }^{1,2}$

Scheme S1. The synthesis route to OF_{1} and $\mathrm{OF}_{1}+$

The synthesis of 9-(dibromomethylene)-9H-xanthene $\mathbf{1 , 2}$

9 H -xanthen-9-one ($3.92 \mathrm{~g}, 20.0 \mathrm{mmol}$), carbon tetrabromide ($13.265 \mathrm{~g}, 40.0 \mathrm{mmol}$), and triphenyl phosphine $(17.530 \mathrm{~g}, 80.0 \mathrm{mmol})$ were combined in 100 mL of anhydrous toluene. The mixture was refluxed at $140^{\circ} \mathrm{C}$ for 72 h . Column
 chromatography of the crude product on silica gel with hexanes as the eluent gave 9-(dibromomethylene)9 H -xanthene as a white solid, followed by recrystallization from hexane/diethyl ether to obtain a white crystal in 74% yield. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{dd}, \mathrm{J}=7.9,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~m}, 2 \mathrm{H}), 7.23$ (dd, $\mathrm{J}=8.2,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.80,131.61,129.36,128.13,123.64$, 122.56, 116.58, 87.47.

The synthesis of compound $1 a^{3}$

Under a nitrogen atmosphere, $50 \mathrm{wt} \%$ sodium hydroxide aqueous solution (50 mL) was added to the mixture of 2-bromofluorene $(9.8 \mathrm{~g}, 40 \mathrm{mmol})$, tetrabutylammonium bromide ($1.28 \mathrm{~g}, 4 \mathrm{mmol}$) and 1, 6-Dibromohexane (150 mL).
 The reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 12 h . After cooling down to room temperature, the organic layer was separated and the water layer was extracted with DCM. The combined organic solution was washed with water several times. After evaporation of the dichloromethane, the residual liquid reagent was removed under vacuum. The crude product was purified by column chromatography over silica gel with hexane as the eluent to give a colorless liquid (19.01 g, yield 83.2\%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.37-$ $7.29(\mathrm{~m}, 3 \mathrm{H}), 3.28(\mathrm{t}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.00-1.87(\mathrm{~m}, 4 \mathrm{H}), 1.65(\mathrm{p}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.19(\mathrm{p}, J=7.6 \mathrm{~Hz}$, $4 \mathrm{H}), 1.12-1.03(\mathrm{~m}, 4 \mathrm{H}), 0.65-0.53(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.56,149.90,140.14$, $140.01,130.03,127.57,127.08,126.03,122.78,121.10,121.03,119.82,55.24,40.12,33.91,32.61,28.99$, 27.75, 23.46.

The synthesis of compound $1 b^{4}$

Under a nitrogen atmosphere, bis(pinacolato)diboron (11.43 g, 45 mmol), 1a $(17.14 \mathrm{~g}, 30 \mathrm{mmol})$, $\mathrm{KOAc}(11.76 \mathrm{~g}, 120 \mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(1.10 \mathrm{~g}, 1.5$ mmol) were dissolved in dioxane (300 mL) and heated to $90^{\circ} \mathrm{C}$ and stirred for 6 h .
 After cooling down to room temperature and evaporation of the 1, 4-dioxane. The residue was dissolved with 100 ml dichloromethane, and washed with water three times, the organic layer was dried over magnesium sulfate. The solvent was removed under vacuum. The crude product was purified by column chromatography over silica gel with hexane/dichloromethane as the eluent to give a light white solid $(13.73 \mathrm{~g}$, yield $74 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~d}$, $J=5.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.26(\mathrm{t}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.06-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{p}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.39(\mathrm{~s}, 12 \mathrm{H}), 1.16$ $(\mathrm{p}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.09-1.01(\mathrm{~m}, 4 \mathrm{H}), 0.63-0.51(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.90$, $149.46,144.10,140.91,133.83,128.69,127.59,126.82,122.82,120.16,119.03,83.74,54.95,40.06$, $33.95,32.64,29.00,27.74,24.96,23.43$.

The synthesis of compound OF_{1}

A mixture of 1, 1-dibromo-2,2-diphenylene($0.352 \mathrm{~g}, 1 \mathrm{mmol}), \mathbf{1 b}(1.48 \mathrm{~g}$, $2.4 \mathrm{mmol}), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.120 \mathrm{~g}, 0.1 \mathrm{mmol})$, tetrabutylammonium hydrogen sulfate $(0.034 \mathrm{~g}, 0.1 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.414 \mathrm{~g}, 3 \mathrm{mmol})$ were stirred in toluene (30 mL) and water (15 mL) under nitrogen atmosphere overnight at $90^{\circ} \mathrm{C}$. After cooling down to room temperature, the organic layer was separated and 50 mL dichloromethane was added. The organic solution was washed with water three times. The organic layer was dried over magnesium sulfate, and the solvent was removed under vacuum.

After filtration, the residue was purified by column chromatography over silica gel with hexane/dichloromethane as the eluent to give a red solid $(0.987 \mathrm{~g}, 84 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.68-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.18(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.09(\mathrm{~m}$, $4 \mathrm{H}), 6.65-6.60(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{t}, J=6.8 \mathrm{~Hz}, 8 \mathrm{H}), 1.91-1.78(\mathrm{~m}, 8 \mathrm{H}), 1.62(\mathrm{p}, J=7.1 \mathrm{~Hz}, 8 \mathrm{H}), 1.21-$ $1.08(\mathrm{~m}, 8 \mathrm{H}), 0.99(\mathrm{p}, J=7.4 \mathrm{~Hz}, 8 \mathrm{H}), 0.62-0.48(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.51$, 150.48, $142.56,140.75,139.77,139.57,129.03,128.55,127.95,127.10,126.93,125.01,124.82,124.12,122.67$, $122.29,120.01,119.73,116.39,54.85,40.17,33.93,32.66,29.07,27.79,26.92,23.50$. MALDI-TOF-MS calcd. for $\mathrm{C}_{64} \mathrm{H}_{70} \mathrm{Br}_{4} \mathrm{O}$: 1174.88 ; found: $[\mathrm{M}+]$ 1174.76.

The synthesis of $\mathbf{O F}_{1}+$

In a 25 ml flask, $\mathbf{O F}_{\mathbf{1}}(100 \mathrm{mg})$ was dissolved into 10 mL THF. 5 mL trimethylamine (TMA) solution in ethanol (33%) was then added at $-78^{\circ} \mathrm{C}$. After stirred at room temperature for 24 h , some solid precipitated. Then trimethylamine (TMA) solution in ethanol (33%) was added to the mixture until the solid was completely dissolved. After stirring for another 24 h , the solvent was evaporated at vacuum. The resulting solid mixture was washed with THF twice, collected by centrifugation and dried overnight in vacuum at $45^{\circ} \mathrm{C}$ to afford $\mathbf{O F}_{1} \mathbf{1}^{+}(110 \mathrm{mg}, 92 \%)$ as a light yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 7.83-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.35-$
 7.30 (m, 4H), 7.29 - 7.21 (m, 6H), 7.01 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.66 (t, $J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.25-3.15(\mathrm{~m}, 8 \mathrm{H}), 3.00(\mathrm{~s}, 36 \mathrm{H}), 2.00-1.84(\mathrm{~m}, 8 \mathrm{H}), 1.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 8 \mathrm{H}), 1.08-0.94(\mathrm{~m}$, 16 H), $0.60-0.39$ (m, 8H). ${ }^{13} \mathrm{C}$ NMR (151 MHz , DMSO) $\delta 153.41,150.67,142.47,140.62,140.50,139.73$, 129.02, 128.93, 128.23, 127.80, 127.48, 124.62, 124.35, 123.30, 122.84, 120.88, 120.50, 116.85, 65.49, 54.98, 52.51, 29.25, 25.92, 23.79, 22.52 .

Scheme S2. The synthesis of OF_{2} and $\mathrm{OF}_{2}+$

The synthesis of 2, 7-dibromo-9, 9-bis(6-bromohexyl)fluorine

Under a nitrogen atmosphere, $50 \mathrm{wt} \%$ sodium hydroxide aqueous solution $(50 \mathrm{~mL})$ was added to the mixture of 2, 7-dibromofluorene ($12.96 \mathrm{~g}, 40 \mathrm{mmol}$), tetrabutylammonium bromide ($1.28 \mathrm{~g}, 4 \mathrm{mmol}$) and 1, 6-Dibromohexane $(150 \mathrm{~mL})$. The reaction mixture
 was stirred at $70^{\circ} \mathrm{C}$ for 12 h . After cooling down to room temperature, the organic layer was separated and the water layer was extracted with DCM. The combined organic solution was washed with water several times. After evaporation of the dichloromethane, the residual liquid reagent was removed under vacuum. The crude product was purified by column chromatography over silica gel with hexane as the eluent to give a white solid (22.6 g , yield 87%). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J$ $=8.1,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{t}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.96-1.88(\mathrm{~m}, 4 \mathrm{H}), 1.67(\mathrm{p}, J=6.9$ $\mathrm{Hz}, 4 \mathrm{H}), 1.20(\mathrm{p}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.08(\mathrm{p}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 0.63-0.54(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 152.14,139.05,130.31,126.06,121.55,121.22,55.54,40.04,33.88,32.60,28.94,27.75,23.45$.

The synthesis of compound 2a

A mixture of 2,7-dibromo-9,9-bis(6-bromohexyl)fluorene (19.5 g, 30 mmol), $1 \mathrm{~b}(6.18 \mathrm{~g}, 10 \mathrm{mmol}), \mathrm{K} 2 \mathrm{CO} 3(6.9 \mathrm{~g}, 50 \mathrm{mmol})$, tetrabutylammonium hydrogen sulfate $(0.335 \mathrm{~g}, 1 \mathrm{mmol}) \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.1155 \mathrm{~g}, 0.1 \mathrm{mmol})$ were stirred in toluene $(120 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ under a nitrogen atmosphere over

2a night at $90^{\circ} \mathrm{C}$. After cooling down to room temperature, the organic layer was separated and 100 mL dichloromethane was added. The organic solution was washed with water three times. the organic layer was dried over magnesium sulfate, the residue was purified by column chromatography over silica gel with hexane/dichloromethane as the eluent to give a white solid ($6.9 \mathrm{~g}, 65 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.49(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 3 \mathrm{H}), 3.28(\mathrm{q}, J=6.9 \mathrm{~Hz}, 8 \mathrm{H}), 2.11-1.96(\mathrm{~m}, 8 \mathrm{H}), 1.66(\mathrm{~h}, J=7.1 \mathrm{~Hz}, 8 \mathrm{H})$, $1.22(\mathrm{~h}, J=7.6 \mathrm{~Hz}, 8 \mathrm{H}), 1.12(\mathrm{~h}, J=7.7 \mathrm{~Hz}, 8 \mathrm{H}), 0.77-0.63(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $152.82,151.16,150.75,150.56,140.98,140.68,140.55,140.19,139.81,139.25,130.16,127.20,126.98$,

The synthesis of compound $2 b$

Under a nitrogen atmosphere, bis(pinacolato)diboron (2.476 g, 9.75 mmol), $2 \mathrm{a}(6.9 \mathrm{~g}, 6.5 \mathrm{mmol})$, $\mathrm{KOAc}(2.548 \mathrm{~g}, 26 \mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ $(0.238 \mathrm{~g}, 0.325 \mathrm{mmol})$ were dissolved in 1, 4-dioxane (100 mL) and heated to $90^{\circ} \mathrm{C}$ and stirred for 6 h . After cooling to room temperature and
 evaporation of the 1, 4-dioxane. The residue was dissolved with 100 ml dichloromethane, and washed with water three times, the organic layers were dried over magnesium sulfate. The solvent was removed under vacuum. The crude product was purified by column chromatography over silica gel with hexane/dichloromethane as the eluent to give a light white solid (6.265g, yield 87%). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.83 - 7.77 (m, 2H), 7.77 $7.73(\mathrm{~m}, 3 \mathrm{H}), 7.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~s}, 2 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{td}, J=$ $6.8,4.2 \mathrm{~Hz}, 8 \mathrm{H}), 2.12-2.01(\mathrm{~m}, 8 \mathrm{H}), 1.65(\mathrm{~h}, 8 \mathrm{H}), 1.40(\mathrm{~s}, 12 \mathrm{H}), 1.21(\mathrm{~h}, J=7.5 \mathrm{~Hz}, 8 \mathrm{H}), 1.10(\mathrm{~h}, J=7.2$ $\mathrm{Hz}, 8 \mathrm{H}), 0.77-0.64(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.75,151.13,150.58,149.77,145.22$, $143.77,140.96,140.74,140.45,140.40,140.19,133.95,128.77,127.15,126.96,126.22,122.84,121.27$, $121.23,120.46,120.01,119.83,119.13,83.78,55.16,55.08,40.23,40.09,33.97,33.96,32.62,32.61$, 29.05, 29.00, 27.74, 27.73, 24.97, 23.58, 23.52.

The synthesis of compound $\mathbf{O F}_{\mathbf{2}}$

A mixture of 1,1-dibromo-2,2-diphenylene ($0.106 \mathrm{~g}, 0.3 \mathrm{mmol}$), $2 \mathrm{~b}(7.97 \mathrm{~g}, 0.72 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.034$ $\mathrm{g}, 0.03 \mathrm{mmol})$, tetrabutylammonium hydrogen sulfate $(0.01 \mathrm{~g}, 0.03$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.207 \mathrm{~g}, 1.5 \mathrm{mmol})$ were stirred in toluene $(10 \mathrm{~mL})$ and water $(5 \mathrm{~mL})$ under nitrogen atmosphere overnight at $90^{\circ} \mathrm{C}$. After cooling down to room temperature, the organic layer was separated and 30 ml dichloromethane was added. The organic solution was washed with water three times. The organic layer was dried over magnesium sulfate, and then the solvent was removed
 under vacuum. After filtration, the residue was purified by column chromatography on silica gel using DCM/PE as the eluent to give a yellow solid $(0.482 \mathrm{~g}, 74.6 \%) .{ }^{1} \mathrm{H}$ NMR (600 MHz , Methylene Chloride- d_{2}) $\delta 7.90-7.65(\mathrm{~m}, 16 \mathrm{H}), 7.48-7.32(\mathrm{~m}, 10 \mathrm{H}), 7.23(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 6 \mathrm{H})$, $6.74(\mathrm{~s}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 16 \mathrm{H}), 2.21-1.93(\mathrm{~m}, 16 \mathrm{H}), 1.80-1.63(\mathrm{~m}, 16 \mathrm{H}), 1.35-1.19(\mathrm{~m}, 16 \mathrm{H}), 1.19-1.03$ $(\mathrm{m}, 16 \mathrm{H}), 0.83-0.64(\mathrm{~m}, 16 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.52,151.30,151.12,150.79,150.56$, $142.63,140.74,140.43,140.40,140.35,140.01,139.45,129.05,128.69,128.01,127.13,126.95,126.29$, $126.16,124.79,124.23,122.83,122.32,121.15,121.08,120.15,120.03,119.99,119.81,116.45,55.08$, 55.05, 40.22, 33.99, 32.66, 32.60, 29.08, 29.04, 27.81, 27.73, 23.60, 23.57. MALDI-TOF-MS calcd. for $\mathrm{C}_{114} \mathrm{H}_{130} \mathrm{Br}_{8} \mathrm{O}: 2155.53$; found: [M+] 2155.26.

The synthesis of compound $\mathrm{OF}_{2}+$

Into a 50 ml flask, $\mathbf{O F}_{2}(100 \mathrm{mg})$ was dissolved into 10 mL THF. 5 mL trimethylamine (TMA) solution in ethanol (33\%) was then added at $-78^{\circ} \mathrm{C}$. After stirred at room temperature for 24 h , some solid precipitated. Then trimethylamine (TMA) solution in ethanol (33%) was added to the mixture till the solid was dissolved. After stirring for another 48 h , the solvent was evaporated at vacuum. The resulting solid mixture was washed with THF twice, collected by centrifugation and dried overnight in vacuum at $45^{\circ} \mathrm{C}$ to afford $\mathbf{O F}_{2}+(105 \mathrm{mg}, 86 \%)$ as
 a light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.96-7.84(\mathrm{~m}, 12 \mathrm{H}), 7.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.50$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.39-7.24(\mathrm{~m}, 10 \mathrm{H}), 7.06(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.29-3.14(\mathrm{~m}$, $16 \mathrm{H}), 3.07-2.93(\mathrm{~m}, 68 \mathrm{H}), 2.16-1.95(\mathrm{~m}, 16 \mathrm{H}), 1.58-1.37(\mathrm{~m}, 16 \mathrm{H}), 1.12-0.97(\mathrm{~m}, 32 \mathrm{H}), 0.66-0.50$ (m, 16H).

Scheme S3. Synthesis of compounds OF_{3} and $\mathrm{OF}_{3}+$

The synthesis of compound 3a

A mixture of 2,7-diBromo-9,9-bis(6-bromohexyl)fluorine (9.75 g, $15 \mathrm{mmol}), 2 \mathbf{b}(5.54 \mathrm{~g}, 5 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(3.45 \mathrm{~g}, 25 \mathrm{mmol})$, tetrabutyl-ammonium hydrogen sulfate $(0.168 \mathrm{~g}, 0.5 \mathrm{mmol})$ $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.058 \mathrm{~g}, 0.05 \mathrm{mmol})$ were stirred in toluene $(60 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ under a nitrogen atmosphere over night at $90^{\circ} \mathrm{C}$.

3a After cooling down to room temperature, the organic layer was separated and 100 mL dichloromethane was added. The organic solution was washed with water for three times and then the organic layers were dried over magnesium sulfate. The residue was purified by column chromatography over silica gel with hexane/dichloromethane as the eluent to give a white solid $(5.509 \mathrm{~g}, 71 \%) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.86-7.73(\mathrm{~m}, 5 \mathrm{H}), 7.73-7.56(\mathrm{~m}, 9 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 12 \mathrm{H}), 2.19-$ $1.92(\mathrm{~m}, 12 \mathrm{H}), 1.68(\mathrm{~s}, 12 \mathrm{H}), 1.24(\mathrm{~s}, 12 \mathrm{H}), 1.13(\mathrm{~s}, 12 \mathrm{H}), 0.87-0.64(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 152.83,151.47,151.42,151.15,150.79,150.58,140.95,140.75,140.58,140.45,140.38,140.24$, $139.96,139.81,139.30,130.19,127.17,126.98,126.45,126.34,126.20,126.12,122.85,121.28,121.20$, $121.11,120.14,120.03,119.83,55.45,55.29,55.09,40.24,40.16,33.98,33.94,32.61,32.57,29.05,29.02$, 29.00, 27.75, 27.72, 23.66, 23.58.

The synthesis of compound 3b

Under a nitrogen atmosphere, bis(pinacolato)diboron (0.762 g, 3 mmol), $3 \mathrm{a}(3.1 \mathrm{~g}, 2 \mathrm{mmol})$, $\mathrm{KOAc}(0.784 \mathrm{~g}, 8 \mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ $(0.073 \mathrm{~g}, 0.1 \mathrm{mmol})$ were dissolved in dioxane $(50 \mathrm{~mL})$ and heated to $90^{\circ} \mathrm{C}$ and stirred for 6 h . After cooling to room temperature and evaporation of the 1, 4-dioxane. The residue was dissolved in 50 mL
 dichloromethane, and washed with water three times, the organic layers were dried over magnesium sulfate. The solvent was removed under vacuum. The crude product was purified by column chromatography over silica gel with hexane/dichloromethane as the eluent to give a light white solid $(2.4 \mathrm{~g}$, yield 75%). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86-7.74(\mathrm{~m}, 8 \mathrm{H}), 7.72-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.64(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $4 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 3 \mathrm{H}), 3.32-3.24(\mathrm{~m}, 12 \mathrm{H}), 2.16-2.02(\mathrm{~m}, 12 \mathrm{H}), 1.72-1.62(\mathrm{~m}, 12 \mathrm{H}), 1.41(\mathrm{~s}, 12 \mathrm{H})$, $1.26-1.17(\mathrm{~m}, 12 \mathrm{H}), 1.17-1.06(\mathrm{~m}, 12 \mathrm{H}), 0.82-0.66(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.77$, $151.43,151.14,150.57,149.77,143.75,140.93,140.75,140.51,140.43,140.40,140.24,140.10,140.01$, $133.96,128.77,127.15,126.96,126.32,126.20,122.84,121.32,121.27,121.19,120.49,120.11,120.02$, $119.82,119.14,83.78,83.49,55.27,55.17,55.09,40.24,40.10,33.98,32.63,32.61,32.59,29.05,29.00$, 27.74, 25.02, 24.98, 23.67, 23.59, 23.53.

The synthesis of compound OF_{3}

A mixture of 1,1-dibromo-2,2-diphenylene $(0.106 \mathrm{~g}, 0.3$ $\mathrm{mmol}), 3 \mathrm{~b}(1.15 \mathrm{~g}, 0.72 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.034 \mathrm{~g}, 0.03$ $\mathrm{mmol})$, tetrabutyl-ammonium hydrogen sulfate $(0.01 \mathrm{~g}, 0.03$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.207 \mathrm{~g}, 1.5 \mathrm{mmol})$ were stirred in toluene (10 $\mathrm{mL})$ and water $(5 \mathrm{~mL})$ were stirred under nitrogen atmosphere overnight at $90^{\circ} \mathrm{C}$. After cooling down to room temperature, the organic layer was separated and 30 mL dichloromethane was added. The organic solution was washed with water three times. The organic layers were dried over magnesium sulfate,

and the solvent was removed under vacuum. After filtration, the residue was purified by column chromatography on silica gel using $\mathrm{DCM} / \mathrm{PE}$ as the eluent to give a red solid ($0.592 \mathrm{~g}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , Methylene Chloride- d_{2}) $\delta 7.93-7.63(\mathrm{~m}, 28 \mathrm{H}), 7.45-7.28(\mathrm{~m}, 10 \mathrm{H}), 7.28-7.12(\mathrm{~m}, 6 \mathrm{H})$, $6.71(\mathrm{~s}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 24 \mathrm{H}), 2.20-1.91(\mathrm{~m}, 24 \mathrm{H}), 1.78-1.59(\mathrm{~m}, 24 \mathrm{H}), 1.30-1.04(\mathrm{~m}, 48 \mathrm{H}), 0.85-0.60$ $(\mathrm{m}, 24 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.51,151.42,151.33,151.13,150.80,150.56,142.65,140.74$, $140.48,140.42,140.39,140.05,140.01,139.45,129.05,128.70,128.02,127.15,126.96,126.29,126.18$, $125.09,124.79,124.24,122.83,122.32,121.26,121.18,121.09,120.16,120.09,120.02,119.82,116.45$, 55.27, 55.08, 55.06, 40.24, 34.01, 33.99, 32.67, 32.60, 32.58, 29.09, 29.04, 29.02, 27.81, 27.74, 27.72, 23.65, 23.61, 23.58. MALDI-TOF-MS calcd. for $\mathrm{C}_{164} \mathrm{H}_{190} \mathrm{Br}_{12} \mathrm{O}: 3136.17$; found: [M+1] 3137.32.

The synthesis of compound $\mathrm{OF}_{3}{ }^{+}$

Into a 25 mL flask, $\mathbf{O F}_{\mathbf{3}}(100 \mathrm{mg})$ was dissolved into 10 mL THF. A 5 mL solution of trimethylamine (TMA) in ethanol (33\%) was then added at $-78^{\circ} \mathrm{C}$. After stirred at room temperature for 24 h , some solid precipitated formed. Then trimethylamine (TMA) solution in ethanol (33\%) was added to the mixture till the solid was dissolved. After stirring for another 72 h , the solvent was evaporated at vacuum. The resulting solid mixture was washed with THF twice, collected by centrifugation and dried overnight in vacuum at $45^{\circ} \mathrm{C}$ to afford $\mathbf{O F}_{3}+(99$
 $\mathrm{mg}, 81 \%)$ as a light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.00-7.80(\mathrm{~m}, 28 \mathrm{H}), 7.55-7.46(\mathrm{~m}$, $4 \mathrm{H}), 7.40-7.24(\mathrm{~m}, 10 \mathrm{H}), 7.07(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.75-6.65(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.17(\mathrm{~m}, 24 \mathrm{H}), 3.02(\mathrm{~d}, J=$ $32.0 \mathrm{~Hz}, 107 \mathrm{H}), 2.32-1.95(\mathrm{~m}, 24 \mathrm{H}), 1.61-1.39(\mathrm{~m}, 24 \mathrm{H}), 1.17-1.00(\mathrm{~m}, 48 \mathrm{H}), 0.70-0.50(\mathrm{~m}, 24 \mathrm{H})$.

(c) CELL CULTURE AND IMAGING

HeLa cells were seeded in Dulbecco's modified Eagle's medium (DMEM; Invitrogen) containing 10\% of fetal bovine serum (FBS) at $37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$ in a humidified incubator. For confocal microscopy imaging experiments, HeLa cells were transferred into glass bottom Petri dishes. After attachment, the cells were exposed to DMEM containing $\mathrm{OF}_{\mathrm{n}}+(1-3)$ for 2 h . Specially, the external $\mathrm{OF}_{\mathrm{n}}+(1-3)$ dyes do not need to be washed because $\mathrm{OF}_{\mathrm{n}}+(1-3)$ are naturally non-fluorescent in aqueous solution and the cells were imaged directly by a Confocal Laser Scanning Microscopy. For the colocalization imaging, we incubated the cells with $\mathrm{OF}_{\mathrm{n}}+(1-3)$ at $5 \mu \mathrm{M}$ for 2 h to label lysosomes, followed by treatment with LysoTracker Red or MitoTracker Red at 50 nM for another 45 mins. LysoTracker Red and MitoTracker Red in cells was observed by excitation at 640 nm , and fluorescence emission was collected between 660 nm and 750 nm using a confocal laser-scanning microscope (Zeiss LSM710, Germany). While, $\mathrm{OF}_{\mathrm{n}}+(\mathrm{n}=1-3)$ in cells were visualized by excitation at 405 nm and fluorescence emission was collected between 415 nm and 475 nm.

2. SUPPLEMENTARY NOTES

Note S1 The fluorescence enhancement mechanism of salt or ionic effect of $\mathbf{O F}_{\mathbf{n}}+$

When the salt concentration is increased, some of the water molecules are attracted by the salt ions, which decreases the number of water molecules available to interact with $\mathrm{OF}_{1}+$ and destroys the solvation effect. This results in reducing the solubility of $\mathrm{OF} 1+$ in water and causing the aggregation of $\mathrm{OF}_{1}+$ molecules. Hence the addition of inorganic salts into $\mathrm{OF}_{1}+$ aqueous solution activates the restriction of intramolecular motion (RIM) process and switch on fluorescence emission. It is believable that the fluorescence enhancement is mainly attributed to the salt or ionic effect rather than the pH value. (Fig. S5)

3. H NMR SPECTRA of OF_{n} and $\mathrm{OF}_{\mathrm{n}}+$

Fig. S1 ${ }^{1} \mathrm{H} N \mathrm{NR}$ of $\mathbf{O F}_{\mathbf{n}}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and $\mathbf{O F}_{\mathbf{n}}+$ in DMSO.

4. UV AND FL SPECTRA OF OF_{n} AND $\mathrm{OF}_{\mathrm{n}}+\mathbf{I N}$ THF OR WATER

Fig. S2 Normalized UV-vis absorption spectra and fluorescence spectra of $\mathbf{O F}_{\mathbf{n}}$. (a) Normalized UV-vis absorption in THF. (b) Normalized fluorescence spectra in THF (line + solid symbol graphies) and in water (line + hollow symbol graphies). The concentration of each $\mathbf{O F} \mathbf{n}$ is $2 \mu \mathrm{M}$, the excitation wavelength is 380 nm .

5. DENSITY FUNCTIONAL THEORY CALCULATIONS

	LUMO/eV	HOMO/eV	$\mathrm{Eg} / \mathrm{eV}$
$\mathbf{O F}_{\mathbf{1}}$	-1.309	-5.156	3.847
$\mathbf{O F}_{\mathbf{2}}$	-1.431	-5.072	3.641
$\mathbf{O F}_{\mathbf{3}}$	-1.485	-5.048	3.563

Fig. S3 Molecular orbital amplitude plots of HOMO and LUMO energy levels of $\mathbf{O F}_{\mathbf{n}}$ calculated using B3LYP/6-31G(d) basis set in Gaussian 09 program. Eg (energy gap) = LUMO - HOMO. (a) $\mathbf{O F}_{\mathbf{1}}$; (b) $\mathbf{O F}_{\mathbf{2}}$; (c) OF_{3}.

6. FLUORESCENCE SPECTRA

Fig. S4 (a) Normalized fluorescence spectra of solid fluorene boric acid esters. Inset: the structure of fluorene boric acid esters. The excitation wavelength is 330 nm . (b) Emission spectra of 9-methylene-9Hxanthene derivative in DCM-Hexane with different hexane content. The concentration of dyes is kept at $1.0 \times 10^{-5} \mathrm{M}$. The excitation wavelength is 370 nm . Inset: the structure of the compounds.

Fig. S5 Fluorescence spectra of $\mathrm{OF}_{1}+$ in $\mathrm{NaCl}(1 \mathrm{mM})$, aqueous solution of $\mathrm{NaOH}(1 \mathrm{mM}, \mathrm{pH}=11)$ and $\mathrm{HCl}(1 \mathrm{mM}, \mathrm{pH}=3)$. The concentration of each $\mathbf{O F}_{1}+$ is $2 \mu \mathrm{M}$, the excitation wavelength is 380 nm .

7. Fluorescence colocalization imaging of HeLa Cells

Fig. S6 Fluorescent colocalization images of HeLa cells stained with (A) $\mathbf{O F}_{\mathbf{n}}+(5 \mu \mathrm{M})$ for 2 h and (B) MitoTracker red FM (MT, 50 nM) for 30 min . (C) Panels A and B merged. The Pearson's correlation coefficients between the green-yellow emissions from $\mathbf{O F}_{\mathbf{n}}+(\mathrm{n}=1-3)$ and the red emissions from MitoTracker Red were determined to be $12.4 \%\left(\mathbf{O F}_{1}+\right), 32.7 \%\left(\mathbf{O F}_{2}+\right)$ and $44.5 \%\left(\mathbf{O F}_{3}+\right.$), respectively, demonstrating $\mathrm{OFn}+(\mathrm{n}=1-3)$ target poor to mitochondria. Excitation wavelength: $330-$ 385 nm (for TPE-TPP) and 540-580 nm (for MT).

8. FLUORESCENCE QUANTUM YIELDS

Table S1 The relative fluorescence quantum yields in different solvents.

	$\boldsymbol{\lambda}_{\text {abs,sol }}(\mathbf{n m})^{\mathbf{a}}$	$\boldsymbol{\lambda}_{\mathbf{P L}, \text { sol }}(\mathbf{n m})^{\mathbf{b}}$	$\boldsymbol{\lambda}_{\mathbf{P L}, \text { agg }}(\mathbf{n m})^{\mathbf{c}}$	$\boldsymbol{\Phi}_{\mathbf{F}, \text { sol }}{ }^{\mathbf{d}}$	$\boldsymbol{\Phi}_{\mathbf{F}, \mathbf{a g}}{ }^{\mathbf{e}}$
$\mathbf{O F}_{\mathbf{1}}$	314	428	586	0.90%	12.12%
$\mathbf{O F}_{\mathbf{2}}$	345	430	582	0.59%	32.22%
$\mathbf{O F}_{\mathbf{3}}$	360	418	572	1.69%	35.85%
$\mathbf{O F}_{\mathbf{1}}{ }^{+}$	315	428	572	2.89%	29.95%
$\mathbf{O F}_{\mathbf{2}}{ }^{+}$	349	442	556	2.09%	32.85%
$\mathbf{O F}_{3}+$	368	428	550	4.20%	38.62%

${ }^{\text {a }}$ The maximum absorption wavelength of $\mathbf{O F}_{\mathbf{n}}$ in THF and $\mathbf{O F}_{\mathbf{n}}+\mathrm{inDMSO} ;{ }^{\text {b }}$ The maximum emission wavelength of $\mathbf{O F} \mathbf{F}_{\mathbf{n}}$ in THFand $\mathbf{O F} \mathbf{n}+$ in DMSO; ${ }^{\text {c }}$ The maximum emission wavelength of $\mathbf{O F}$ $\mathbf{O F} \mathbf{n}_{\mathbf{n}}+$ in THF; ${ }^{\text {d Fluorescence quantum yields of } \mathbf{O F}_{\mathbf{n}} \text { in THF and } \mathbf{O F}_{\mathbf{n}}+\text { in DMSO. }{ }^{\text {e }} \text { Fluorescence quantum }}$ yields of $\mathbf{O F} \mathbf{n}_{\mathbf{n}}$ in water and $\mathbf{O} \mathbf{F}_{\mathbf{n}}+$ in THF. All the fluorescence quantum yields were measured using quinine sulfate ($\Phi_{\mathrm{F}}=55 \%$ in $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$) as standard reference.

9. NMR SPECTRA.

zhumingqing-20170215-2\#

zhumingqiang-170224-4\#

The NMR spectra of $\mathbf{1 a}$

zhumingqiang-170224-3\#

The NMR spectra of $\mathbf{1 b}$

zhumingqiang20170410zqyc-3\#

The NMR spectra of $\mathbf{2 a}$
zhumingqiang20170317-2\#

The NMR spectra of $\mathbf{2 b}$
zhumingqiang20170331zqy-2\#

The NMR spectra of $\mathbf{3 a}$
zhumingqiang20170407zqy-1\#

The NMR spectra of $\mathbf{3 b}$
zhumingqiang-170224-2\#

zhumingqiang20170331zqy-1\#

zhumingqiang20170414zqy-3\#

The NMR spectra of $\mathbf{O F}_{3}$
zhumingqiang-20170919-2\#

The NMR spectra of $\mathbf{O F}_{1}{ }^{+}$
zhumingqiang-20170512-zqyc-2\#

The NMR spectra of $\mathbf{O F}_{2}+$

$$
0
$$

0

The NMR spectra of $\mathbf{O F}_{3}+$

10. MASS SPECTRA.

OF_{1}

OF_{2}

OF_{3}

11. REFERENCES.

(1) P. M. Donovan, L. T. Scott, J. Am, Chem. Soc., 2004, 126, 3108-3112
(2) G.-F. Zhang, H. Wang, M. P. Aldred, T. Chen, Z.-Q. Chen, X. Meng and M.-Q. Zhu, Chem. Mater., 2014, 26, 4433-4446.
(3) C. C. Hung, H. C. Wu, Y. C. Chiu, S. H. Tung, W. C. Chen, J. Polym. Sci. Pol. Chem., 2016, 54, 3224-3236.
(4) L. Zhu, J. Pan, C. M. Christensen, B. C. Lin, M. A. Hickner, Macromolecules, 2016, 49, 3300-3309.

