Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2018

Supporting Information

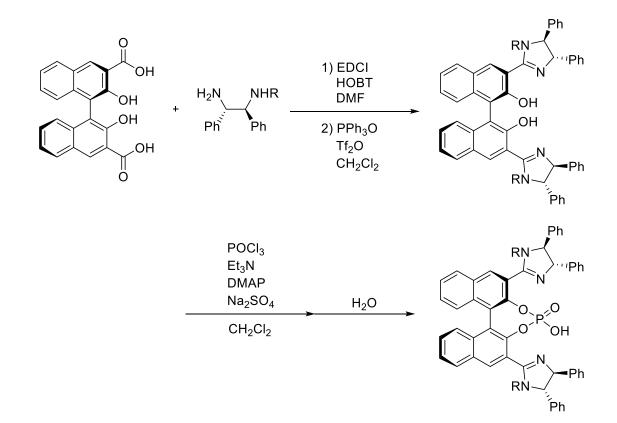
Enantioselective Aza-Friedel-Crafts Reaction of Cyclic Ketimines with Indoles Using Chiral Imidazoline-Phosphoric Acid Catalysts

Shuichi Nakamura,^{a,b,*} Takashi Furukawa,^a Tsubasa Hatanaka,^c Yasuhiro Funahashi^c

^aDepartment of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555 (Japan).

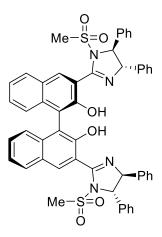
^bFrontier Research Institute for Material Science, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555 (Japan)

^cDepartment of Chemistry, Graduate School of Science, Osaka University 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan)


E-mail: snakamur@nitech.ac.jp; Tel & Fax: 81-52-735-5245

CONTENTS:

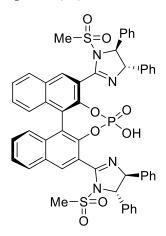
Experimental Section
General procedure synthesis of bis(imidazoline) phosphoric acid catalysts
General procedure for synthesis of cyclic ketimines
General procedure for the reaction of indole to cyclic ketimines by chiral imidazoline-phosphoric acid
catalysts
References
¹ H, ¹³ C, ¹⁹ F and ³¹ P NMRS32
HPLC Charts


Experimental Section

General method: All reactions were performed in flame-dried glassware under a positive pressure of argon. Solvents were transferred via syringe and were introduced into the reaction vessels though a rubber septum. All of the reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Merck silica-gel (60-F254). The TLC plates were visualized with UV light. Column chromatography was carried out on a column packed with silica-gel 60N spherical neutral size 63-210 μm. The ¹H NMR (300 MHz), ¹³C NMR (75.5 MHz), ¹⁹F NMR (282 MHz), and ³¹P NMR (121 MHz) spectra for solution in CDCl₃, DMSO-d₆ or CD₃OD were recorded on a Varian Gemini-300. Chemical shifts (δ) are expressed in ppm downfield from internal TMS, CHCl₃, DMSO or MeOH. HPLC analyses were performed on a JASCO PU-2080 Plus using 4.6 x 250 mm DAICEL CHIRALPAK AY-3[®], IA[®], ID[®], ID-3[®], and IG[®] column. ESI Mass spectra were recorded on a Waters SYNAPT G2 HDMS. Optical rotations were measured on a JASCO P-2200. Infrared spectra were recorded on a JASCO FT/IR-4600 spectrometer with ZnSe ATR unit. Imidazoline phosphoric acid catalysts **3a**, **b** were synthesized by published procedures.¹⁾ Cyclic ketimines **1a**, **b** were prepared by published procedures.²⁾

General procedure for synthesis of bis(imidazoline) phosphoric acid catalyst

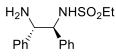
(*R*)-3,3'-Bis[1-(methanesulfonyl)-(4*S*,5*S*)-4,5-diphenyl-4,5-dihydro-1*H*-imidazol-2-yl]-1,1'binaphthol


A solution of (*R*)-2,2'-dihydroxybinaphthyl-3,3'-biscarboxylic acid (187.2 mg, 0.50 mmol), (1*S*,2*S*)-*N*-methanesulfonyl-1,2-diphenylethane-1,2-diamine (300.0 mg, 1.00 mmol), and 1-hydroxybenzotriazole (202.7 mg, 1.5 mmol) in dimethylformamide (7.1 mL) was stirred for 10 min at 0 °C, then a solution of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (191.7 mg, 1.00 mmol) in dimethylformamide (2.5 mL) was added into the reaction mixture at 0 °C. The reaction mixture was stirred for 18 h at room temperature. The reaction mixture was diluted by ethyl acetate, then washed

with 1 M HCl aq., sat. NaHCO₃ and brine, dried over Na₂SO₄ and concentrated under reduced pressure to give (R)-3,3'-bis{[(1*S*,2*S*)-1,2-dipheny-2-(methanesulfonylamino)ethylcarboxamide]}-1,1'binaphthol.

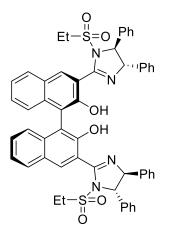
Trifluoromethanesulfonic anhydride (0.24 mL, 1.41 mmol) was added to a solution of triphenylphosphine oxide (310.7 mg, 0.90 mmol) in CH₂Cl₂ (2.7 mL) at 0 °C, and the reaction mixture was stirred for 1 h at room temperature. Then the reaction mixture was cooled to 0 °C. (*R*)-3,3'-Bis{[(1*S*,2*S*)-1,2-dipheny-2-(methanesulfonylamino)ethylcarboxamide]}-1,1'-binaphthol (393.3 mg, 0.43 mmol) was added to the reaction mixture and stirred for 30 min at 0 °C. Then sat. NaHCO₃ was added, and aqueous layer was extracted with CH₂Cl₂. The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure to give the crude product, which was purified by silica gel column chromatography (hexane:ethyl acetate = 60:40) to afford (*R*)-3,3'-bis[1-(methanesulfonyl)-(4*S*,5*S*)-4,5-diphenyl-4,5-dihydro-1*H*-imidazol-2-yl]-1,1'-binaphthol (245.2 mg, 65%).

 $[\alpha]_{D}^{25}$ +96.2 (c 0.68, CHCl₃); m.p. 223.2-223.8 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.76 (s, 6H), 5.30 (d, J = 4.5 Hz, 2H), 5.39 (d, J = 4.5 Hz, 2H), 7.33-7.55 (m, 28H), 7.96-7.99 (m, 2H), 8.55 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 41.4, 71.6, 77.7, 114.3, 118.1, 124.6, 126.5, 128.1, 128.4, 128.9, 129.1, 129.3, 129.5, 129.6, 133.5, 135.0, 140.9, 141.2, 151.6, 158.0; IR (ATR) 3030, 1630, 1495, 1452, 1350, 1162, 1061, 1026, 964, 907, 756, 728, 696, 623 cm⁻¹; HRMS (ESI, positive) m/z for C₅₂H₄₃N₄O₆S₂ [M+H]⁺ calcd. 883.2624, found 883.2622.


(*R*)-3,3'-Bis[1-(methanesulfonyl)-(4*S*,5*S*)-4,5-diphenyl-4,5-dihydro-1*H*-imidazol-2-yl]-1,1'binaphthalene-2,2'-diyl hydrogen phosphate (3c)

Triethylamine (0.86 mL, 6.27 mmol) was added to a solution of (*R*)-3,3'-bis[1-(methanesulfonyl)-(4*S*,5*S*)-4,5-diphenyl-4,5-dihydro-1*H*-imidazol-2-yl]-1,1'-binaphthol (100.0 mg, 0.113 mmol), *N*,*N*dimethyl-4-aminopyridine (27.6 mg, 0.226 mmol), and Na₂SO₄ (77.8 mg) in CH₂Cl₂ (3.4 mL), and the reaction mixture was stirred for 5 min at room temperature. To the reaction mixture, phosphoryl chloride (57 μ L, 0.622 mmol) was dropwised at room temperature, and the mixture was stirred for 12 h. Then water (2.0 mL) was added to the reaction mixture, and stirred for 4 h. 1M HCl aq. was added to reaction mixture, and aqueous layer was extracted with CH_2Cl_2 . The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure to give the crude product, which was purified by silica gel column chromatography (ethyl acetate:methanol = 95:5) to afford **3c** (85.3 mg, 80%). The product was diluted with CH_2Cl_2 , and washed with 1M HCl aq. The organic layer was concentrated and dried at 90 °C under reduced pressure for 2 h.

[α]_D²⁵ –110.7 (c 0.34, CHCl₃); m.p. 247.5-248.4 °C; ¹H NMR (300 MHz, DMSO-d₆) δ 2.81 (s, 6H), 5.38 (d, J = 7.5 Hz, 2H), 5.44 (d, J = 7.5 Hz, 2H), 7.31-7.64 (m, 24H), 7.99 (d, J = 7.5 Hz, 2H), 8.30 (d, J = 8.1 Hz, 2H), 8.70 (s, 2H); ¹³C NMR (125 MHz, DMSO-d₆) δ 41.3, 72.7, 73.7, 121.7, 122.2, 125.9, 126.0, 126.7, 127.0, 128.6, 128.7, 129.2, 129.3, 129.5, 129.6, 132.8, 133.4, 138.6, 139.4, 146.5, 146.6, 159.6; ³¹P NMR (121 MHz, DMSO-d₆) δ 4.13; IR (ATR) 3041, 1632, 1482, 1450, 1330, 1145, 1087, 1053, 960, 943, 923, 731, 695, 612 cm⁻¹; HRMS (ESI, positive) m/z for C₅₂H₄₂N₄O₈PS₂ [M+H]⁺ calcd. 945.2182, found 945.2180.


(1S,2S)-N-Ethanesulfonyl-1,2-diphenylethane-1,2-diamine

Triethylamine (1.38 mL, 9.9 mmol) was added to a solution of (1S,2S)-1,2-diphenylethane-1,2-diamine (700.0 mg, 3.3 mmol) in THF (46.0 mL), and cooled to 0 °C. A solution of ethanesulfonyl chloride (0.34 mL, 3.63 mmol) in THF (13.0 mL) was dropwised to the mixture at 0 °C, and the reaction mixture was stirred 18 h at room temperature. The solvent was removed under reduced pressure, and diluted by CH₂Cl₂, then extracted with CH₂Cl₂, and washed with brine. The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure to give the crude product, which was purified by silica gel column chromatography (hexane:ethyl acetate = 30:70) to afford (1*S*,2*S*)-*N*-ethanesulfonyl-1,2-diphenylethane-1,2-diamine (619.5 mg, 62%).

[α]_D²⁵ –9.6 (c 0.46, CHCl₃); m.p. 128.1-129.1 °C; ¹H NMR (300 MHz, CDCl₃) δ 1.02 (t, J = 7.4 Hz, 3H), 1.58 (br, 2H), 2.34-2.46 (m, 2H), 4.22 (d, J = 5.7 Hz, 1H), 4.55 (d, J = 5.7 Hz, 1H), 7.25-7.31 (m, 10H); ¹³C NMR (125 MHz, CDCl₃) δ 8.0, 47.8, 60.5, 63.5, 126.8, 127.1, 127.9, 128.7, 140.0, 142.0; IR (ATR) 3354, 3174, 1604, 1452, 1318, 1137, 1054, 897, 769, 726, 695 cm⁻¹; HRMS (ESI, positive) m/z for C₁₆H₂₁N₂O₂S [M+H]⁺ calcd. 305.1324, found 305.1328.

(R) - 3, 3' - Bis[1 - (ethanesulfonyl) - (4S, 5S) - 4, 5 - diphenyl - 4, 5 - dihydro - 1H - imidazol - 2 - yl] - 1, 1' - binaphthol

A solution of (*R*)-2,2'-dihydroxybinaphthyl-3,3'-biscarboxylic acid (243.3 mg, 0.65 mmol), (1*S*,2*S*)-*N*-ethanesulfonyl-1,2-diphenylethane-1,2-diamine (397.2 mg, 1.3 mmol), 1-hydroxybenzotriazole (263.5 mg, 1.95 mmol) in dimethylformamide (6.5 mL) was stirred for 10 min at 0 °C, then a solution of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (249.2 mg, 1.3 mmol) in dimethylformamide (2.5 mL) was added into the solution at 0 °C. The reaction mixture was stirred for 18 h at room temperature. The reaction mixture was diluted by ethyl acetate, then washed with 1 M HCl aq., sat. NaHCO₃ and brine, dried over Na₂SO₄ and concentrated under reduced pressure to give (*R*)-3,3'-bis{[(1*S*,2*S*)-1,2-dipheny-2-(ethanesulfonylamino)ethylcarboxamide]}-1,1'-binaphthol.

Trifluoromethanesulfonic anhydride (0.34 mL, 2.0 mmol) was added to a solution of triphenylphosphine oxide (556.6 mg, 2.0 mmol) in CH₂Cl₂ (4 mL) at 0 °C, and the reaction mixture was stirred for 1 h at room temperature. Then the reaction mixture was cooled to 0 °C. (*R*)-3,3'-Bis{[(1*S*,2*S*)-1,2-dipheny-2-(ethanesulfonylamino)ethylcarboxamide]}-1,1'-binaphthol (640.0 mg, 0.67 mmol) was added to the reaction mixture and stirred for 30 min at 0 °C. Then sat. NaHCO₃ was added, and aqueous layer was extracted with CH₂Cl₂. The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure to give the crude product, which was purified by silica gel column chromatography (hexane:ethyl acetate = 60:40) to afford (*R*)-3,3'-bis[1-(methanesulfonyl)-(4*S*,5*S*)-4,5-diphenyl-4,5-dihydro-1*H*-imidazol-2-yl]-1,1'-binaphthol (363.0 mg, 59%).

[α]_D²⁵ +42.2 (c 0.62, CHCl₃); m.p. 211.9-212.3 °C; ¹H NMR (300 MHz, CDCl₃) δ 1.17 (t, J = 7.4 Hz, 6H), 2.73-2.85 (m, 2H), 3.01-3.13 (m, 2H), 5.29 (d, J = 4.2 Hz, 2H), 5.39 (d, J = 4.2 Hz, 2H), 7.32-7.53 (m, 26H), 7.95-7.98 (m, 2H), 8.57 (s, 2H), 8.92 (br, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 7.6, 49.2, 71.4, 77.9, 114.7, 117.9, 124.5, 124.7, 126.4, 127.9, 128.4, 128.8, 129.0, 129.3, 133.3, 135.1, 140.7, 141.7, 151.8, 158.5; IR (ATR) 3057, 1631, 1495, 1452, 1346, 1205, 1152, 1026, 907, 727, 696, 622 cm⁻¹; HRMS (ESI, positive) m/z for C₅₄H₄₇N₄O₆S₂ [M+H]⁺ calcd. 911.2937, found 911.2927.

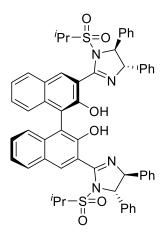
(*R*)-3,3'-Bis[1-(ethanesulfonyl)-(4*S*,5*S*)-4,5-diphenyl-4,5-dihydro-1*H*-imidazol-2-yl]-1,1'binaphthalene-2,2'-diyl hydrogen phosphate (3d)

Triethylamine (3.0 mL, 22.2 mmol) was added to a solution of (R)-3,3'-bis[1-(ethanesulfonyl)-(4*S*,5*S*)-4,5-diphenyl-4,5-dihydro-1*H*-imidazol-2-yl]-1,1'-binaphthol (360.0 mg, 0.4 mmol), *N*,*N*-dimethyl-4aminopyridine (97.7 mg, 0.8 mmol), and Na₂SO₄ (274.6 mg) in CH₂Cl₂ (12.0 mL), and the reaction mixture was stirred for 5 min at room temperature. To the reaction mixture, phosphoryl chloride (0.2 mL, 2.2 mmol) was dropwised at room temperature, and the mixture was stirred for 12 h. Then water (7.0 mL) was added, stirred for 4 h. 1 M HCl aq. was added, and aqueous layer was extracted with CH₂Cl₂. The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure to give the crude product, which was purified by silica gel column chromatography (ethyl acetate:methanol = 95:5) to afford **3d** (241.3 mg, 62%). The product was diluted with CH₂Cl₂, and washed with 1 M HCl aq. The organic layer was concentrated and dried at 90 °C under reduced pressure for 2 h.

[α]_D²⁵ –140.8 (c 0.34, CHCl₃); m.p. 252.2-253.0 °C; ¹H NMR (300 MHz, DMSO-d₆) δ 0.79-0.82 (m, 6H), 2.58-2.73 (m, 2H), 3.34-3.42 (m, 2H), 5.34-5.52 (m, 4H), 7.29-7.32 (m, 2H), 7.44-7.65 (m, 24H), 7.90 (d, J = 6.9 Hz, 2H), 8.31 (d, J = 8.1 Hz, 2H), 8.74 (s, 2H) ; ¹³C NMR (125 MHz, DMSO-d₆) δ 6.7, 45.2, 72.3, 74.2, 121.7, 122.2, 125.8, 126.1, 126.8, 127.7, 128.1, 128.7, 129.0, 129.3, 129.5, 129.9, 132.9, 133.2, 138.8, 139.5, 146.1, 162.9; ³¹P NMR (121 MHz, DMSO-d₆) δ 3.20; IR (ATR) 3061, 1621, 1496, 1453, 1349, 1282, 1153, 1092, 1044, 819, 751, 727, 697, 624 cm⁻¹; HRMS (ESI, positive) m/z for C₅₄H₄₆N₄O₈PS₂ [M+H]⁺ calcd. 973.2495, found 973.2476.

(15,2S)-N-(1-Methylethanelsulfonyl)-1,2-diphenylethane-1,2-diamine

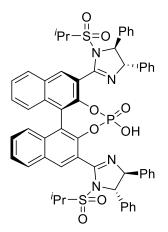
The synthetic method for tert-butyl [(1S,2S)-2-amino-1,2-diphenylethyl]carbamate were reported.³⁾


BocHN NH₂
$$\stackrel{i^{2}PrSO_{2}CI (2.0 \text{ eq.})}{DBU (3.0 \text{ eq.})}$$
 $\stackrel{i^{2}PrSO_{2}CI (2.0 \text{ eq.})}{THF, r.t., 18 \text{ h}}$ $\stackrel{BocHN}{Ph}$ $\stackrel{NHSO_{2}i^{2}Pr}{Ph}$ $\stackrel{TFA}{CH_{2}CI_{2}, r.t., 4 \text{ h}}$ $\stackrel{H_{2}N}{Ph}$ $\stackrel{NHSO_{2}i^{2}Pr}{Ph}$

1,8-Diazabicyclo[5.4.0]undec-7-ene (1.3 mL, 9.0 mmol) and 1-methylethanesulfonyl chloride (0.67 mL, 6.0 mmol) were added to a solution of *tert*-butyl [(1*S*,2*S*)-2-amino-1,2-diphenylethyl]carbamate (924.1 mg, 3.0 mmol) in THF (15.0 mL) at 0 °C. The reaction mixture was stirred for 18 h at room temperature. The reaction mixture was diluted by ethyl acetate, then washed with 1 M HCl aq., sat. NaHCO₃ and brine, dried over Na₂SO₄ and concentrated under reduced pressure to give the *tert*-butyl [(1*S*,2*S*)-1-methylethylsulfonamido-1,2-diphenylethyl]carbamate.

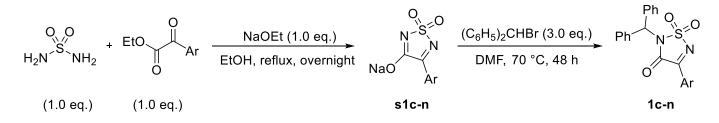
Trifluoroacetic acid (7.8 mL) was added to a solution of *tert*-butyl [(1*S*,2*S*)-1-methylethylsulfonamido-1,2-diphenylethyl]carbamate (1.24 g, 2.96 mmol) in CH₂Cl₂ (7.8 mL), and the reaction mixture was stirred for 4 h at room temperature. The reaction mixture was diluted by 1 M NaOH aq., then extracted with CH₂Cl₂, and washed with brine. The organic phase was dried over Na₂SO₄ and concentrated under reduced pressure to give (1*S*,2*S*)-*N*-(1-methylethanesulfonyl)-1,2-diphenylethane-1,2-diamine (299.3 mg, 94%).

 $[\alpha]_D^{25}$ +3.3 (c 0.50, CHCl₃); m.p. 118.8-119.6 °C; ¹H NMR (300 MHz, CDCl₃) δ 1.02-1.08 (m, 6H), 1.56 (br, 2H), 2.52-2.61 (m, 1H), 4.23 (d, *J* = 5.1 Hz, 1H), 4.57 (d, *J* = 5.1 Hz, 1H), 5.80 (br, 1H), 7.24-7.31 (m, 10H); ¹³C NMR (125 MHz, CDCl₃) δ 16.0, 16.4, 54.0, 60.6, 63.8, 126.8, 126.9, 127.7, 127.8, 128.5, 128.6, 140.4, 141.8; IR (ATR) 3351, 3295, 1604, 1452, 1308, 1127, 1052, 996, 898, 769, 695, 635 cm⁻¹; HRMS (ESI, positive) m/z for C₁₇H₂₃N₂O₂S [M+H]⁺ calcd. 319.1480, found 319.1480.


(*R*)-3,3'-Bis[1-(1-methylethanesulfonyl)-(4*S*,5*S*)-4,5-diphenyl-4,5-dihydro-1*H*-imidazol-2-yl]-1,1'binaphthol

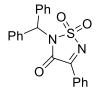
A solution of (R)-2,2'-dihydroxybinaphthyl-3,3'-biscarboxylic acid (209.6 mg, 0.56 mmol), (15,2S)-N-1methylethanesulfonyl-1,2-diphenylethane-1,2-diamine (355.9 mg, 1.12 mmol), 1-hydroxybenzotriazole (227.0 mg, 1.68 mmol) in dimethylformamide (5.4 mL) was stirred for 10 min at 0 °C, then a solution of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (214.7)mg, 1.12 mmol) in dimethylformamide (2.2 mL) was added into the solution at 0 °C. The reaction mixture was stirred for 18 h at room temperature. The reaction mixture was diluted by ethyl acetate, then washed with 1 M HCl aq., sat. NaHCO₃ and brine, dried over Na₂SO₄ and concentrated under reduced pressure to give (R)-3,3'-bis{[(1S,2S)-1,2-dipheny-2-(1-methylethanesulfonylamino)ethylcarboxamide]}-1,1'-binaphthol. Trifluoromethanesulfonic anhydride (0.26 mL, 1.54 mmol) was added to a solution of triphenylphosphine oxide (428.6 mg, 1.54 mmol) in CH₂Cl₂ (3.0 mL) at 0 °C, and the reaction mixture was stirred for 1 h at room temperature, then the reaction mixture was cooled to 0 °C. (R)-3,3'- $Bis\{[(1S,2S)-1,2-dipheny-2-(1-methylethanesulfonylamino)ethylcarboxamide]\}-1,1'-binaphthol (500.0)$ mg, 0.513 mmol) was added to the reaction mixture and stirred for 30 min at 0 °C. Then sat. NaHCO₃ was added, and aqueous layer was extracted with CH₂Cl₂. The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure to give the crude product, which was purified by silica gel column chromatography (hexane:ethyl acetate = 60:40) to afford (R)-3,3'-bis[1-(1methylethanesulfonyl)-(4S,5S)-4,5-diphenyl-4,5-dihydro-1*H*-imidazol-2-yl]-1,1'-binaphthol (401.3 mg, 83%).

[α]_D²⁵ +65.1 (c 0.51, CHCl₃); m.p. 198.1-198.5 °C; ¹H NMR (300 MHz, CDCl₃) δ 1.13 (d, J = 6.9 Hz, 6H), 1.29 (d, J = 6.9 Hz, 6H), 3.19-3.28 (m, 2H), 5.30 (d, J = 3.9 Hz, 2H), 5.39 (d, J = 3.9 Hz, 2H), 7.25-7.51 (m, 26H), 7.95-7.98 (m, 2H), 8.61 (s, 2H), 9.59 (br, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 16.3, 16.9, 55.8, 71.4, 78.1, 115.5, 117.6, 124.3, 124.8, 126.3, 126.4, 127.6, 128.4, 128.6, 128.9, 129.2, 129.5, 132.9, 135.3, 140.4, 142.1, 152.1, 159.4; IR (ATR) 3030, 1631, 1600, 1496, 1452, 1342, 1203, 1170, 1143, 1051. 1028, 907, 728, 695, 613 cm⁻¹; HRMS (ESI, positive) m/z for C₅₆H₅₁N₄O₆S₂ [M+H]⁺ calcd. 939.3250, found 939.3236.

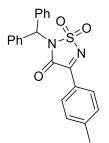

(*R*)-3,3'-Bis[1-(1-methylethanesulfonyl)-(4*S*,5*S*)-4,5-diphenyl-4,5-dihydro-1*H*-imidazol-2-yl]-1,1'binaphthalene-2,2'-diyl hydrogen phosphate (3e)

Triethylamine (2.66 mL, 17.8 mmol) was added to a solution of (*R*)-3,3'-bis[1-(1-methylethanesulfonyl)-(4*S*,5*S*)-4,5-diphenyl-4,5-dihydro-1*H*-imidazol-2-yl]-1,1'-binaphthol (300.0 mg, 0.32 mmol), *N*,*N*-dimethyl-4-aminopyridine (78.2 mg, 0.64 mmol), and Na₂SO₄ (219.8 mg) in CH₂Cl₂ (9.6 mL), and the reaction mixture was stirred for 5 min at room temperature. To the reaction mixture, phosphoryl chloride (0.16 mL, 1.76 mmol) was dropwised at room temperature, and the mixture was stirred for 12 h. Then water (5.6 mL) was added, stirred for 4 h. 1M HCl aq. was added and aqueous layer was extracted with CH₂Cl₂. The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure to give the crude product, which was purified by silica gel column chromatography (ethyl acetate:methanol = 95:5) to afford **3e** (228.2 mg, 71%) The product was diluted with CH₂Cl₂, and washed with 1M HCl aq. The organic layer was concentrated and dried at 90 °C under reduced pressure for 2 h.

[α]_D²⁵ –191.4 (c 0.35, CHCl₃); m.p. 270.1-271.0 °C; ¹H NMR (300 MHz, DMSO-d₆) δ 0.83 (d, J = 6.6 Hz, 6H), 0.90 (d, J = 6.6 Hz, 6H), 3.29 (br, 2H), 5.33-5.52 (m, 4H), 7.22-7.78 (m, 26H), 8.31 (d, J = 8.4 Hz, 2H), 8.65 (s, 2H); ¹³C NMR (125 MHz, DMSO-d₆) δ 18.1, 49.4, 69.4, 71.4, 123.2, 123.8, 126.5, 129.2, 129.3, 129.9, 130.1, 132.7, 133.7, 133.8, 134.2, 138.9, 146.0, 146.9, 162.9; ³¹P NMR (121 MHz, DMSO-d₆) δ 5.93; IR (ATR) 3049, 1623, 1496, 1455, 1341, 1281, 1092, 1029, 818, 752, 696, 608 cm⁻¹; HRMS (ESI, positive) m/z for C₅₆H₅₀N₄O₈PS₂ [M+H]⁺ calcd. 1001.2808, found 1001.2802.

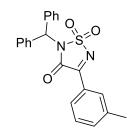

General procedure for synthesis of cyclic ketimines

A solution of sodium ethoxide (1.0 g, 15 mmol) in ethanol (3.7 mL) was dropwised to a solution of sulfamide (1.44 g, 15 mmol) in ethanol (22 mL), at room temperature. The suspension was stirred at room temperature for 15 min and then ethyl arylglyoxylate (15 mmol) in ethanol (15 mL) was added. After stirring for 15 min, the mixture was refluxed overnight and concentrated under reduced pressure. The residue was suspended in diethyl ether and stirred at room temperature for 30 min. The residue was filtered, washed with diethyl ether, and dried under vacuum to give **s1c-n**, which was used for the next reaction without further purification.


A solution of bromodiphenylmethane (6.67 g, 27 mmol) in dimethylformamide (4.5 mL) was added to a solution of **s1c-n** (9.0 mmol) in dimethylformamide (14 mL) at 70 °C. The mixture was stirred at 70 °C for 48 h. Then H₂O was added, and aqueous layer was extracted with ethyl acetate. The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure to give the crude product, which was purified by silica gel column chromatography (hexane:CHCl₃:ethyl acetate = 40:5:1) to afford the corresponding cyclic ketimines.

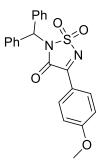
2-Benzhydryl-4-phenyl-3-oxo-1,2,5-thiadiazol 1,1-oxides (1c) (R = Ph)

According to the general procedure, the reaction with ethyl phenylglyoxylate (2.38 mL, 15 mmol) gave **s1c** (2.87 g), and the reaction of **s1c** (2.09 g, 9 mmol) gave **1c** as a white solid (1.32 g, 40%).


m.p. 164.5-165.2 °C; ¹H NMR (300 MHz, CDCl₃) δ 6.49 (s, 1H), 7.36-7.46 (m, 10H), 7.49-7.55 (m, 2H), 7.68-7.73 (m, 1H), 8.53 (d, J = 8.7 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 63.7, 126.9, 128.8, 128.9, 129.0, 129.4, 132.2, 135.4, 136.3, 155.8, 163.8; IR (ATR) 1739, 1561, 1446, 1353, 1236, 1190, 1013, 809, 699, 605 cm⁻¹; HRMS (ESI, positive) m/z for C₂₁H₁₆N₂NaO₃S [M+Na]⁺ calcd. 399.0779, found 399.0771.

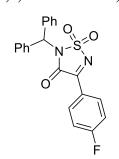
According to the general procedure, the reaction with ethyl 4-methylbenzoylformate (864.5 mg, 6.2 mmol) gave **s1d** (703.0 mg), then the reaction of **s1d** (615.0 mg, 2.5 mmol) gave **1d** as a white solid (375.1 mg, 38%).

m.p. 165.0-165.8 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.46 (s, 3H), 6.48 (s, 1H), 7.32-7.45 (m, 12H), 8.45 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 22.3, 63.6, 124.2, 128.8, 129.0, 130.2, 132.4, 135.5, 148.3, 156.0, 163.5; IR (ATR) 1730, 1678, 1572, 1545, 1364, 1253, 1174, 1066, 762, 697, 619 cm⁻¹; HRMS (ESI, positive) m/z for C₂₂H₁₈N₂NaO₃S [M+Na]⁺ calcd. 413.0936, found 413.0931.


2-Benzhydryl-4-(3'-tolyl)-3-oxo-1,2,5-thiadiazol 1,1-oxides (1e) (R = 3-CH₃C₆H₄)

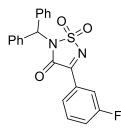
According to the general procedure, the reaction with ethyl 3-methylbenzoylformate (768.3 mg, 4 mmol) gave **s1e** (653.8 mg), then the reaction of **s1e** (492.0 mg, 2.0 mmol) gave **1e** as a white solid (288.7 mg, 37%).

m.p. 158.0-158.1 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.40 (s, 3H), 6.48 (s, 1H), 7.34-7.45 (m, 11H), 7.52 (d, *J* = 7.5 Hz, 1H), 8.33-8.34 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 21.4, 63.6, 126.8, 128.8, 129.0, 129.3, 129.6, 132.5, 137.3, 139.3, 155.9, 163.9; IR (ATR) 1746, 1551, 1362, 1261, 1246, 1181, 882, 755, 696, 682 cm⁻¹; HRMS (ESI, positive) m/z for C₂₂H₁₈N₂NaO₃S [M+Na]⁺ calcd. 413.0936, found 413.0933


2-Benzhydryl-4-(4-methoxyphenyl)-3-oxo-1,2,5-thiadiazol 1,1-oxides (1f) (R = 4-CH₃OC₆H₄)

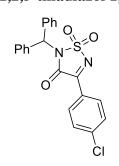
According to the general procedure, the reaction with ethyl 4-methoxylbenzoylformate (936.9 mg, 4.5 mmol) gave **slf** (882.8 mg), then the reaction of **slf** (524.0 mg, 2.0 mmol) gave **lf** as a yellow solid (227.4 mg, 28%).

m.p. 157.4-157.6 °C; ¹H NMR (300 MHz, CDCl₃) δ 3.91 (s, 3H), 6.47 (s, 1H), 6.98 (d, J = 9.3 Hz, 2H), 7.36-7.45 (m, 10H), 8.58 (d, J = 9.3 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 56.0, 63.4, 115.1, 119.4, 128.7, 128.8, 129.0, 135.10, 135.6, 156.5, 162.3, 166.7; IR (ATR) 1724, 1603, 1547, 1511, 1368, 1255, 1189, 1160, 1013, 844, 815, 760, 697, 612 cm⁻¹; HRMS (ESI, positive) m/z for C₂₂H₁₈N₂NaO₄S [M+Na]⁺ calcd. 429.0885, found 429.0878.

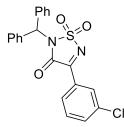

2-Benzhydryl-4-(4-fluorophenyl)-3-oxo-1,2,5-thiadiazol 1,1-oxides (1g) (R = 4-FC₆H₄)

According to the general procedure, the reaction with ethyl 4-fluorobenzoylformate (882.4 mg, 4.5 mmol) gave **s1g** (912.3 mg), then the reaction of **s1g** (500.0 mg, 2.0 mmol) gave **1g** as a white solid (236.4 mg, 30%).

m.p. 143.4-144.2 °C; ¹H NMR (300 MHz, CDCl₃) δ 6.48 (s, 1H), 7.17-7.23 (m, 2H), 7.37-7.42 (m, 10H), 8.59-8.63 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 63.7, 117.0 (d, $J_{C-F} = 22.5$ Hz), 123.2, 123.3, 128.8, 128.9, 129.0, 135.2, 135.3, 135.4, 155.7, 168.9 (d, $J_{C-F} = 261.3$ Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ –97.78; IR (ATR) 1727, 1591, 1562, 1366, 1254, 1188, 1158, 855, 812, 787, 762, 698, 618 cm⁻¹; HRMS (ESI, positive) m/z for C₂₁H₁₅FN₂NaO₃S [M+Na]⁺ calcd. 417.0685, found 417.0684.

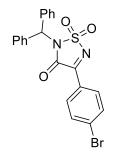

2-Benzhydryl-4-(3-fluorophenyl)-3-oxo-1,2,5-thiadiazol 1,1-oxides (1h) (R = 3-FC₆H₄)

According to the general procedure, the reaction with ethyl 3-fluorobenzoylformate (784.4 mg, 4.0 mmol) gave **s1h** (922.2 mg), then the reaction of **s1h** (500.0 mg, 2.0 mmol) gave **1h** as a white solid (244.3 mg, 31%).


m.p. 146.7-147.5 °C; ¹H NMR (300 MHz, CDCl₃) δ 6.49 (s, 1H), 7.37-7.53 (m, 12H), 8.24-8.28 (m, 1H), 8.34-8.38 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 63.9, 118.7 (d, $J_{C-F} = 25.0$ Hz), 123.4 (d, $J_{C-F} = 21.3$ Hz), 128.1, 128.5, 128.6, 128.9, 129.0, 131.1 (d, $J_{C-F} = 7.5$ Hz), 135.3, 155.3, 162.6 (d, $J_{C-F} = 247.5$ Hz), 162.9; ¹⁹F NMR (282 MHz, CDCl₃) δ –109.8; IR (ATR) 1739, 1566, 1368, 1254, 1188, 1159, 1063, 889, 757, 740, 697 cm⁻¹; HRMS (ESI, positive) m/z for C₂₁H₁₅FN₂NaO₃S [M+Na]⁺ calcd. 417.0685, found 417.0677.

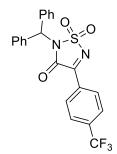
2-Benzhydryl-4-(4-chlorophenyl)-3-oxo-1,2,5-thiadiazol 1,1-oxides (1i) (R = 4-ClC₆H₄)

According to the general procedure, the reaction with ethyl 4-chlorobenzoylformate (954.0 mg, 4.5 mmol) gave **s1i** (945.9 mg), then the reaction of **s1i** (665.0 mg, 2.5 mmol) gave **1i** as a white solid (350.0 mg, 34%).


m.p. 131.8-132.5 °C; ¹H NMR (300 MHz, CDCl₃) δ 6.48 (s, 1H), 7.37-7.43 (m, 10H), 7.49 (d, J = 8.7 Hz, 2H), 8.49 (d, J = 8.7 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 63.8, 125.2, 128.8, 128.9, 129.0, 129.9, 133.4, 135.3, 143.4, 155.6, 162.8; IR (ATR) 1738, 1582, 1375, 1255, 1186, 1094, 1067, 844, 815, 744, 713, 694 cm⁻¹; HRMS (ESI, positive) m/z for C₂₁H₁₅ClN₂NaO₃S [M+Na]⁺ calcd. 433.0390, found 433.0386.

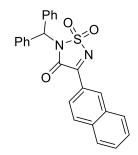
According to the general procedure, the reaction with ethyl 3-chlorobenzoylformate (850.5 mg, 4.0 mmol) gave **s1j** (1.0 g), then the reaction of **s1j** (532.0 mg, 2.0 mmol) gave **1j** as a white solid (287.1 mg, 35%).

m.p. 151.1-152.0 °C; ¹H NMR (300 MHz, CDCl₃) δ 6.49 (s, 1H), 7.37-7.50 (m, 11H), 7.66-7.70 (m, 1H), 8.42-8.45 (m, 1H), 8.55 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 63.9, 128.4, 128.9, 129.0, 130.2, 130.6, 131.8, 135.2, 135.6, 136.1, 155.3, 162.9; IR (ATR) 1741, 1583, 1556, 1363, 1240, 1182, 842, 747, 696, 675, 651 cm⁻¹; HRMS (ESI, positive) m/z for C₂₁H₁₅ClN₂NaO₃S [M+Na]⁺ calcd. 433.0390, found 433.0391.

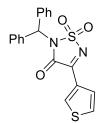

2-Benzhydryl-4-(4-bromophenyl)-3-oxo-1,2,5-thiadiazol 1,1-oxides (1k) (R = 4-BrC₆H₄)

According to the general procedure, the reaction with ethyl 4-bromobenzoylformate (1.23 g, 4.8 mmol) gave **s1k** (1.07 g), then the reaction of **s1k** (665.0 mg, 2.5 mmol) gave **1k** as a yellow solid (324.7 mg, 32%).

m.p. 144.8-145.5 °C; ¹H NMR (300 MHz, CDCl₃) δ 6.48 (s, 1H), 7.38-7.42 (m, 10H), 7.67 (d, J = 8.7 Hz, 2H), 8.40 (d, J = 8.7 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 63.8, 125.7, 128.9, 129.0, 132.6, 132.9, 133.4, 135.3, 155.6, 163.1; IR (ATR) 1727, 1580, 1549, 1494, 1370, 1247, 1195, 1174, 1010, 810, 699 cm⁻¹; HRMS (ESI, positive) m/z for C₂₁H₁₅BrN₂NaO₃S [M+Na]⁺ calcd. 476.9884, found 476.9873.

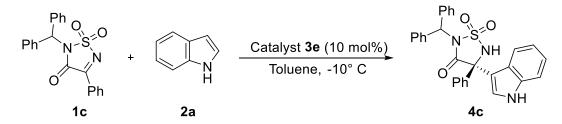

2-Benzhydryl-4-(4-trifluoromethylphenyl)-3-oxo-1,2,5-thiadiazol 1,1-oxides (11) (R = 4-CF₃C₆H₄)

According to the general procedure, the reaction with ethyl [4-(trifluoromethyl)phenyl]glyoxylate (984.2 mg, 4.0 mmol) gave **s1l** (1.01 g), then the reaction of **s1l** (600.0 mg, 2.0 mmol) gave **1l** as a white solid (266.4 mg, 30%).

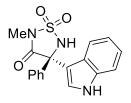

m.p. 139.1-139.3 °C; ¹H NMR (300 MHz, CDCl₃) δ 6.51 (s, 1H), 7.39-7.44 (m, 10H), 7.79 (d, J = 6.0 Hz, 2H), 8.85 (d, J = 6.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 64.0, 122.1, 124.2, 126.1, 126.2, 127.4, 128.8, 128.9, 129.8, 132.4, 135.1, 136.6 (q, $J_{C-F} = 32.5$ Hz) 136.8 (q, $J_{C-F} = 32.5$ Hz), 137.1 (q, $J_{C-F} = 33.8$ Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ –63.63; IR (ATR) 1738, 1592, 1564, 1378, 1319, 1250, 1177, 1129, 1069, 1015, 854, 811, 699 cm⁻¹; HRMS (ESI, positive) m/z for C₂₂H₁₅F₃N₂NaO₃S [M+Na]⁺ calcd. 467.0653, found 467.0656.

2-Benzhydryl-4-(naphthalen-2-yl)-3-oxo-1,2,5-thiadiazol 1,1-oxides (1m) (R = 2-Naphthyl)

According to the general procedure, the reaction with ethyl 2-naphthylglyoxylate (250.8 mg, 2.61 mmol) gave **s1m** (604.9 mg), then the reaction of **s1m** (564.0 mg, 2.0 mmol) gave **1m** as a yellow solid (238.6 mg, 28%).


m.p. 237.6-238.2 °C; ¹H NMR (300 MHz, CDCl₃) δ 6.52 (s, 1H), 7.34-7.49 (m, 10H), 7.53-7.58 (m, 1H), 7.63-7.68 (m, 1H), 7.84-7.93 (m, 3H), 8.28 (d, *J* = 8.7 Hz, 1H), 9.37 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 63.7, 124.3, 125.1, 127.6, 128.1, 128.9, 129.1, 129.5, 130.7, 132.5, 135.5, 136.8, 137.2, 156.1, 163.3; IR (ATR) 1745, 1548, 1357, 1268, 1178, 883, 746, 697, 633, 610 cm⁻¹; HRMS (ESI, positive) m/z for C₂₅H₁₈N₂NaO₃S [M+Na]⁺ calcd. 449.0936, found 449.0936.

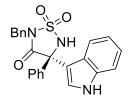
According to the general procedure, the reaction with ethyl 3-thienylglyoxylate (552.0 mg, 3.0 mmol) gave **s1n** (653.2 mg), then the reaction of **s1n** (475.8 mg, 2.0 mmol) gave **1n** as a yellow solid (129.9 mg, 17%).


m.p. 148.2-149.1 °C; ¹H NMR (300 MHz, CDCl₃) δ 6.48 (s, 1H), 7.22-7.30 (m, 1H), 7.35-7.47 (m, 10H), 7.85-7.87 (m, 1H), 9.13-9.14 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 63.5, 127.7, 128.3, 128.8, 129.0, 135.5, 141.9, 155.8, 158.3; IR (ATR) 1731, 1565, 1366, 1251, 1173, 879, 820, 732, 695, 622 cm⁻¹; HRMS (ESI, positive) m/z for C₁₉H₁₄N₂NaO₃S₂ [M+Na]⁺ calcd. 405.0344, found 405.0332.

General procedure for the enantioselective aza-Friedel-Crafts reaction of cyclic ketimines with indoles:

Indole **2a** (8.8 mg, 0.075 mmol) was added to a solution of bis(imidazoline)-phosphoric acid catalyst **3e** (5.0 mg, 10 mol%) and cyclic ketimine **1c** (18.8 mg, 0.05 mmol) in toluene (0.25 mL) at -10 °C. After stirred for 40 h, the mixture was purified over silica gel column chromatography (hexane/ethyl acetate=70:30) to give **4c** (24.1 mg, 98%, 99% ee).

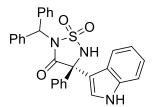
(R)-2-Methyl-4-(1H-indol-3-yl)-4-phenyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (4a)



Reaction of **3a** (3.6 mg, 0.005 mmol), **1a** (11.2 mg, 0.05 mmol) and **2a** (8.8 mg, 0.075 mmol) in toluene (0.25 mL) at r.t. for 72 h gave **4a** (13.0 mg, 76%, 5% ee).

 $[\alpha]_D^{25}$ +0.3 (c 0.33, EtOH); m.p. 199.2-200.1 °C; ¹H NMR (300 MHz, CDCl₃) δ 3.11 (s, 3H), 5.27 (s, 1H), 7.04-7.10 (m, 1H), 7.19-7.30 (m, 3H), 7.36-7.42 (m, 4H), 7.73-7.76 (m, 2H), 8.29 (s, 1H); ¹³C

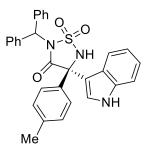
NMR (125 MHz, CDCl₃) δ 26.3, 72.1, 112.0, 114.2, 119.4, 121.1, 123.4, 124.1, 125.4, 127.3, 128.8, 129.1, 136.8, 136.9, 168.6; IR (ATR) 3385, 3305, 1745, 1462, 1431, 1295, 1249, 1165, 1112, 1054, 962.3, 908, 743, 697, 650 cm⁻¹; HRMS (ESI, positive) m/z for C₁₇H₁₅N₃NaO₃S [M+Na]⁺ calcd. 364.0732, found 364.0735; HPLC (DAICEL CHIRALPAK IG[®], Hexane:*i*PrOH = 90:10, 1.0 mL/min, 254 nm), tR = 22.9 min (major), 27.5 min (minor).


(R)-2-Benzyl-4-(1H-indol-3-yl)-4-phenyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (4b)

Reaction of **3a** (3.6 mg, 0.005 mmol), **1b** (15.0 mg, 0.05 mmol) and **2a** (8.8 mg, 0.075 mmol) in toluene (0.25 mL) at r.t. for 72 h gave **4b** (14.9 mg, 71%, 5% ee).

 $[\alpha]_D^{25}$ +0.3 (c 0.35, EtOH); m.p. 204.6-205.1 °C; ¹H NMR (300 MHz, CDCl₃) δ 4.75 (d, J = 15.3 Hz, 1H), 4.85 (d, J = 15.3 Hz, 1H), 5.27 (s, 1H), 6.96-6.99 (m, 1H), 7.09-7.26 (m, 4H), 7.34-7.40 (m, 6H), 7.45-7.48 (m, 2H), 7.73-7.76 (m, 2H), 8.23 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 45.5, 71.3, 111.9, 114.9, 119.3, 121.1, 123.4, 124.1, 125.5, 127.3, 128.6, 128.9, 129.0, 129.1, 134.2, 136.7, 136.9, 168.7; IR (ATR) 3368, 3316, 1727, 1431, 1369, 1327, 1290, 1247, 1174, 1109, 1053, 951, 907, 753, 726, 697, 656 cm⁻¹; HRMS (ESI, positive) m/z for C₂₃H₁₉N₃NaO₃S [M+Na]⁺ calcd. 440.1045, found 440.1053; HPLC (DAICEL CHIRALPAK IG[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 254 nm), tR = 11.8 min (major), 15.6 min (minor).

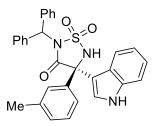
(R)-2-Benzhydryl-4-(1H-indol-3-yl)-4-phenyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (4c)



Reaction of **3e** (5.0 mg, 0.005 mmol), **1c** (18.8 mg, 0.05 mmol) and **2a** (8.8 mg, 0.075 mmol) in toluene (0.25 mL) at -10 °C for 40 h gave **4c** (24.1 mg, 98%, 99% ee).

[α]_D²⁵ +22.5 (c 0.78, EtOH); m.p. 125.5-126.3 °C; ¹H NMR (300 MHz, CDCl₃) δ 5.36 (s, 1H), 6.39 (s, 1H), 6.86-6.95 (m, 2H), 7.10-7.15 (m, 2H), 7.22-7.44 (m, 14H), 7.68-7.70 (m, 2H), 8.21 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 62.7, 111.9, 114.1, 119.1, 120.9, 123.2, 124.0, 125.6, 127.3, 128.3, 128.5, 128.6, 128.7, 129.0, 129.5, 135.9, 136.1, 136.5, 136.8, 168.3; IR (ATR) 3411, 3281, 1725, 1495, 1383, 1327, 1248, 1176, 1028, 907, 739, 695, 649 cm⁻¹; HRMS (ESI, positive) m/z for C₂₉H₂₃N₃NaO₃S

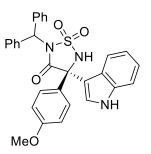
 $[M+Na]^+$ calcd. 516.1358, found 516.1364; HPLC (DAICEL CHIRALPAK IG[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 254 nm), tR = 10.7 min (major), 14.8 min (minor).


(R)-2-Benzhydryl-4-(1H-indol-3-yl)-4-(p-tolyl)-1,2,5-thiadiazolidin-3-one 1,1-dioxide (4d)

Reaction of **3e** (5.0 mg, 0.005 mmol), **1d** (19.5 mg, 0.05 mmol) and **2a** (8.8 mg, 0.075 mmol) in toluene (0.25 mL) at -10 °C for 72 h gave **4d** (23.7 mg, 93%, 98% ee).

 $[\alpha]_D^{25}$ +0.4 (c 0.56, EtOH); m.p. 145.7-146.2 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.36 (s, 3H), 5.34 (s, 1H), 6.39 (s, 1H), 6.91-6.96 (m, 2H), 7.12-7.18 (m, 3H), 7.24-7.33 (m, 10H), 7.41-7.44 (m, 2H), 7.56 (d, J = 9.0 Hz, 2H), 8.21 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 21.3, 62.7, 70.5, 111.9, 114.2, 114.3, 119.3, 120.9, 123.2, 124.0, 124.1, 125.6, 127.2, 128.3, 128.5, 128.6, 128.7, 129.5, 133.7, 136.0, 136.2, 136.8, 138.9, 168.4; IR (ATR) 3413, 3285, 1726, 1382, 1327, 1266, 1248, 1175, 1105, 1028, 908, 849, 818, 735, 696 cm⁻¹; HRMS (ESI, positive) m/z for C₃₀H₂₅N₃NaO₃S [M+Na]⁺ calcd. 530.1514, found 530.1497; HPLC (DAICEL CHIRALPAK IG[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 254 nm), tR = 11.4 min (major), 14.1 min (minor).

(*R*)-2-Benzhydryl-4-(1*H*-indol-3-yl)-3-(4-methylphenyl)-1,2,5-thiadiazolidin-3-one 1,1-dioxide (4e)



Reaction of **3e** (5.0 mg, 0.005 mmol), **1e** (19.5 mg, 0.05 mmol) and **2a** (8.8 mg, 0.075 mmol) in toluene (0.25 mL) at -10 °C for 120 h gave **4e** (24.7 mg, 98%, 95% ee).

 $[\alpha]_D^{25}$ +33.2 (c 0.55, EtOH); m.p. 143.1-143.9 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.31 (s, 3H), 5.33 (s, 1H), 6.39 (s, 1H), 6.93-6.98 (m, 2H), 7.15-7.19 (m, 3H), 7.23-7.33 (m, 10H), 7.42-7.50 (m, 4H), 8.20 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 21.7, 62.8, 70.6, 111.9, 114.2, 119.4, 120.9, 123.2, 124.1, 124.5, 125.6, 127.8, 128.3, 128.5, 128.6, 128.8, 129.5, 129.8, 136.2, 136.6, 136.8, 138.5, 168.3; IR (ATR) 3412, 3278, 1726, 1605, 1453, 1383, 1327, 1267, 1183, 1090, 1028, 905, 733, 698 cm⁻¹; HRMS (ESI, positive) m/z for C₃₀H₂₅N₃NaO₃S [M+Na]⁺ calcd. 530.1514, found 530.1494; HPLC (DAICEL

CHIRALPAK IG[®], Hexane: iPrOH = 80:20, 1.0 mL/min, 254 nm), tR = 10.5 min (major), 15.8 min (minor).

(*R*)-2-Benzhydryl-4-(1*H*-indol-3-yl)-4-(4-methoxyphenyl)-1,2,5-thiadiazolidin-3-one 1,1-dioxide (4f)

Reaction of **3e** (5.0 mg, 0.005 mmol), **1f** (20.3 mg, 0.05 mmol) and **2a** (8.8 mg, 0.075 mmol) in toluene (0.25 mL) at -10 °C for 96 h gave **4f** (22.7 mg, 87%, 98% ee).

 $[\alpha]_D^{25}$ +3.7 (c 0.36, EtOH); m.p. 208.4-209.3 °C; ¹H NMR (300 MHz, CDCl₃) δ 3.82 (s, 3H), 5.32 (s, 1H), 6.40 (s, 1H), 6.89 (d, J = 9.0 Hz, 2H), 6.96-7.02 (m, 2H), 7.13-7.21 (m, 2H), 7.26-7.35 (m, 9H), 7.41-7.45 (m, 2H), 7.61 (d, J = 9.0 Hz, 2H), 8.20 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 55.5, 62.7, 70.3, 111.8, 114.0, 114.6, 119.4, 121.0, 123.3, 124.1, 125.5, 128.3, 128.6, 128.7, 129.5, 136.0, 136.2, 136.9, 160.1, 168.4; IR (ATR) 3412, 3281, 1732, 1611, 1509, 1237, 1173, 1091, 1028, 892, 743, 698, 631 cm⁻¹; HRMS (ESI, positive) m/z for C₃₀H₂₅N₃NaO₄S [M+Na]⁺ calcd. 546.1463, found 546.1465; HPLC (DAICEL CHIRALPAK IG[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 254 nm), tR = 14.3 min (major), 22.5 min (minor).

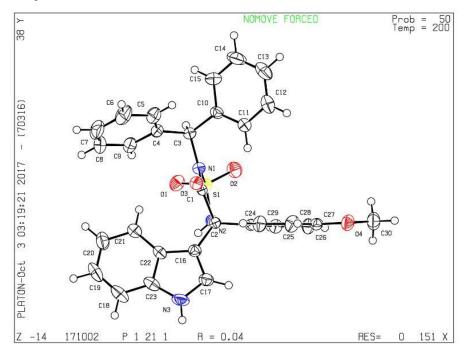
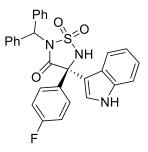
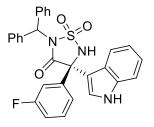
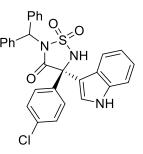



Figure S1. X-ray crystallography analysis for (*R*)-4f (CCDC No. 1577647).


(R)-2-Benzhydryl-4-(4-fluorophenyl)-4-(1H-indol-3-yl)-1,2,5-thiadiazolidin-3-one 1,1-dioxide (4g)

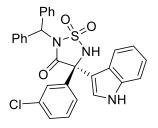
Reaction of **3e** (5.0 mg, 0.005 mmol), **1g** (19.7 mg, 0.05 mmol) and **2a** (8.8 mg, 0.075 mmol) in toluene (0.25 mL) at -10 °C for 72 h gave **4g** (24.1 mg, 95%, 96% ee).

[α]_D²⁵ +61.6 (c 0.38, EtOH); m.p. 206.2-206.8 °C; ¹H NMR (300 MHz, CDCl₃) δ 5.36 (s, 1H), 6.39 (s, 1H), 6.95-7.11 (m, 5H), 7.18-7.36 (m, 10H), 7.41-7.44 (m, 2H), 7.70-7.74 (m, 2H), 8.21 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 62.9, 70.0, 112.0, 114.3, 115.6 (d, $J_{C-F} = 21.3$ Hz), 119.0, 121.1, 123.5, 123.8, 125.3, 128.3, 128.5, 128.6, 128.7, 129.3, 129.4, 129.6, 132.3, 135.9 (d, $J_{C-F} = 10.0$ Hz), 136.8, 163.1 (d, $J_{C-F} = 246.3$ Hz), 168.0; ¹⁹F NMR (282 MHz, CDCl₃) δ -113.2; IR (ATR) 3378, 3341, 1754, 1604, 1504, 1237, 1177, 1160, 1089, 1025, 891, 756, 699, 631 cm⁻¹; HRMS (ESI, positive) m/z for C₂₉H₂₂FN₃NaO₃S [M+Na]⁺ calcd. 534.1264, found 534.1268; HPLC (DAICEL CHIRALPAK IG[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 254 nm), tR = 9.2 min (major), 10.9 min (minor).


(R)-2-Benzhydryl-4-(4-fluorophenyl)-4-(1H-indol-3-yl)-1,2,5-thiadiazolidin-3-one 1,1-dioxide (4h)

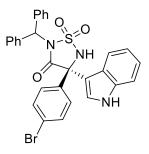
Reaction of **3e** (5.0 mg, 0.005 mmol), **1h** (19.7 mg, 0.05 mmol) and **2a** (8.8 mg, 0.075 mmol) in toluene (0.25 mL) at -10 °C for 96 h gave **4h** (25.0 mg, 98%, 91% ee).

[α]_D²⁵ +1.8 (c 0.48, EtOH); m.p. 135.3-140.0 °C; ¹H NMR (300 MHz, CDCl₃) δ 5.40 (s, 1H), 6.40 (s, 1H), 6.95-7.48 (m, 16H), 7.57 (d, J = 7.8 Hz, 1H), 8.23 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 62.9, 70.0, 112.0, 114.0, 114.9 (d, $J_{C-F} = 26.3$ Hz), 70.0, 112.0, 114.3, 115.6 (d, $J_{C-F} = 21.3$ Hz), 116.1 (d, $J_{C-F} = 20.0$ Hz), 119.0, 121.2, 123.0, 123.5, 123.8, 125.3, 128.4, 128.7, 128.8, 129.7, 130.2 (d, $J_{C-F} = 8.8$ Hz), 135.9, 136.8, 139.1 (d, $J_{C-F} = 7.5$ Hz), 162.9 (d, $J_{C-F} = 245.0$ Hz), 167.7; ¹⁹F NMR (282 MHz, CDCl₃) δ -111.7; IR (ATR) 3413, 3285, 1726, 1591, 1485, 1443, 1383, 1248, 1184, 1089, 1028, 908, 736, 698 cm⁻¹; HRMS (ESI, positive) m/z for C₂₉H₂₂FN₃NaO₃S [M+Na]⁺ calcd. 534.1264, found. 534.1261; HPLC (DAICEL CHIRALPAK IG[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 254 nm), tR = 8.6 min (major), 12.4 min (minor).


(R)-2-Benzhydryl-4-(4-chlorophenyl)-4-(1H-indol-3-yl)-1,2,5-thiadiazolidin-3-one 1,1-dioxide (4i)

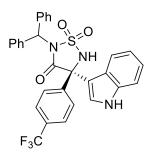
Reaction of **3e** (5.0 mg, 0.005 mmol), **1i** (20.5 mg, 0.05 mmol) and **2a** (8.8 mg, 0.075 mmol) in toluene (0.25 mL) at -10 °C for 72 h gave **4i** (25.1 mg, 95%, 95% ee).

[α]_D²⁵ +80.8 (c 0.33, EtOH); m.p. 227.4-228.0 °C; ¹H NMR (300 MHz, CDCl₃) δ 5.36 (s, 1H), 6.39 (s, 1H), 6.92-6.99 (m, 2H), 7.07-7.10 (m, 1H), 7.15-7.44 (m, 14H), 7.67-7.70 (m, 2H), 8.21 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 62.9, 70.0, 112.0, 114.1, 118.9, 121.2, 123.5, 123.7, 125.3, 128.4, 128.5, 128.7, 128.8, 128.9, 129.6, 135.1, 135.9, 136.8, 167.9; IR (ATR) 3450, 3265, 1729, 1487, 1386, 1335, 1275, 1187, 1174, 1045, 900, 796, 740, 702, 653 cm⁻¹; HRMS (ESI, positive) m/z for $C_{29}H_{22}CIN_3NaO_3S$ [M+Na]⁺ calcd. 550.0968, found 550.0975; HPLC (DAICEL CHIRALPAK IG[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 254 nm), tR = 8.1 min (major), 10.7 min (minor).


(*R*)-2-Benzhydryl-4-(3-chlorophenyl)-4-(1*H*-indol-3-yl)-1,2,5-thiadiazolidin-3-one 1,1-dioxide (4j)

Reaction of **3e** (5.0 mg, 0.005 mmol), **1j** (20.5 mg, 0.05 mmol) and **2a** (8.8 mg, 0.075 mmol) in toluene (0.25 mL) at -10 °C for 120 h gave **4j** (22.5 mg, 85%, 92% ee).

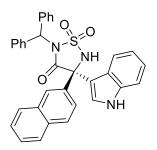
 $[\alpha]_D^{25}$ +31.1 (c 0.38, EtOH); m.p. 128.1-129.0 °C; ¹H NMR (300 MHz, CDCl₃) δ 5.40 (s, 1H), 6.40 (s, 1H), 6.94-7.00 (m, 2H), 7.10-7.45 (m, 15H), 7.66-7.73 (m, 2H), 8.24 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 63.0, 69.9, 112.0, 114.0, 118.9, 121.2, 123.5, 123.7, 125.4, 125.5, 127.6, 128.4, 128.5, 128.6, 128.7, 121026.1, 9.3, 129.9, 134.7, 135.8, 135.9, 136.8, 138.6, 167.6; IR (ATR) 3412, 3271, 1726, 1593, 1416, 1382, 1328, 1266, 1180, 1105, 907, 786, 738, 696 cm⁻¹; HRMS (ESI, positive) m/z for C₂₉H₂₂ClN₃NaO₃S [M+Na]⁺ calcd. 550.0968, found 550.0969; HPLC (DAICEL CHIRALPAK IG[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 254 nm), tR = 8.3 min (major), 11.9 min (minor).


(R)-2-Benzhydryl-4-(4-bromophenyl)-4-(1H-indol-3-yl)-1,2,5-thiadiazolidin-3-one 1,1-dioxide (4k)

Reaction of **3e** (5.0 mg, 0.005 mmol), **1k** (22.7 mg, 0.05 mmol) and **2a** (8.8 mg, 0.075 mmol) in toluene (0.25 mL) at -10 °C for 72 h gave **4k** (26.8 mg, 94%, 96% ee).

[α]_D²⁵ +40.5 (c 0.40, EtOH); m.p. 222.1-222.7 °C; ¹H NMR (300 MHz, CDCl₃) δ 5.36 (s, 1H), 6.39 (s, 1H), 6.96-7.00 (m, 2H), 7.10 (d, J = 8.7 Hz, 1H), 7.17-7.36 (m, 10H), 7.41-7.44 (m, 2H), 7.51 (d, J = 8.7 Hz, 2H), 7.64 (d, J = 8.7 Hz, 2H), 8.22 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 62.9, 70.0, 112.0, 114.1, 118.9, 121.2, 123.4, 123.5, 123.8, 125.3, 128.4, 128.6, 128.7, 129.1, 129.7, 131.9, 135.7, 135.9, 136.8, 167.8; IR (ATR) 3423, 3289, 1751, 1486, 1396, 1341, 1300, 1248, 1174, 1009, 939, 848, 824, 750, 700, 665 cm⁻¹; HRMS (ESI, positive) m/z for C₂₉H₂₂BrN₃NaO₃S [M+Na]⁺ calcd. 594.0463, found 594.0471; HPLC (DAICEL CHIRALPAK IG[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 254 nm), tR = 8.8 min (major), 13.7 min (minor).

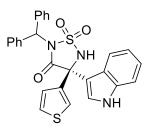
(*R*)-2-Benzhydryl-4-(1*H*-indol-3-yl)-4-[4-(trifluoromethyl)phenyl]-1,2,5-thiadiazolidin-3-one 1,1-dioxide (4l)



Reaction of **3e** (5.0 mg, 0.005 mmol), **1l** (22.2 mg, 0.05 mmol) and **2a** (8.8 mg, 0.075 mmol) in toluene (0.25 mL) at -10 °C for 40 h gave **4l** (27.4 mg, 98%, 96% ee).

[α]_D²⁵ –12.5 (c 0.51, EtOH); m.p. 224.7-225.7 °C; ¹H NMR (300 MHz, CDCl₃) δ 5.42 (s, 1H), 6.40 (s, 1H), 6.97-7.01 (m, 2H), 7.10 (d, J = 8.1 Hz, 1H), 7.20-7.43 (m, 12H), 7.64 (d, J = 8.1 Hz, 2H), 7.92 (d, J = 9.1 Hz, 2H), 8.24 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 63.0, 70.1, 112.1, 113.9, 118.8, 121.3, 123.6, 123.8, 125.2, 125.6 (q, $J_{C-F} = 3.3$ Hz), 127.9, 128.4, 128.6, 128.7, 128.8, 129.7, 131.1 (q, $J_{C-F} = 32.5$ Hz), 135.7, 135.9, 136.8, 140.4, 167.6; ¹⁹F NMR (282 MHz, CDCl₃) δ –62.7; IR (ATR) 3494, 3358, 1739, 1621, 1326, 1248, 1175, 1108, 1068, 1016, 855, 832, 750, 700, 653 cm⁻¹; HRMS (ESI, positive) m/z for C₃₀H₂₂F₃N₃NaO₃S [M+Na]⁺ calcd. 584.1232, found 584.1215; HPLC (DAICEL

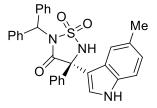
CHIRALPAK IG[®], Hexane: iPrOH = 80:20, 1.0 mL/min, 254 nm), tR = 14.1 min (major), 21.7 min (minor).


(*R*)-2-Benzhydryl-4-(1*H*-indol-3-yl)-4-(naphthalen-2-yl)-1,2,5-thiadiazolidin-3-one 1,1-dioxide (4m)

Reaction of **3e** (10.0 mg, 0.01 mmol), **1m** (21.3 mg, 0.05 mmol) and **2a** (8.8 mg, 0.075 mmol) in toluene (0.25 mL) at r.t. for 120 h gave **4m** (20.8 mg, 77%, 91% ee).

 $[\alpha]_{D}^{25}$ +8.8 (c 0.56, EtOH); m.p. 232.3-233.1 °C; ¹H NMR (300 MHz, CDCl₃) δ 5.44 (s, 1H), 6.41 (s, 1H), 6.90-6.95 (m, 2H), 7.13-7.32 (m, 11H), 7.42-7.46 (m, 2H), 7.50-7.54 (m, 2H), 7.70-7.74 (m, 1H), 7.79-7.86 (m, 3H), 8.21-8.26 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 62.8, 70.6, 111.9, 114.2, 119.1, 121.0, 123.3, 124.0, 124.8, 125.8, 126.6, 126.7, 127.0, 127.7, 128.3, 128.5, 128.6, 128.9, 129.6, 133.0, 133.4, 133.9, 136.0, 136.1, 136.8, 168.1; IR (ATR) 3448, 3279, 1728, 1382, 1329, 1269, 1187, 1104, 1058, 936, 903, 826, 794, 750, 707, 649 cm⁻¹; HRMS (ESI, positive) m/z for C₃₃H₂₅N₃NaO₃S [M+Na]⁺ calcd. 566.1514, found 566.1493; HPLC (DAICEL CHIRALPAK IG[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 254 nm), tR = 13.4 min (major), 29.2 min (minor).

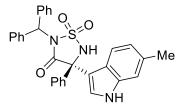
(R)-2-Benzhydryl-4-(1H-indol-3-yl)-4-(thiophen-3-yl)-1,2,5-thiadiazolidin-3-one 1,1-dioxide (4n)



Reaction of **3e** (5.0 mg, 0.005 mmol), **1n** (19.1 mg, 0.05 mmol) and **2a** (8.8 mg, 0.075 mmol) in toluene (0.25 mL) at 0 °C for 120 h gave **4n** (22.7 mg, 91%, 97% ee).

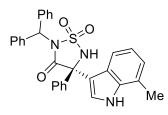
 $[\alpha]_D^{25}$ –85.1 (c 0.39, EtOH); m.p. 205.8-206.7 °C; ¹H NMR (300 MHz, CDCl₃) δ 5.37 (s, 1H), 6.40 (s, 1H), 6.95-7.00 (m, 2H), 7.14-7.19 (m, 3H), 7.24-7.35 (m, 10H), 7.42-7.46 (m, 2H), 7.61-7.63 (m, 1H), 8.20 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 62.7, 68.5, 111.9, 113.5, 118.9, 121.0, 123.3, 123.9, 124.9, 125.5, 126.8, 127.0, 128.3, 128.5, 128.6, 129.5, 135.8, 136.2, 136.8, 137.8, 167.8; IR (ATR) 3414, 3343, 1739, 1495, 1452, 1377, 1325, 1249, 1175, 1081, 1025, 908, 847, 786, 736, 697.1 cm⁻¹; HRMS (ESI,

positive) m/z for $C_{27}H_{21}N_3NaO_3S_2$ [M+Na]⁺ calcd. 522.0922, found 522.0941; HPLC (DAICEL CHIRALPAK IG[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 254 nm), tR = 11.7 min (major), 15.7 min (minor).


(R)-2-Benzhydryl-4-(5-methyl-1H-indol-3-yl)-4-phenyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (5)

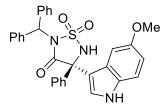
Reaction of **3e** (5.0 mg, 0.005 mmol), **1c** (18.8 mg, 0.05 mmol) and **2b** (9.8 mg, 0.075 mmol) in toluene (0.25 mL) at -10 °C for 96 h gave **5** (25.2 mg, 99%, 96% ee).

 $[\alpha]_D^{25}$ –29.5 (c 0.77, EtOH); m.p. 208.1-208.4 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.25 (s, 3H), 5.37 (s, 1H), 6.38 (s, 1H), 6.76 (s, 1H), 6.95-6.98 (m, 2H), 7.13-7.46 (m, 14H), 7.71-7.74 (m, 2H), 8.11(s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 21.6, 63.6, 70.6, 111.7, 113.7, 118.4, 124.1, 124.9, 125.9, 127.3, 128.2, 128.5, 128.6, 128.7, 129.0, 129.6, 130.5, 135.1, 136.1, 136.3, 136.4, 168.4; IR (ATR) 3417, 3352, 1752, 1723, 1495, 1448, 1326, 1290, 1248, 1182, 1116, 1029, 822, 798, 765, 696 cm⁻¹; HRMS (ESI, positive) m/z for C₃₀H₂₅N₃NaO₃S [M+Na]⁺ calcd. 530.1514, found 530.1519.; HPLC (DAICEL CHIRALPAK IG[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 254 nm), tR = 9.2 min (major), 12.6 min (minor).


(R)-2-Benzhydryl-4-(6-methyl-1H-indol-3-yl)-4-phenyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (6)

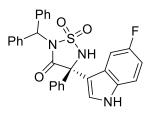
Reaction of **3e** (5.0 mg, 0.005 mmol), **1c** (18.8 mg, 0.05 mmol) and **2c** (9.8 mg, 0.075 mmol) in toluene (0.25 mL) at -10 °C for 96 h gave **6** (25.0 mg, 98%, 93% ee).

 $[\alpha]_D^{25}$ +16.2 (c 0.48, EtOH); m.p. 204.5-205.3 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.36 (s, 3H), 5.34 (s, 1H), 6.38 (s, 1H), 6.74-6.78 (m, 2H), 6.99-7.02 (m, 2H), 7.22-7.44 (m, 13H), 7.67-7.71 (m, 2H), 8.08 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 21.7, 62.8, 70.6, 111.8, 114.0, 118.7, 121.8, 122.6, 125.0, 127.3, 128.3, 128.5, 128.6, 129.0, 129.5, 133.2, 136.0, 136.2, 136.6, 137.3, 168.3; IR (ATR) 3343, 3281, 1714, 1449, 1386, 1339, 1318, 1286, 1179, 1025, 952, 907, 803, 763, 730, 696 cm⁻¹; HRMS (ESI, positive) m/z for C₃₀H₂₅N₃NaO₃S [M+Na]⁺ calcd. 530.1514, found 530.1516.; HPLC (DAICEL CHIRALPAK IG[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 254 nm), tR = 13.5 min (major), 24.2 min (minor).


(R)-2-Benzhydryl-4-(7-methyl-1H-indol-3-yl)-4-phenyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (7)

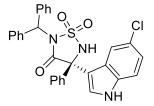
Reaction of **3e** (5.0 mg, 0.005 mmol), **1c** (18.8 mg, 0.05 mmol) and **2d** (9.8 mg, 0.075 mmol) in toluene (0.25 mL) at -10 °C for 96 h gave **7** (24.6 mg, 97%, 97% ee).

 $[\alpha]_D^{25}$ +11.1 (c 0.55, EtOH); m.p. 135.1-135.2 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.25 (s, 3H), 5.38 (s, 1H), 6.39 (s, 1H), 6.78-6.97 (m, 4H), 7.22-7.45 (m, 13H), 7.68-7.71 (m, 2H), 8.17 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 16.5, 62.7, 70.6, 114.5, 116.5, 121.2, 121.3, 123.4, 125.6, 127.2, 128.3, 128.5, 128.6, 128.7, 129.0, 129.6, 135.9, 136.1, 136.4, 168.5; IR (ATR) 3340, 3281, 1721, 1495, 1447, 3174, 1345, 1321, 1280, 1241, 1179, 1111, 1026, 908, 728, 697 cm⁻¹; HRMS (ESI, positive) m/z for C₃₀H₂₅N₃NaO₃S [M+Na]⁺ calcd. 530.1514, found 530.1508; HPLC (DAICEL CHIRALPAK IG[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 254 nm), tR = 10.5 min (major), 15.5 min (minor).


(R)-2-Benzhydryl-4-(5-methoxy-1H-indol-3-yl)-4-phenyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (8)

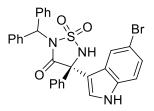
Reaction of **3e** (5.0 mg, 0.005 mmol), **1c** (18.8 mg, 0.05 mmol) and **2e** (11.0 mg, 0.075 mmol) in toluene (0.25 mL) at -20 °C for 48 h gave **8** (25.8 mg, 99%, 98% ee).

 $[\alpha]_D^{25}$ –52.3 (c 0.70, EtOH); m.p. 122.2-122.5 °C; ¹H NMR (300 MHz, CDCl₃) δ 3.49 (s, 3H), 5.41 (s, 1H), 6.36 (s, 1H), 6.63 (s, 1H), 6.77-6.84 (m, 2H), 7.12-7.45 (m, 14H), 7.70-7.73 (m, 2H), 8.15 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 55.6, 62.6, 70.7, 100.2, 112.8, 113.8, 124.5, 126.2, 127.4, 128.2, 128.5, 128.6, 128.7, 129.0, 129.5, 131.7, 136.0, 126.3, 126.5, 154.8, 168.2; IR (ATR) 3410, 3293, 1726, 1586, 1486, 1449, 1383, 1330, 1265, 1218, 1175, 1078, 1027, 911, 803, 768, 729, 695 cm⁻¹; HRMS (ESI, positive) m/z for C₃₀H₂₅N₃NaO₄S [M+Na]⁺ calcd. 546.1463, found 546.1457; HPLC (DAICEL CHIRALPAK IG[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 254 nm), tR = 11.3 min (major), 16.8 min (minor).


(R)-2-Benzhydryl-4-(5-fluoro-1*H*-indol-3-yl)-4-phenyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (9)

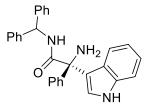
Reaction of **3e** (5.0 mg, 0.005 mmol), **1c** (18.8 mg, 0.05 mmol) and **2f** (10.1 mg, 0.075 mmol) in toluene (0.25 mL) at 0 °C for 168 h gave **9** (22.9 mg, 90%, 95% ee).

[α]_D²⁵ +25.7 (c 0.39, EtOH); m.p. 137.6-138.5 °C; ¹H NMR (300 MHz, CDCl₃) δ 5.30 (s, 1H), 6.40 (s, 1H), 6.79-6.94 (m, 2H), 7.10 (s, 1H), 7.19-7.39 (m, 14H), 7.63-7.66 (m, 2H), 8.27 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 62.9, 70.4, 104.8 (d, $J_{C-F} = 25.5$ Hz), 111.9 (d, $J_{C-F} = 26.3$ Hz), 112.6, 114.2 (d, $J_{C-F} = 5.0$ Hz), 124.5, 124.6, 127.0, 127.3, 128.4, 128.6, 128.7, 128.9, 129.2, 129.3, 133.3, 135.8, 136.1, 136.4, 158.1 (d, $J_{C-F} = 236.3$ Hz), 168.1; ¹⁹F NMR (282 MHz, CDCl₃) δ -121.8; IR (ATR) 3410, 3288, 1720, 1584, 1487, 1450, 1384, 1329, 1267, 1107, 1027, 908, 846, 803, 730, 623 cm⁻¹; HRMS (ESI, positive) m/z for C₂₉H₂₂FN₃NaO₃S [M+Na]⁺ calcd. 534.1264, found 534.1273; HPLC (DAICEL CHIRALPAK IG[®], Hexane:*i*PrOH = 90:10, 1.0 mL/min, 254 nm), tR = 25.0 min (major), 38.9 min (minor).


(R)-2-Benzhydryl-4-(5-chloro-1H-indol-3-yl)-4-phenyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (10)

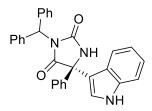
Reaction of **3e** (5.0 mg, 0.005 mmol), **1c** (18.8 mg, 0.05 mmol) and **2g** (15.2 mg, 0.10 mmol) in toluene (0.25 mL) at 0 °C for 168 h gave **10** (22.7 mg, 86%, 93% ee).

 $[\alpha]_D^{25}$ +11.7 (c 0.52, EtOH); m.p. 133.8-134.4 °C; ¹H NMR (300 MHz, CDCl₃) δ 5.25 (br, 1H), 6.39 (s, 1H), 6.97 (s, 1H), 7.06-7.50 (m, 16H), 7.60-7.63 (m, 2H), 8.31 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 62.9, 70.3, 112.9, 113.6, 118.9, 123.7, 125.1, 126.7, 126.8, 127.3, 128.4, 128.6, 128.7, 128.9, 129.2, 129.3, 135.2, 135.8, 136.2, 136.4, 168.2; IR (ATR) 3411, 3300, 1724, 1295, 1449, 1329, 1268, 1176, 1109, 1028, 894, 800, 695, 649 cm⁻¹; HRMS (ESI, positive) m/z for C₂₉H₂₂ClN₃NaO₃S [M+Na]⁺ calcd. 550.0968, found 550.0960; HPLC (DAICEL CHIRALPAK IG[®], Hexane:*i*PrOH = 90:10, 1.0 mL/min, 254 nm), tR = 21.1 min (major), 33.8 min (minor).


(R)-2-Benzhydryl-4-(5-bromo-1*H*-indol-3-yl)-4-phenyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (11)

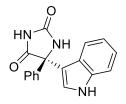
Reaction of **3e** (5.0 mg, 0.005 mmol), **1c** (18.8 mg, 0.05 mmol) and **2h** (19.6 mg, 0.10 mmol) in toluene (0.25 mL) at 0 °C for 168 h gave **11** (22.8 mg, 80%, 94% ee).

 $[\alpha]_D^{25}$ –50.6 (c 0.42, EtOH); m.p. 124.0-126.3 °C; ¹H NMR (300 MHz, CDCl₃) δ 5.33 (s, 1H), 6.39 (s, 1H), 6.99 (s, 1H), 7.08-7.11 (m, 1H), 7.20-7.39 (m, 15H), 7.60-7.63 (m, 2H), 8.31 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 62.8, 70.2, 113.2, 113.4, 114.2, 121.8, 125.7, 126.2, 126.5, 127.1, 128.3, 128.5, 128.6, 128.9, 129.1, 129.2, 135.4, 135.7, 136.1, 136.3, 169.1; IR (ATR) 3412, 3294, 1721, 1449, 1328, 1269, 1176, 1106, 1028, 907, 885, 799, 731, 695, 622 cm⁻¹; HRMS (ESI, positive) m/z for C₂₉H₂₂BrN₃NaO₃S [M+Na]⁺ calcd. 594.0463, found 594.0461; HPLC (DAICEL CHIRALPAK IG[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 254 nm), tR = 7.6 min (major), 10.9 min (minor).


(R)-2-Amino-N-benzhydryl-2-(1H-indol-3-yl)-2-phenylacetamide (13)⁴)

A solution of **4c** (300 mg, 0.608 mmol) in THF (0.9 mL) was dropwised to the solution of lithium aluminium hydride (69.1 mg, 1.82 mmol) in THF (0.3 mL) at 0 °C. Then the reaction mixture was stirred 12 h at 70 °C. The mixture was cooled to 0 °C, H₂O and 15% NaOH aq. were added. Then, aqueous layer was extracted with ethyl acetate. The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure to give the crude product, which was purified by silica gel column chromatography (hexane:ethyl acetate = 30:70) to afford (*R*)-2-Amino-*N*-benzhydryl-2-(1*H*-indol-3-yl)-2-phenylacetamide (232.4 mg, 89%, 97% ee).

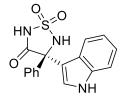
[α]_D²⁵ –29.7 (c 0.50, EtOH); m.p. 163.1-163.7 °C; ¹H NMR (300 MHz, CD₃OD) δ 6.17 (s, 1H), 6.86-6.89 (m, 1H), 7.03-7.11 (m, 4H), 7.14-7.16 (m, 3H), 7.18-7.31 (m, 9H), 7.35-7.38 (m, 1H), 7.46-7.49 (m, 2H); ¹³C NMR (125 MHz, CD₃OD) δ 58.6, 65.5, 112.6, 119.4, 120.1, 121.6, 122.7, 125.6, 128.3, 128.4, 128.5, 129.2, 129.5, 129.6, 138.8, 142.9, 145.4, 175.9; IR (ATR) 3391, 3352, 3281, 1661, 1587, 1489, 1446, 1342, 1243, 1117, 1928, 936, 868, 819, 755, 741, 697 cm⁻¹; HRMS (ESI, positive) m/z for C₂₉H₂₅N₃NaO [M+Na]⁺ calcd. 454.1895, found 454.1888; HPLC (of its *N*-Boc protected derivative, DAICEL CHIRALPAK ID[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 254 nm), tR = 10.5 min (minor), 29.6 min (major).


(R)-3-Benzhydryl-5-(1H-indol-3-yl)-5-phenylimidazolidine-2,4-dione (14)⁴)

To a solution of **13** (30 mg, 0.07 mmol) in dry THF, triphosgene (20.8 mg, 0.07 mmol) was added at 0 °C slowly, then triethylamine (49 μ L, 0.35 mmol) was added dropwise. The mixture was stirred for 18 h, then H₂O was added, and aqueous layer was extracted with ethyl acetate. The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure to give the crude product, which was purified by silica gel column chromatography (hexane:ethyl acetate = 60:40) to afford (*R*)-3-Benzhydryl-5-(1*H*-indol-3-yl)-5-phenylimidazolidine-2,4-dione (24.1 mg, 75%, 97% ee).

 $[\alpha]_D^{25}$ –58.7 (c 0.33, EtOH); m.p. 235.3-236.2 °C; ¹H NMR (300 MHz, CDCl₃) δ 6.32 (s, 1H), 6.58 (s, 1H), 6.86-6.92 (m, 3H), 7.11-7.19 (m, 1H), 7.25-7.35 (m, 14H), 7.46-7.49 (m, 2H), 8.17 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 58.6, 66.3, 111.7, 114.6, 119.6, 120.5, 122.9, 123.8, 124.7, 126.7, 127.8, 128.0, 128.5, 128.6, 128.7, 128.8, 136.9, 137.7, 138.0, 138.3, 156.4, 173.2; IR (ATR) 3318, 3222, 1619, 1495, 1449, 1415, 1362, 1335, 1247, 1119, 1076, 1029, 912, 871, 833, 741, 728, 647, 615 cm⁻¹; HRMS (ESI, positive) m/z for C₃₀H₂₃N₃NaO₂ [M+Na]⁺ calcd. 480.1688, found 480.1672; HPLC (DAICEL CHIRALPAK ID-3[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 254 nm), tR = 25.2 min (major), 33.7 min (minor).

(R)-5-(1H-indol-3-yl)-5-phenylimidazolidine-2,4-dione (15)

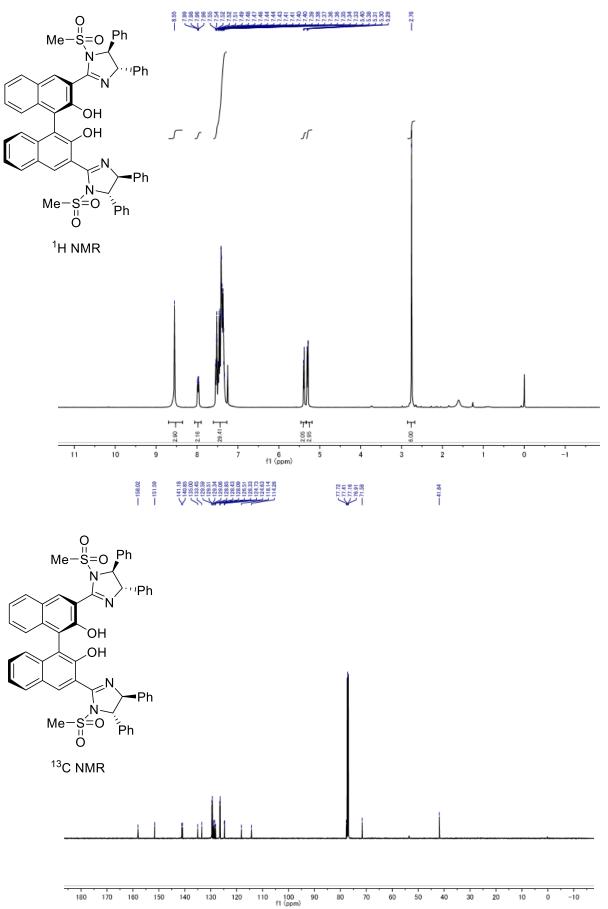


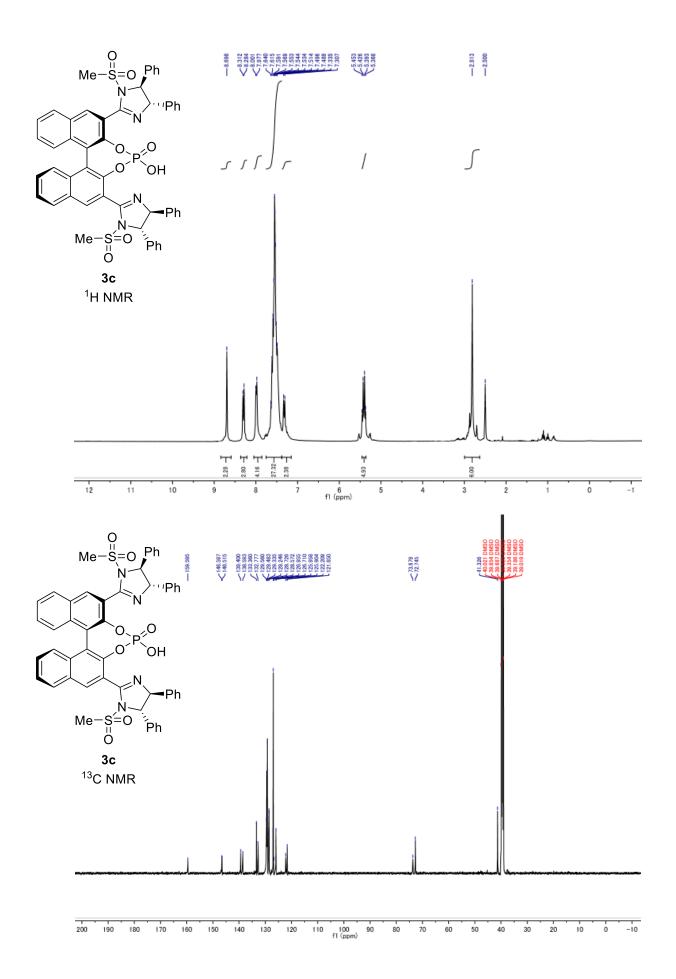
Pd/C (20 wt% on carbon, 6.9 mg) was added to a solution of **14** (32.0 mg, 0.07 mmol) in THF/methanol (0.35/0.35 mL). The reaction mixture was degassed in vacuo, placed under H₂ (balloon), stirred at 50 °C

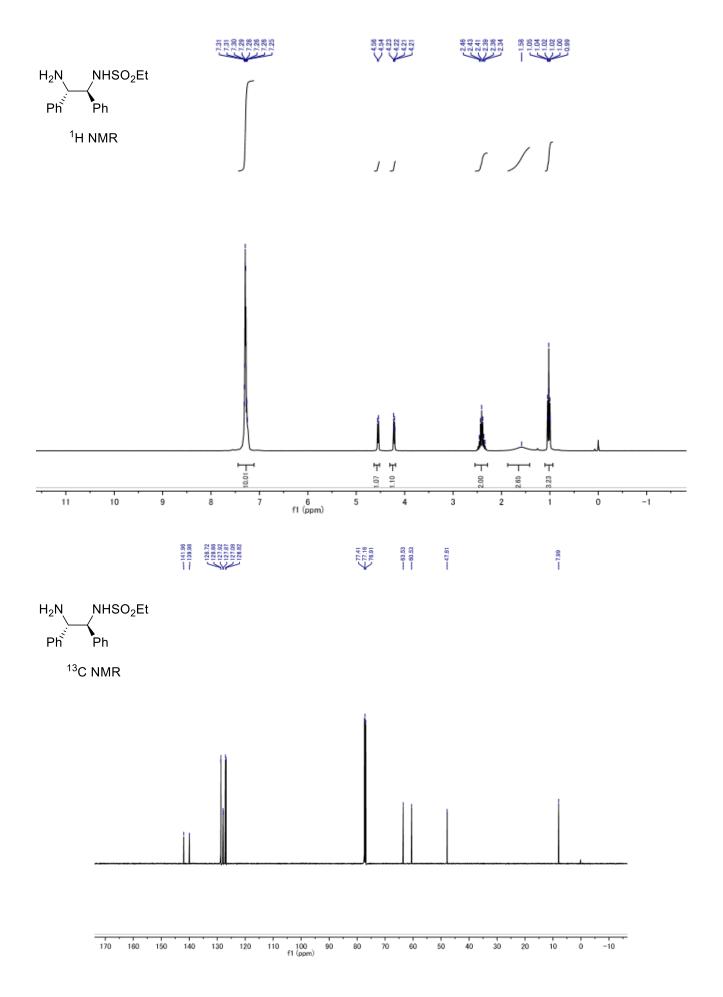
for 48 h. The mixture was filtered and washed with methanol, then the solvent was removed under reduced pressure to give the crude product, which was purified by silica gel column chromatography (hexane:ethyl acetate = 30:70) to afford (*R*)-5-(1*H*-indol-3-yl)-5-phenylimidazolidine-2,4-dione (18.5 mg, 91%, 97% ee)

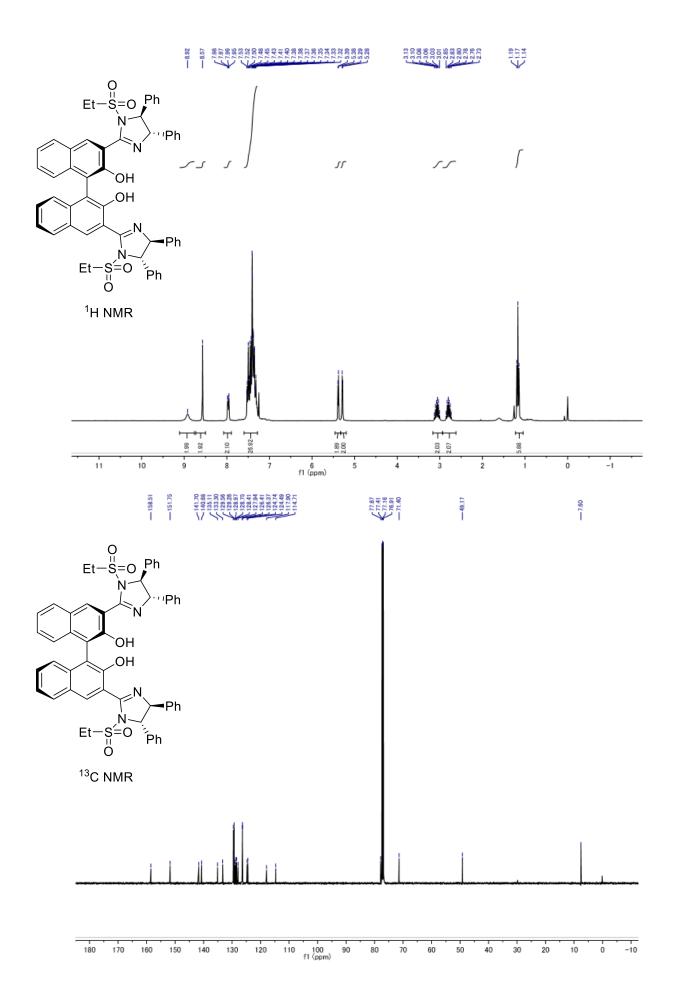
[α]_{D²⁵} +37.5 (c 0.33, EtOH); m.p. 282.3-283.1 °C; ¹H NMR (300 MHz, CD₃OD) δ 6.91-6.94 (m, 1H), 7.03 (s, 1H), 7.09-7.12 (m, 1H), 7.20-7.22 (m, 1H), 7.36-7.39 (m, 4H), 7.54-7.56 (m, 2H); ¹³C NMR (125 MHz, CD₃OD) δ 69.4, 112.6, 115.3, 120.3, 120.7, 123.0, 125.6, 127.9, 129.3, 129.4, 138.7, 140.3, 158.9, 177.7; IR (ATR) 3140, 3054, 2924, 1698, 1456, 1389, 1233, 1199, 1013, 922, 763, 744, 696, 643 cm⁻¹; HRMS (ESI, negative) m/z for C₁₇H₁₁N₃O₂ [M-H]⁻ calcd. 290.0930, found 290.0918; HPLC (DAICEL CHIRALPAK IA[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 254 nm), tR = 17.6 min (major), 19.8 min (minor).

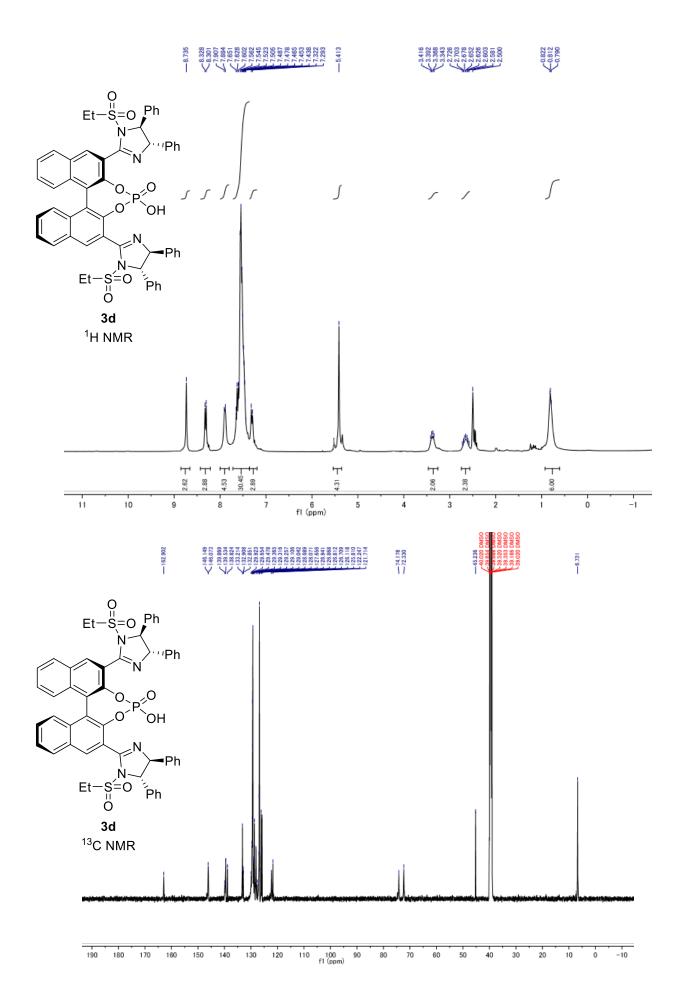
(R)-4-(1H-indol-3-yl)-4-phenyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (16)

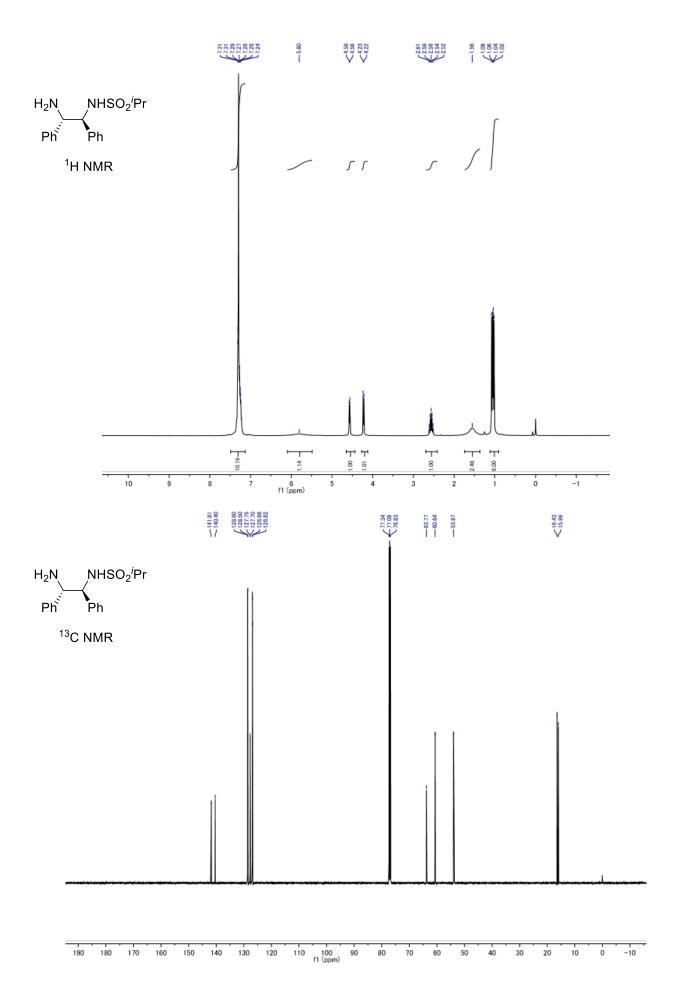

Pd/C (20 wt% on carbon, 9.9 mg) was added to a solution of **4c** (43.9 mg, 0.10 mmol) in THF/methanol (0.5/0.5 mL). The reaction mixture was degassed in vacuo, placed under H₂ (balloon), stirred at r.t. for 12 h. The mixture was filtered and washed with methanol, then the solvent was removed under reduced pressure to give the crude product, which was purified by silica gel column chromatography (ethyl acetate:methanol = 80:20) to afford (*R*)-4-(1*H*-indol-3-yl)-4-phenyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (31.2 mg, 95%, 97% ee)

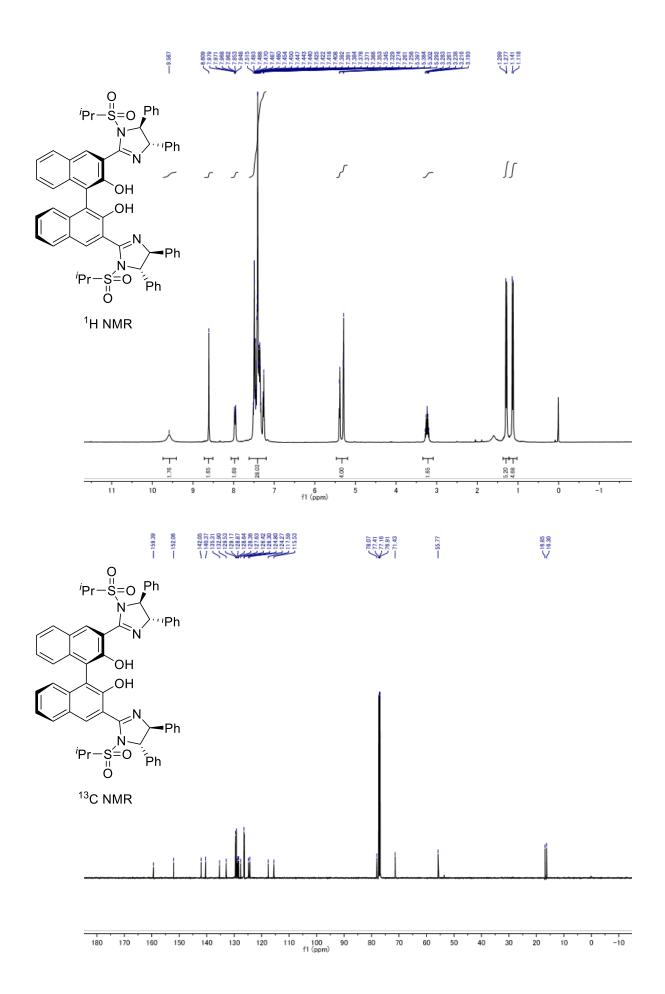

 $[\alpha]_D^{25}$ +66.0 (c 0.79, EtOH); m.p. 255.6-256.4 °C; ¹H NMR (300 MHz, CD₃OD) δ 6.83-6.88 (m, 1H), 7.01-7.09 (m, 2H), 7.22-7.31 (m, 5H), 7.67-7.70 (m, 2H); ¹³C NMR (125 MHz, CD₃OD) δ 75.8, 112.4, 117.4, 120.1, 121.3, 122.7, 126.2, 126.7, 127.0, 128.4, 128.7, 128.8, 129.4, 129.9, 138.6, 142.7, 181.5; IR (ATR) 3410, 3321, 3059, 1619, 1454, 1330, 1265, 1246, 1145, 1112, 1047, 1030, 987, 915, 846, 741, 698, 544, 616 cm⁻¹; HRMS (ESI, negative) m/z for C₁₆H₁₂N₃O₃S [M-H]⁻ calcd. 326.0599, found 326.0606; HPLC (DAICEL CHIRALPAK AY-3[®], Hexane:*i*PrOH = 80:20, 1.0 mL/min, 215 nm, 40 °C), tR = 22.3 min (major), 34.5 min (minor).

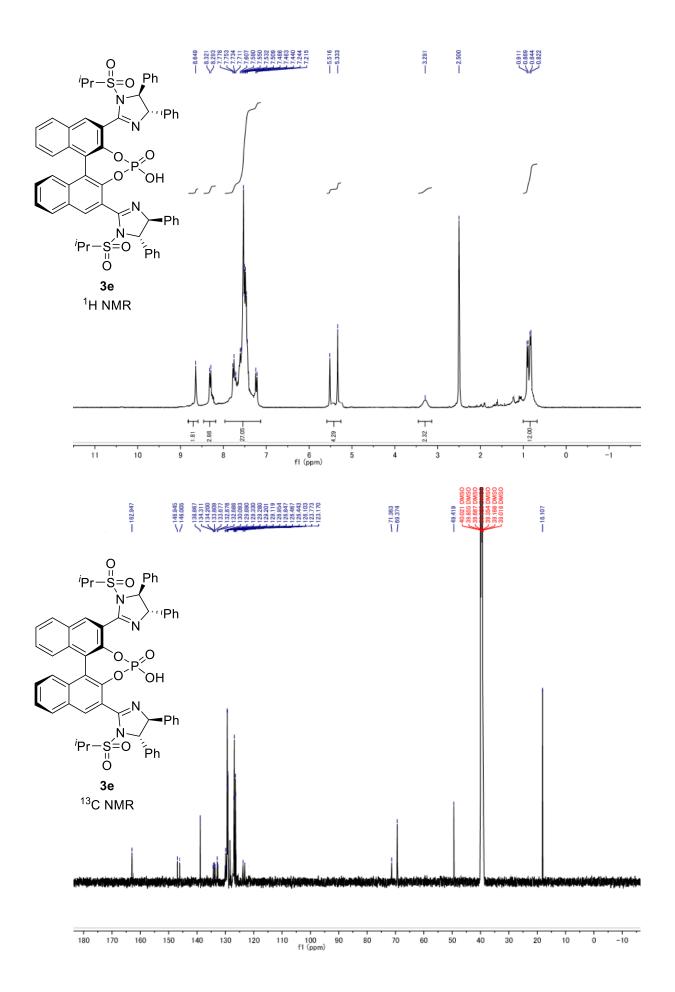

References

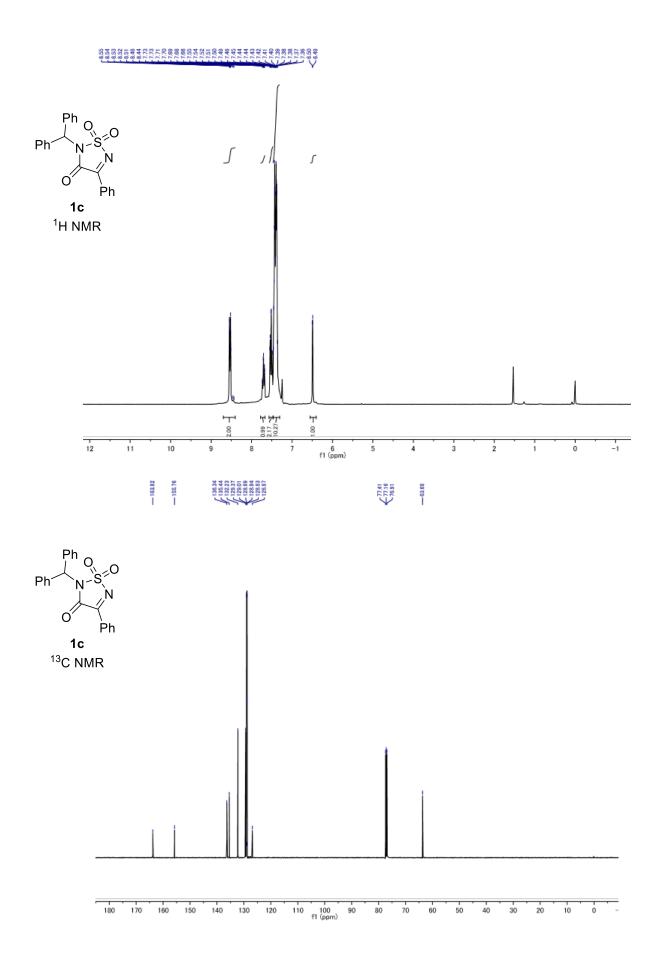

- a) S. Nakamura, M. Ohara, M. Koyari, M. Hayashi, K. Hyodo, N. R. Nabisaheb, Y. Funahashi, Org. Lett. 2014, 16, 4452–4455. b) S. Nakamura, N. Matsuda. M. Ohara, Chem. Eur. J. 2016, 22, 9478–9482.
- a) T. Nishimura, Y. Ebe, H. Fujimoto, T. Hayashi, *Chem. Commun.* 2013, 49, 5504–5506. b) Z.-H.
 Zhu, M.-L. Chen, G.-F. Jiang, *Org. Biomol. Chem.* 2017, 15, 1325–1328.
- 3. T. Takeda, M. Terada, J. Am. Chem. Soc. 2013, 135, 15306–15309.
- 4. Y. Li, Y.-N. Yu, M.-H. Xu, ACS Catal. 2016, 6, 661–665.

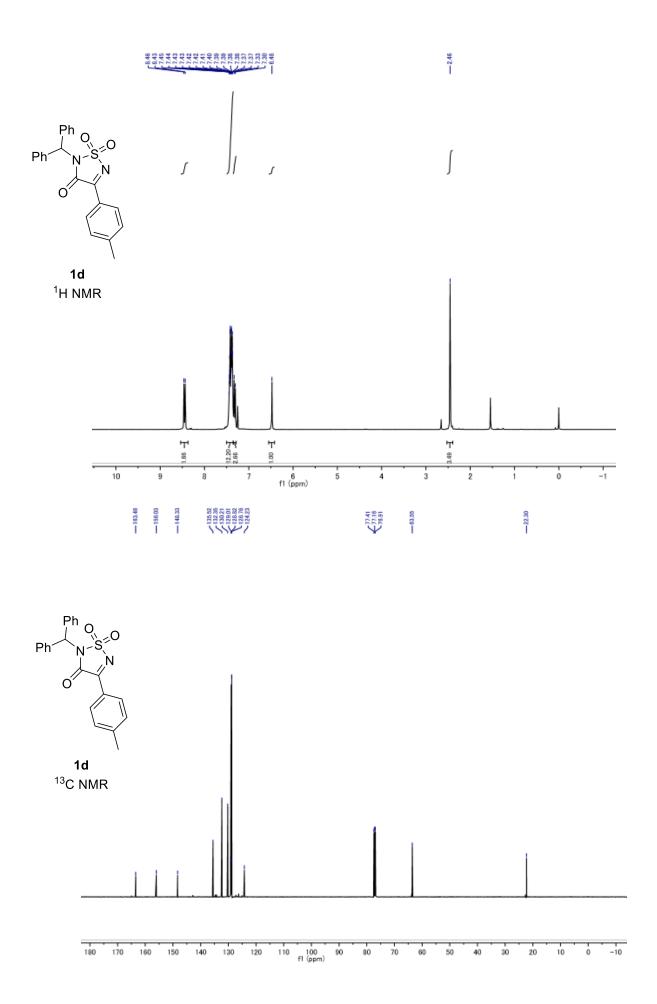

¹H NMR and ¹³C NMR

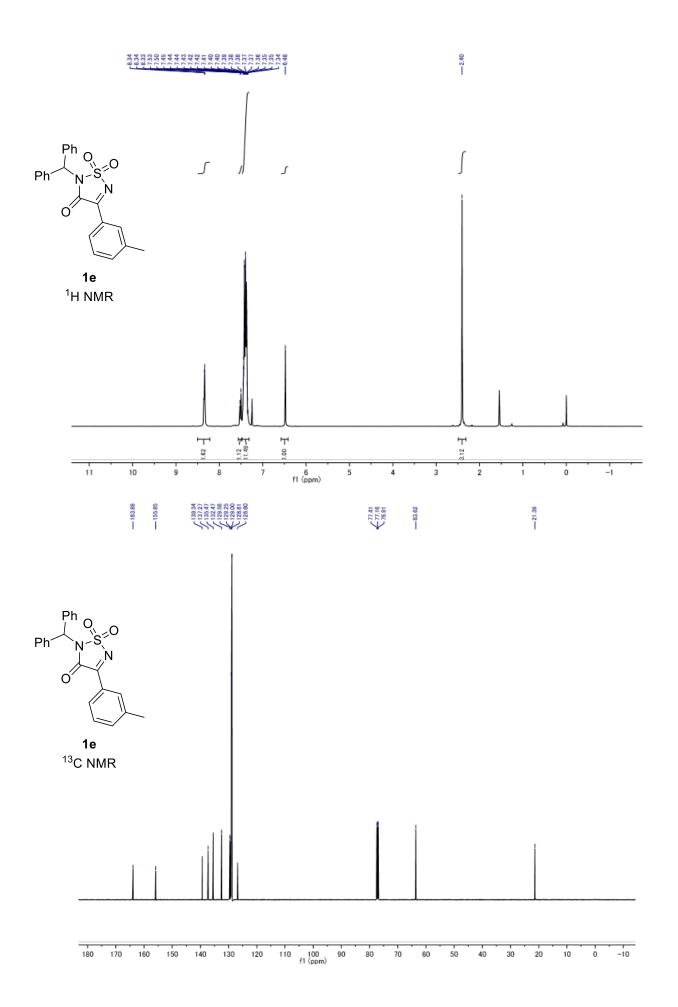


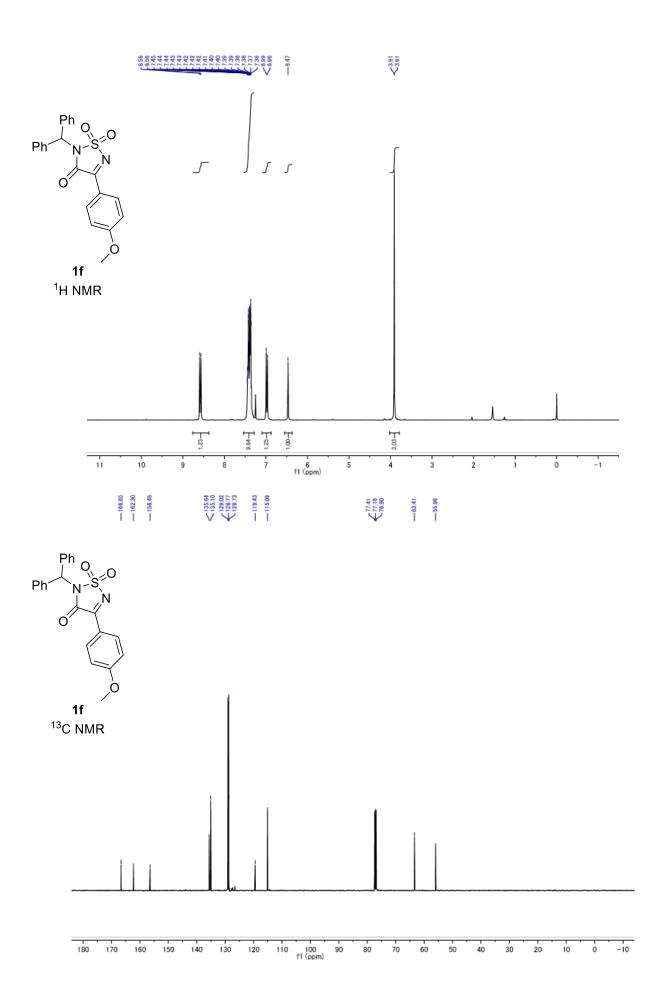


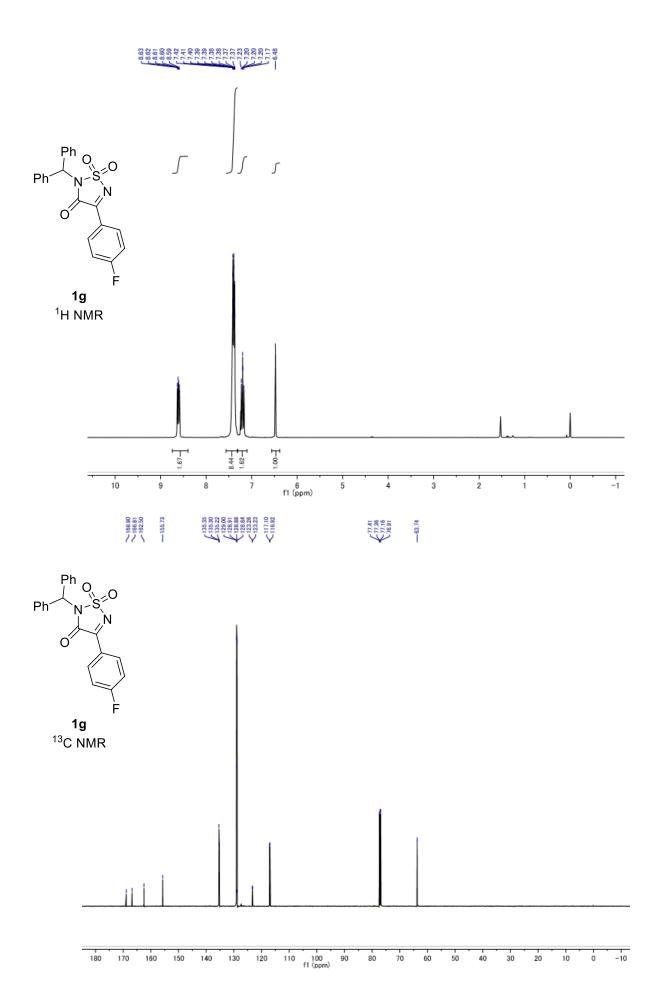


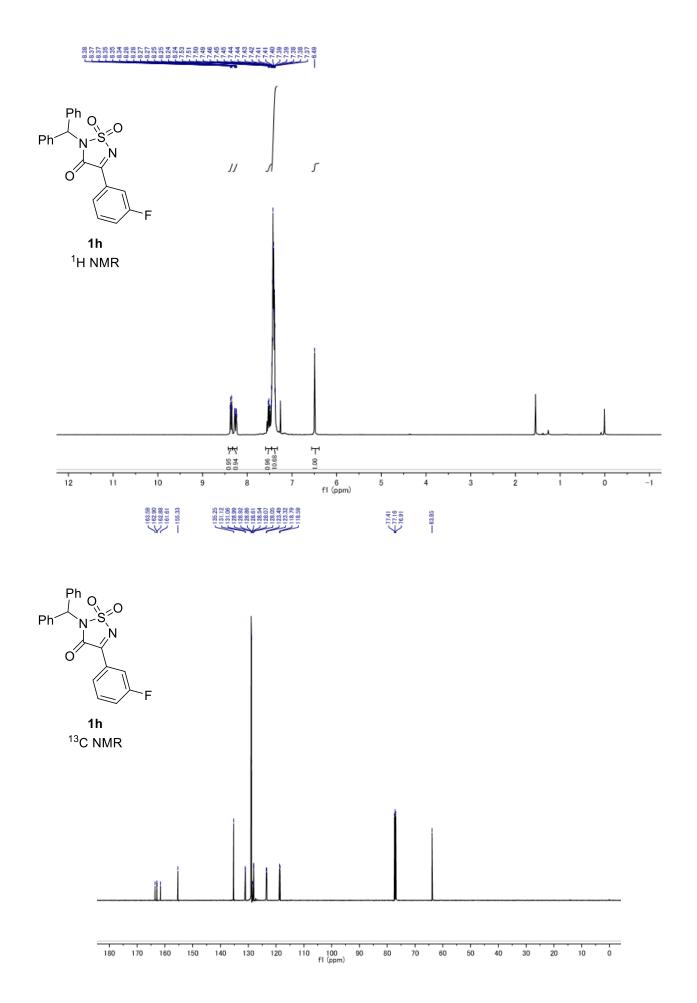


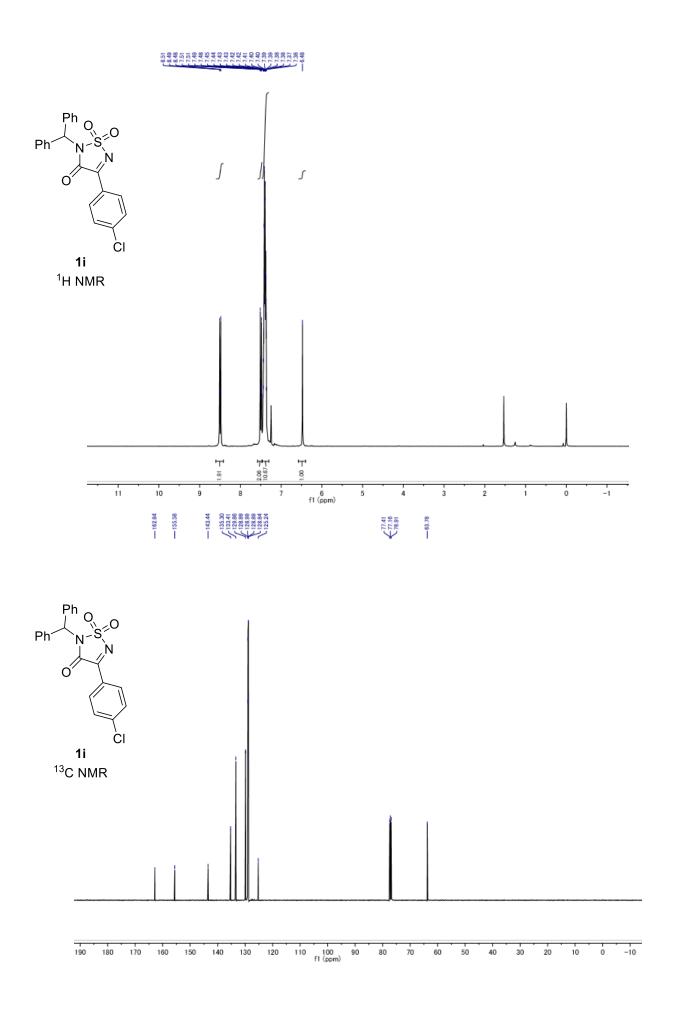


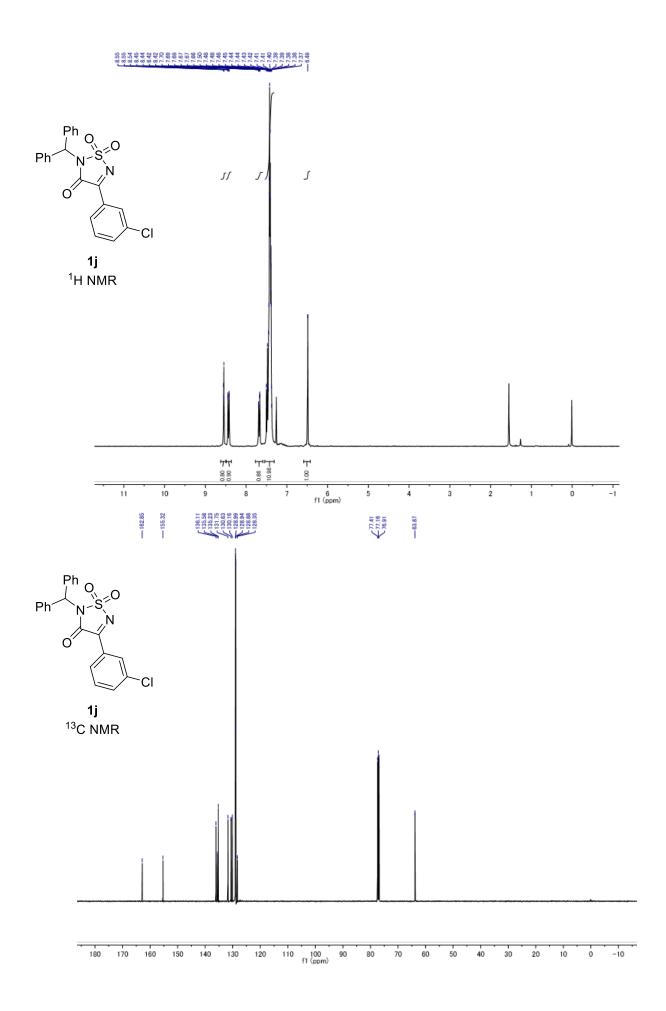


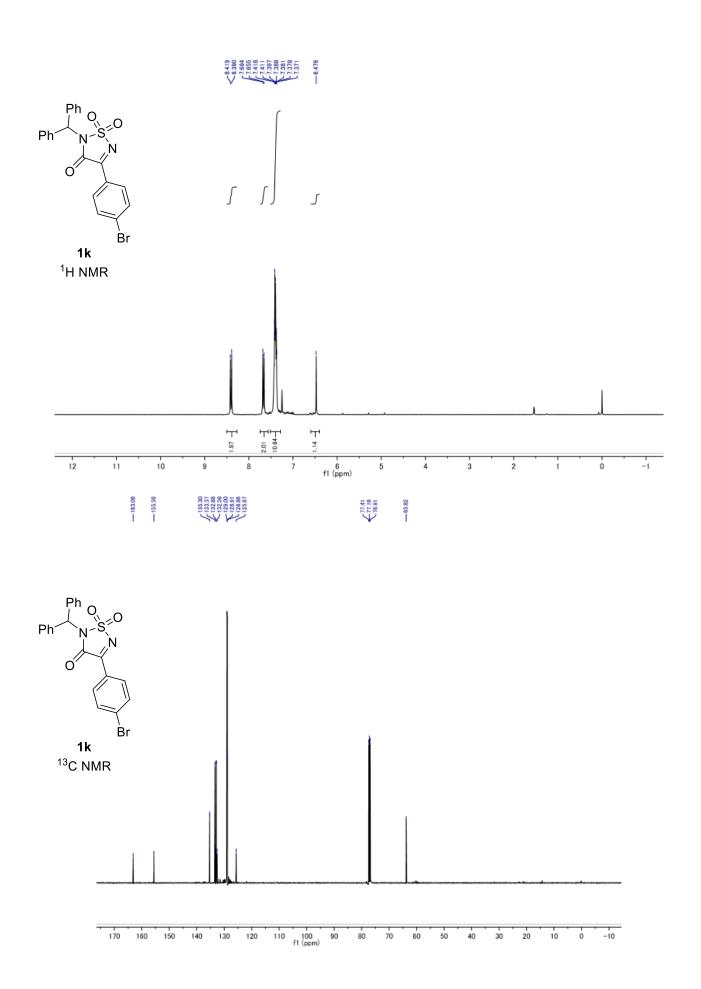


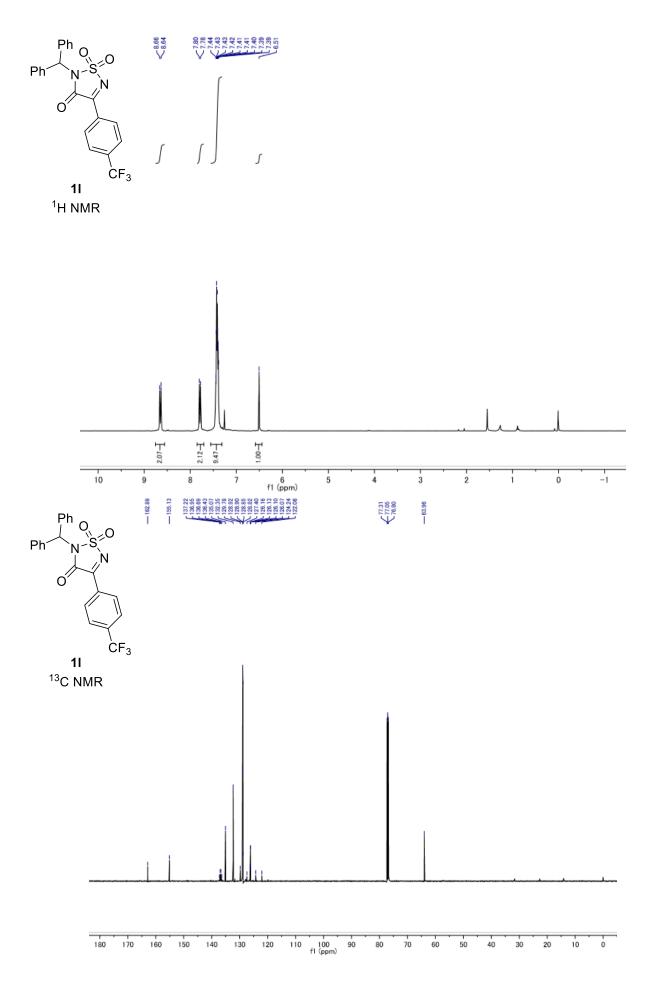


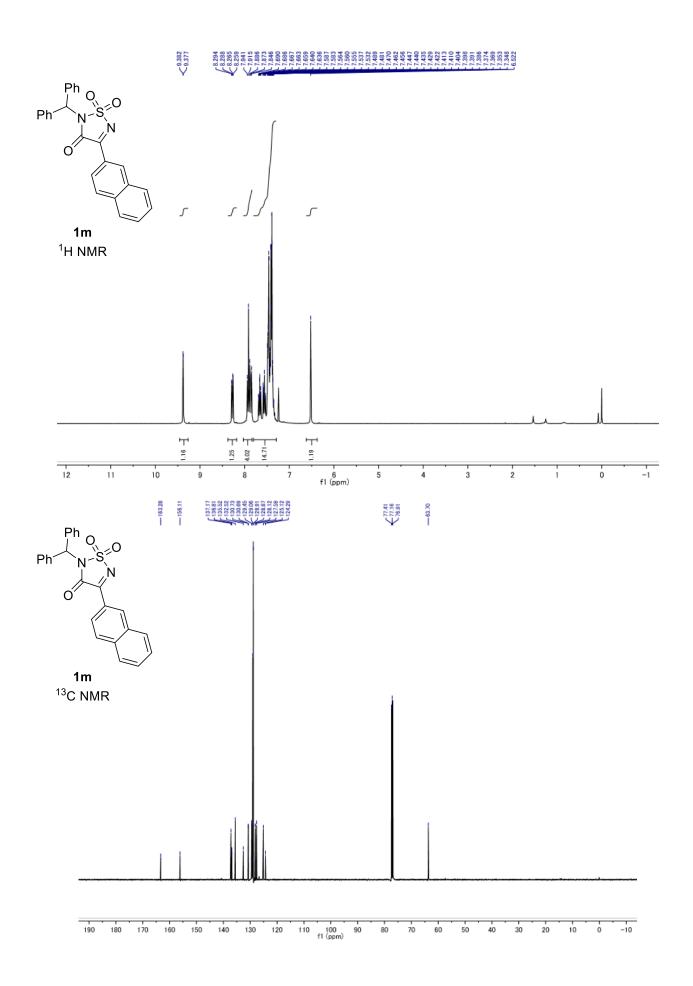


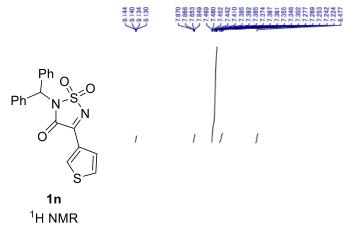


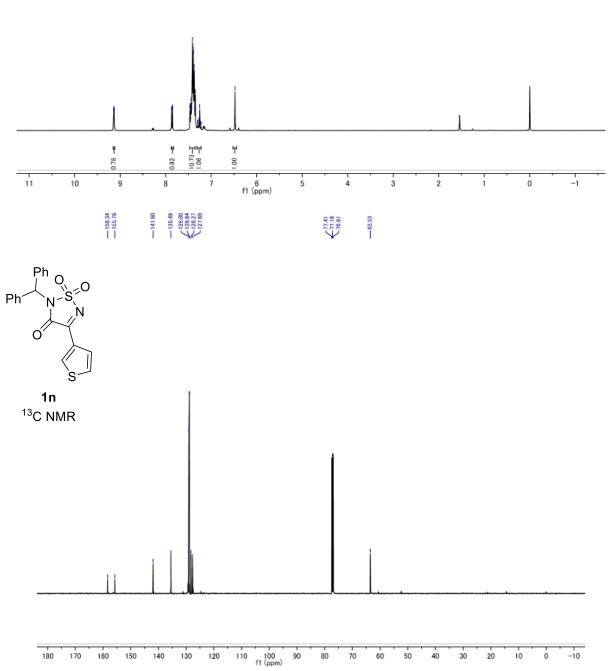


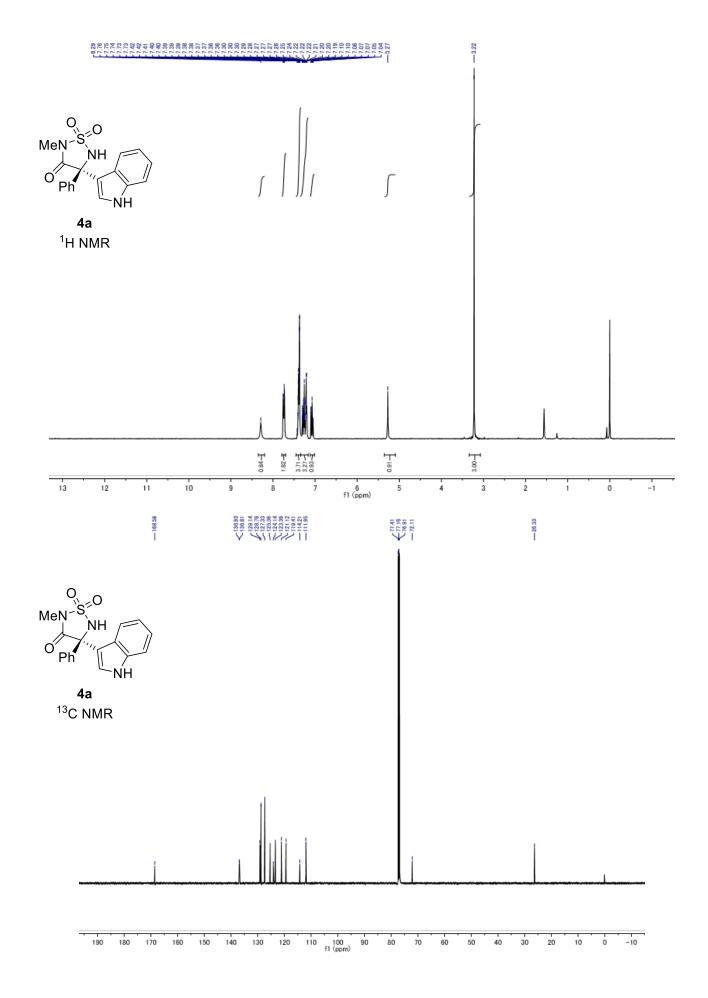


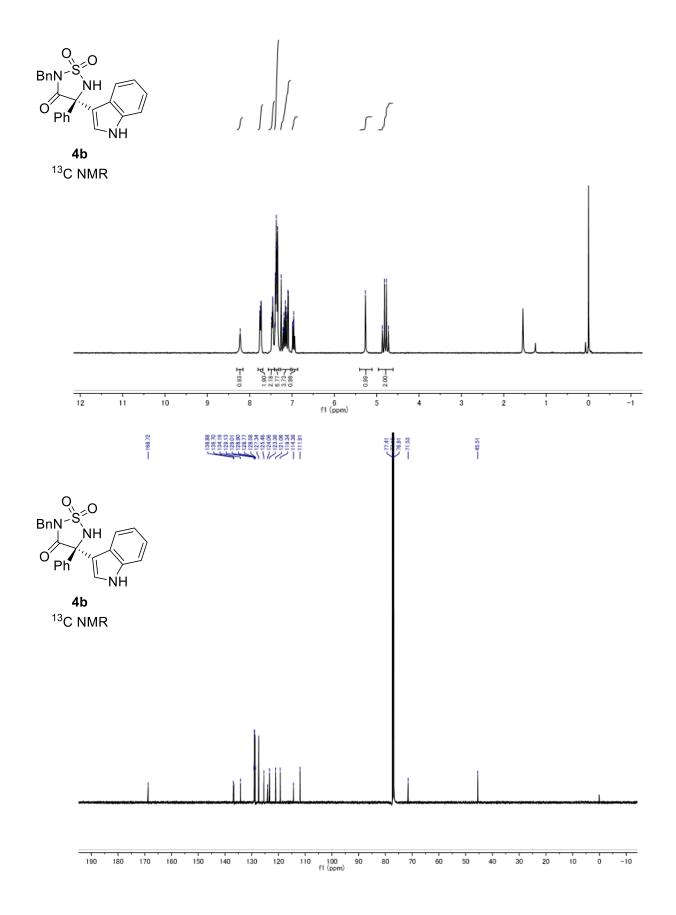


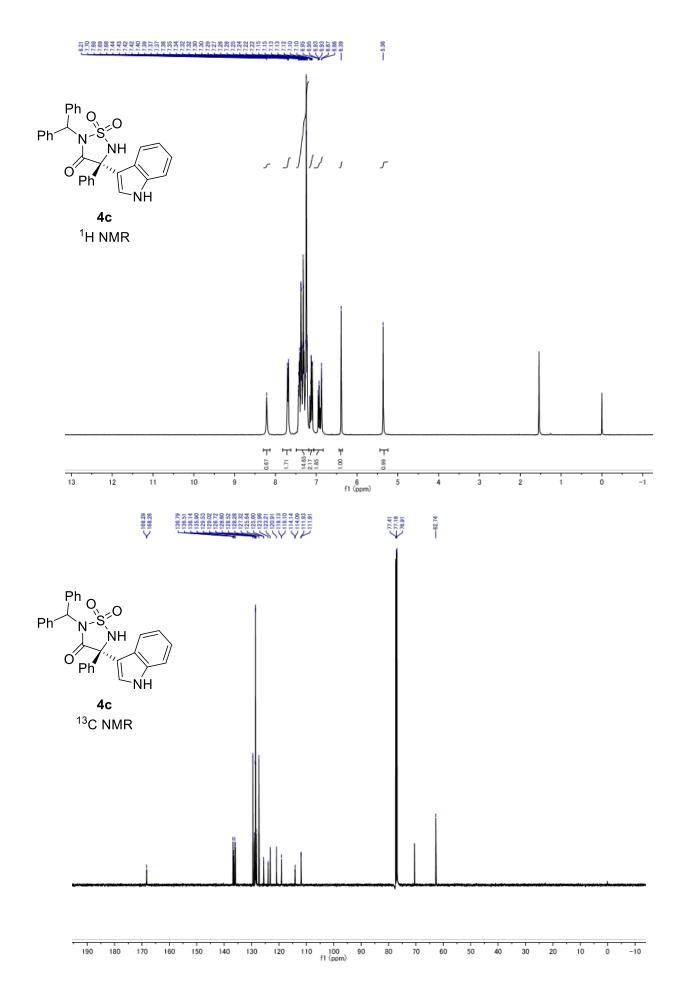


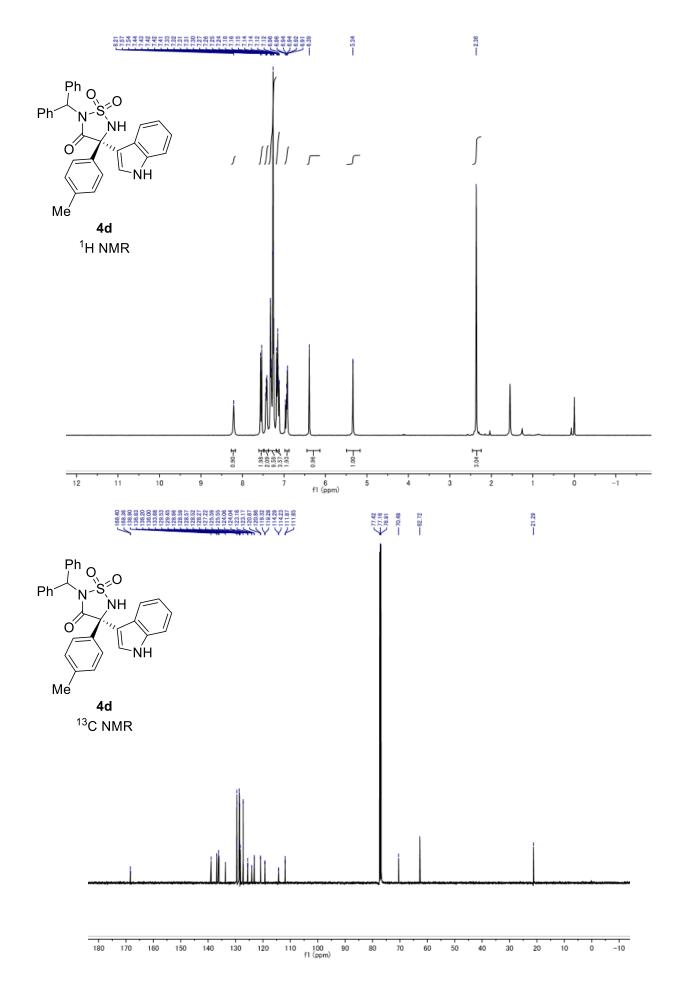


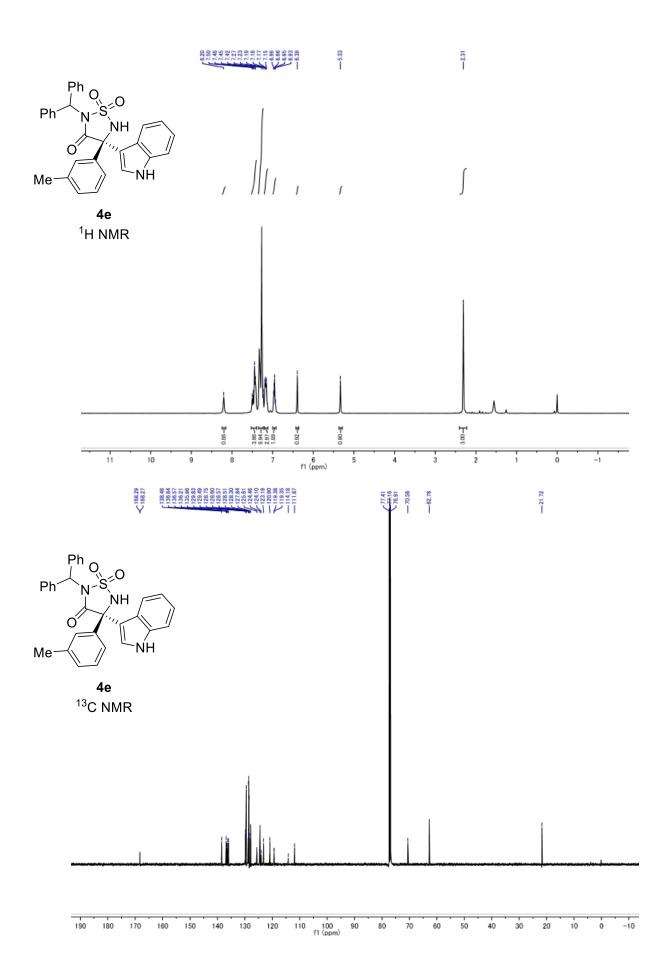


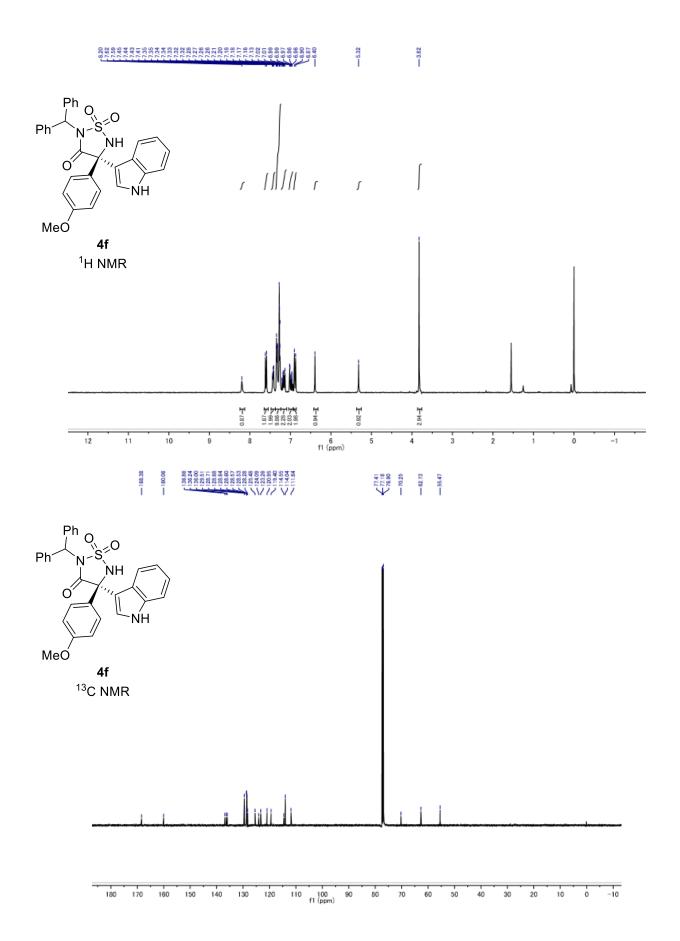


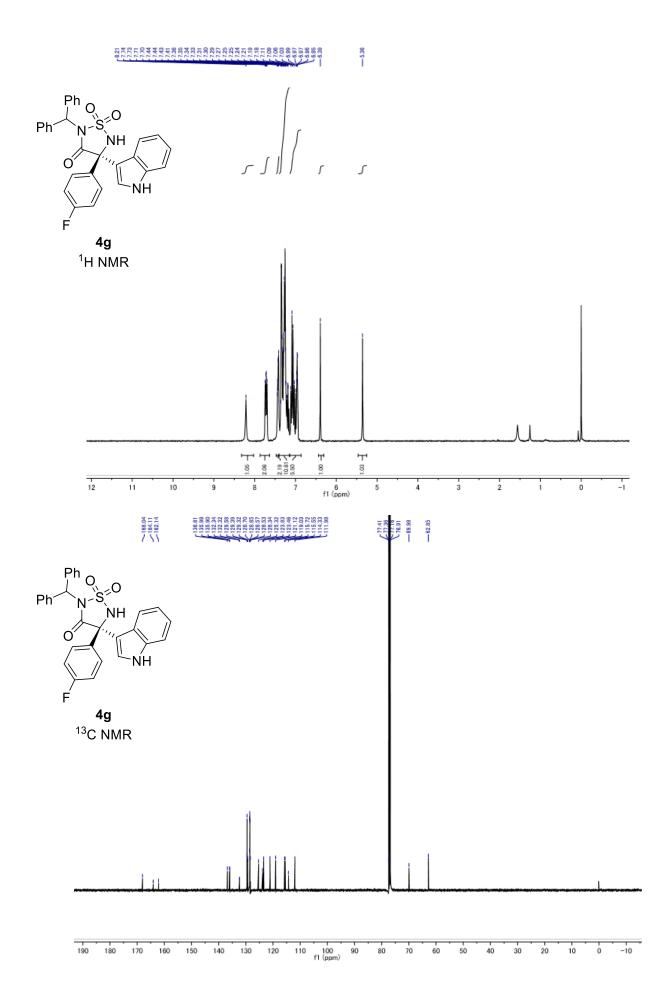


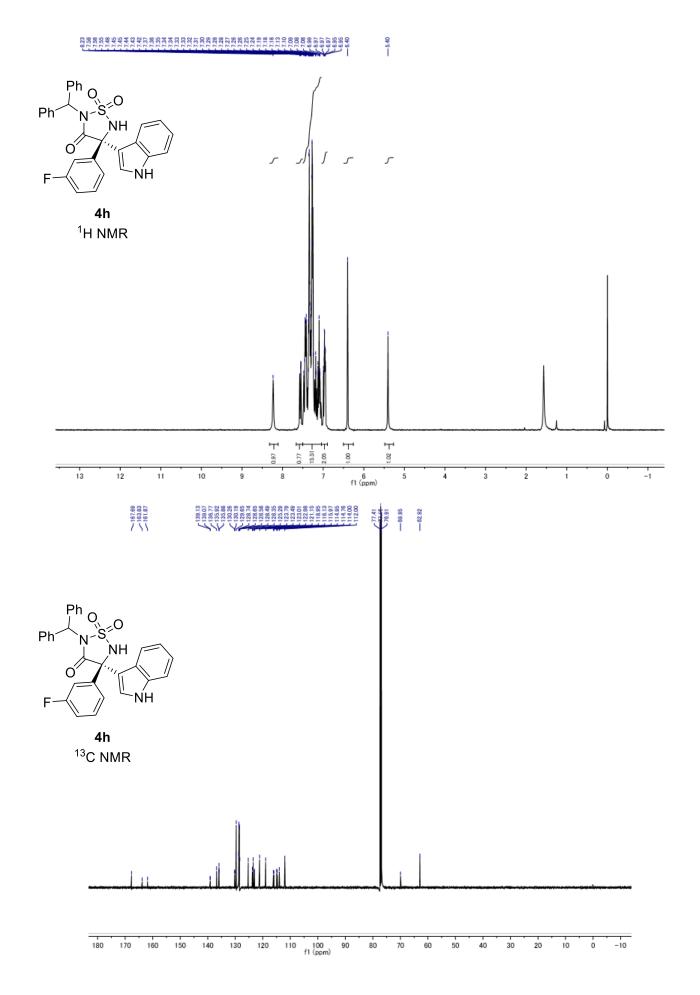


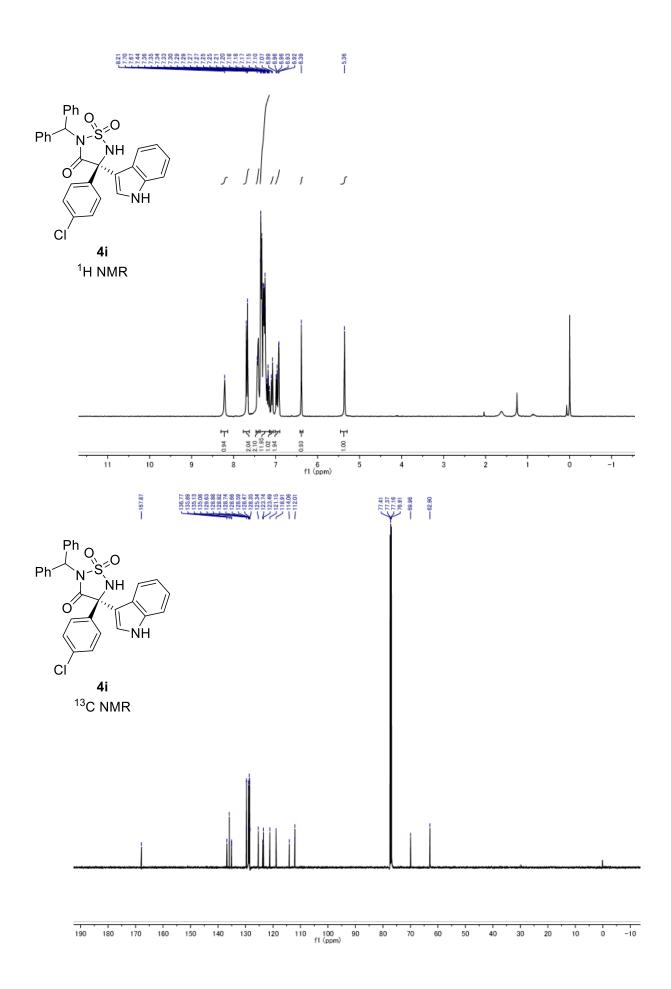


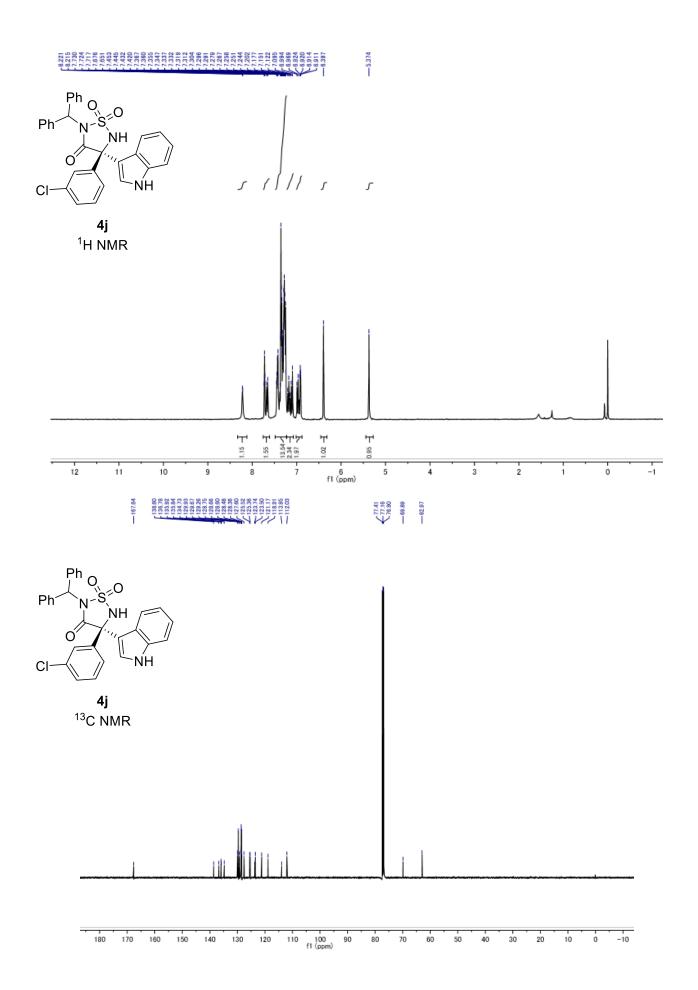


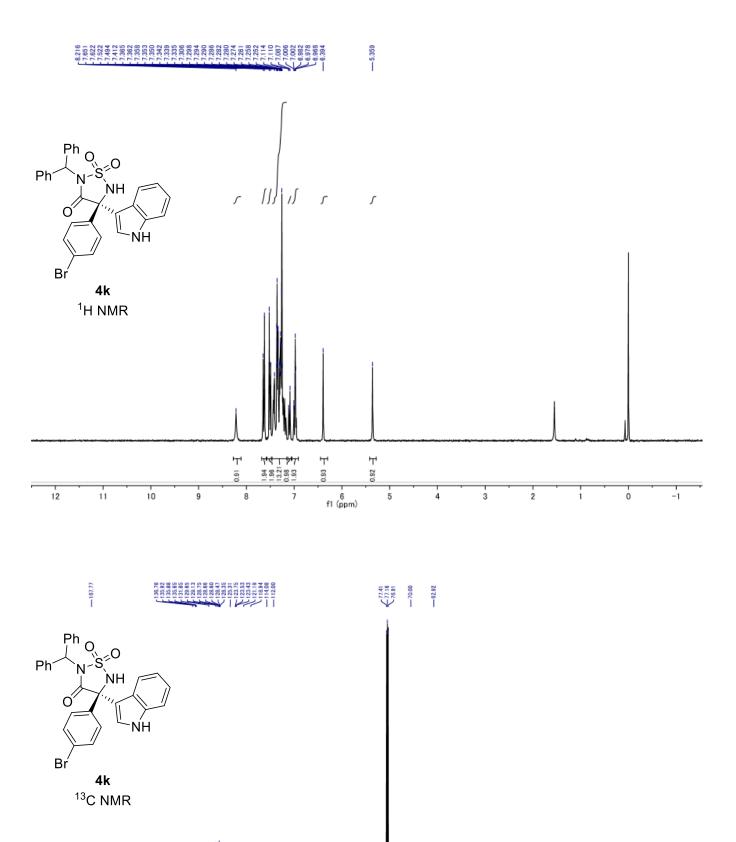


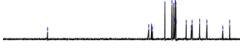


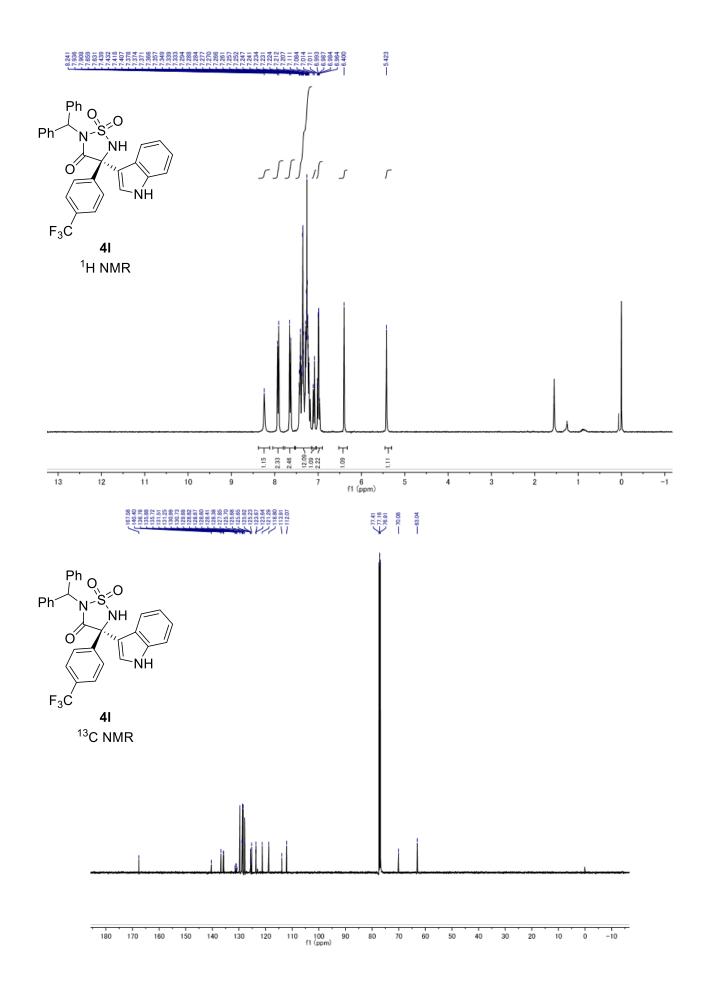


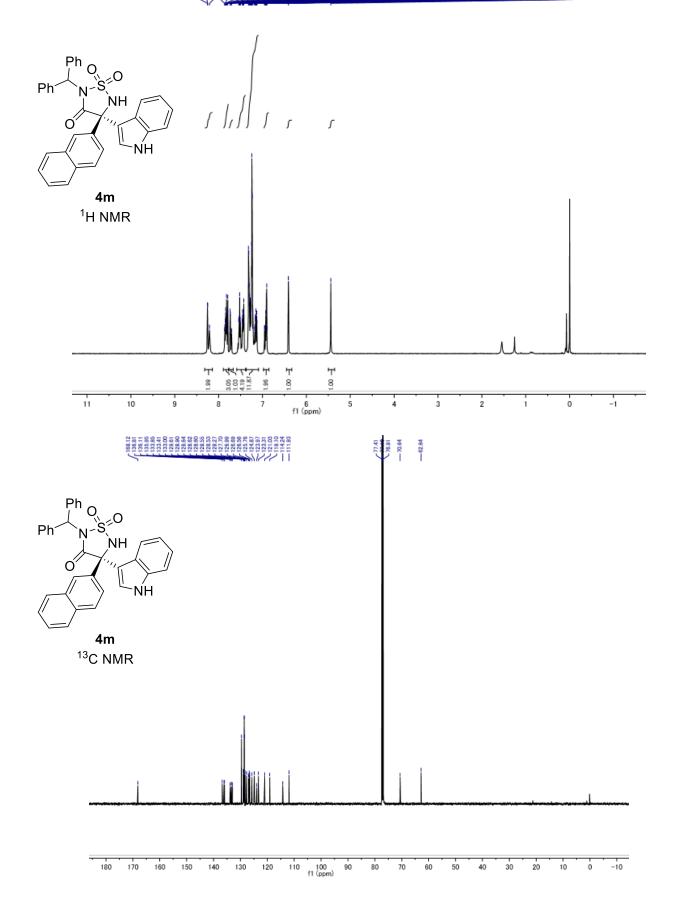


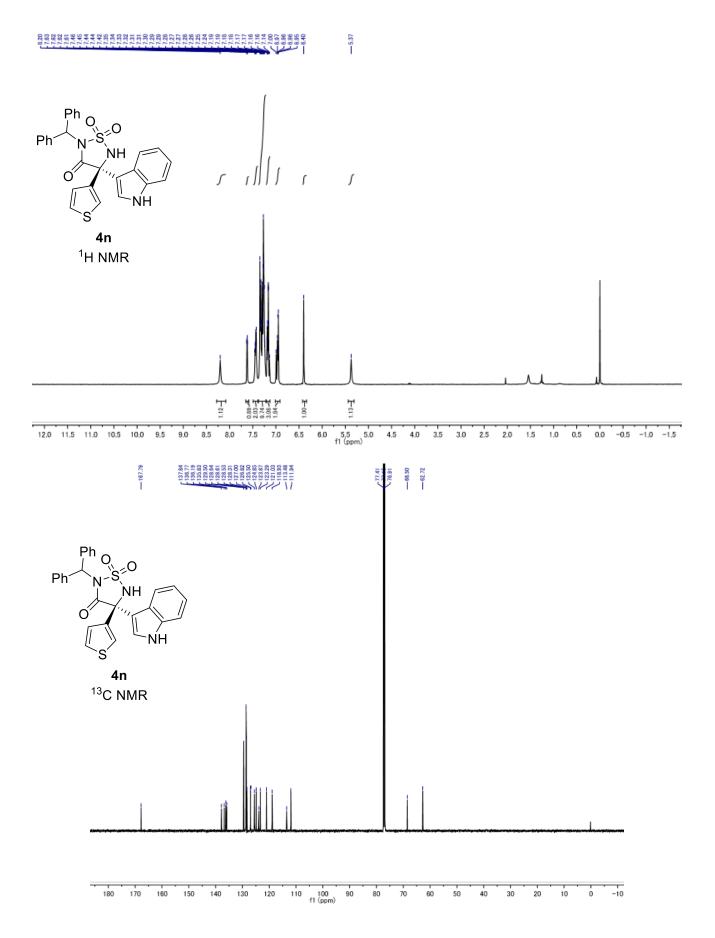


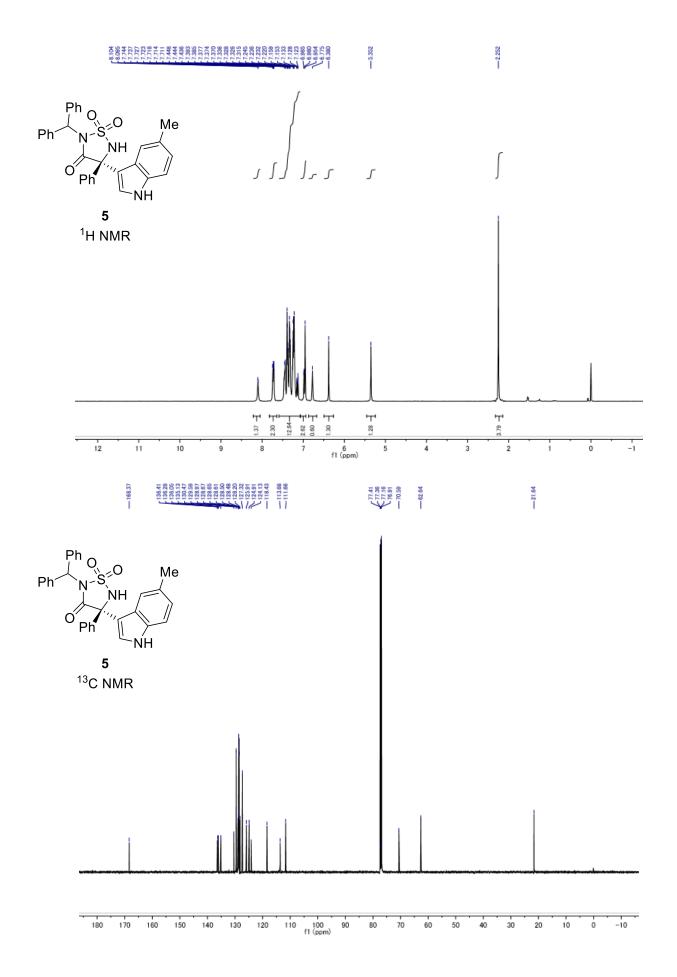


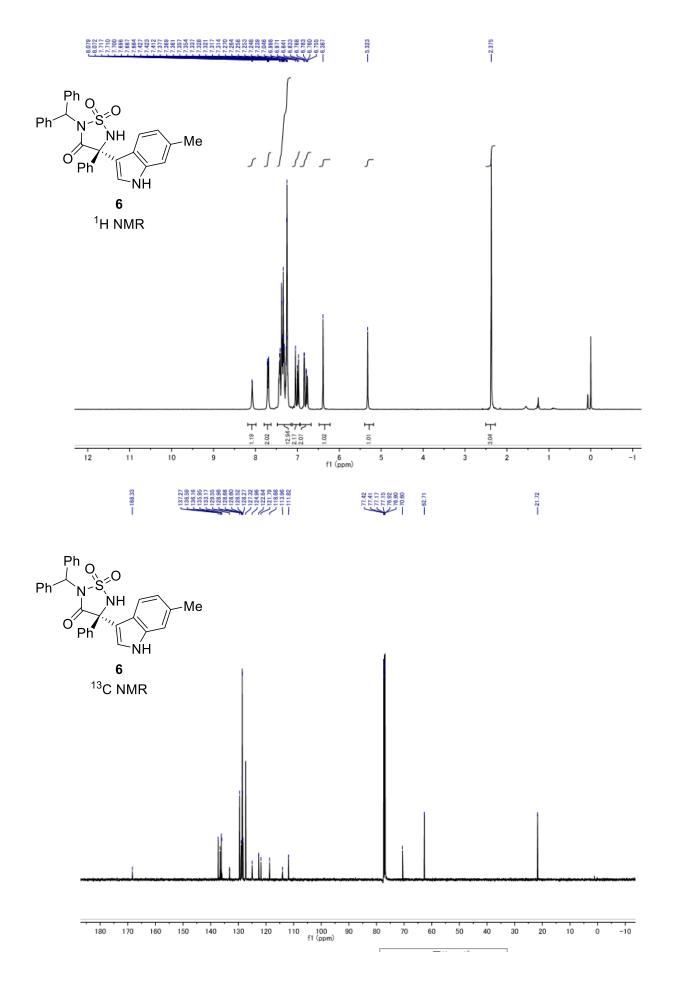


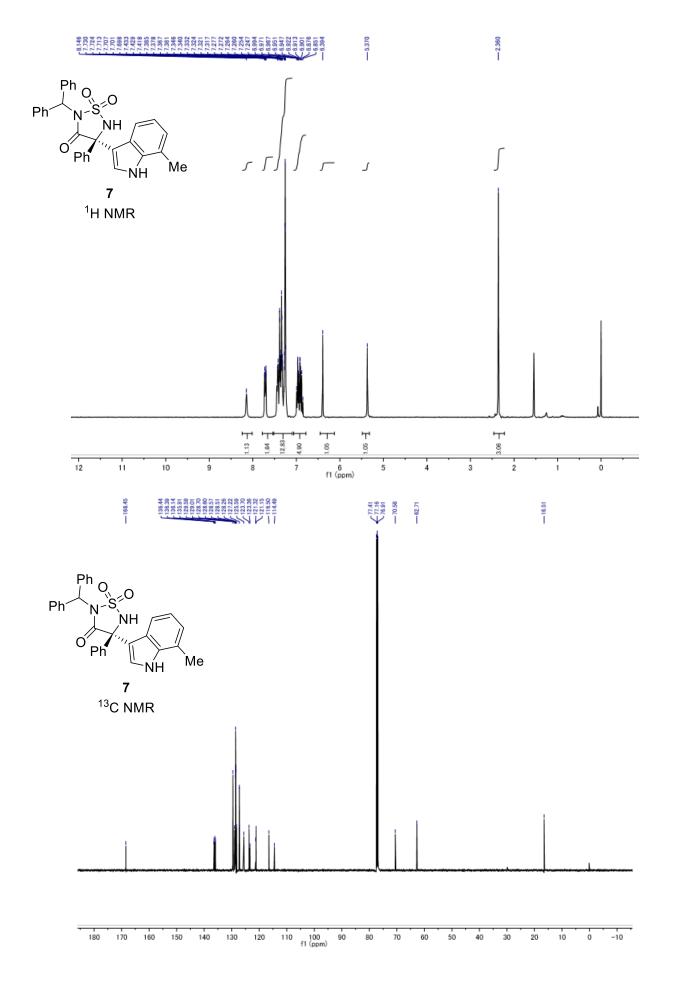


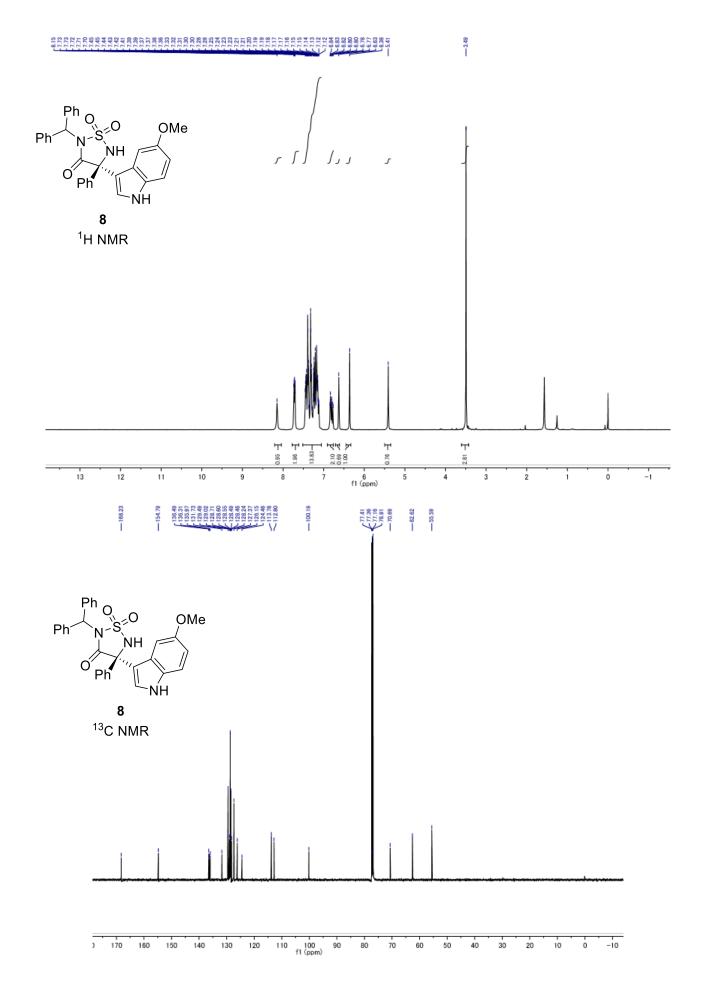


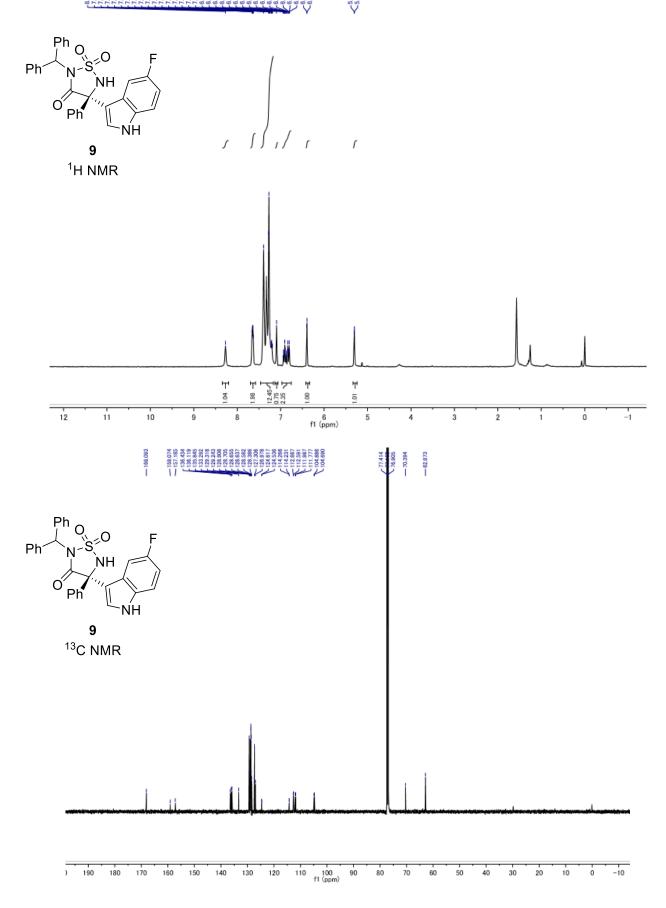


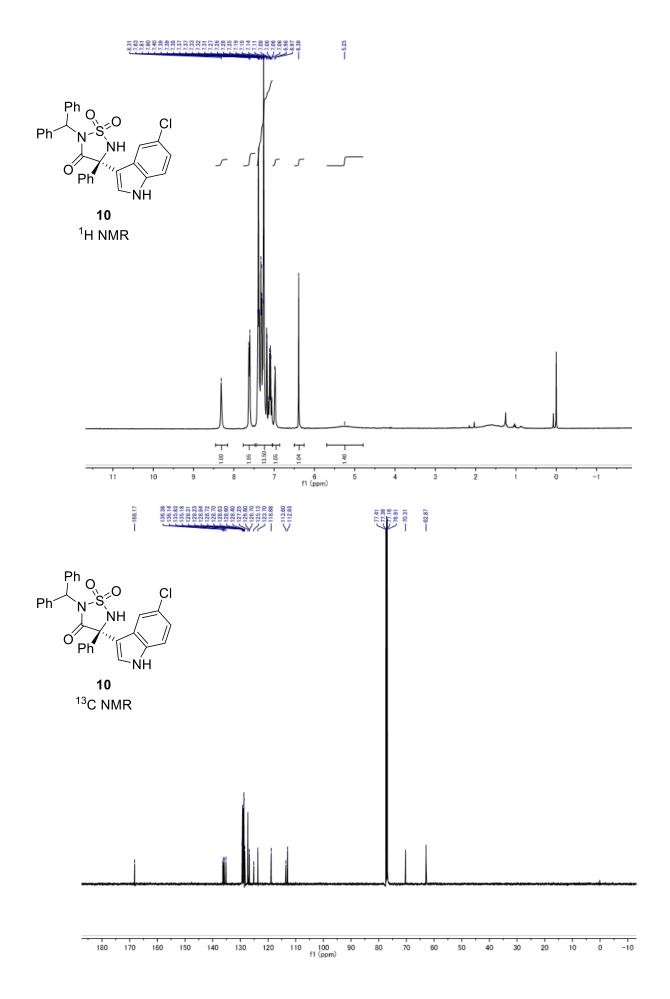

S65

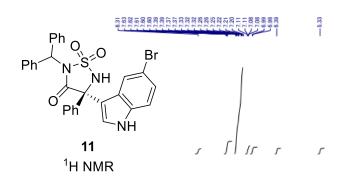

90 80 f1 (ppm)

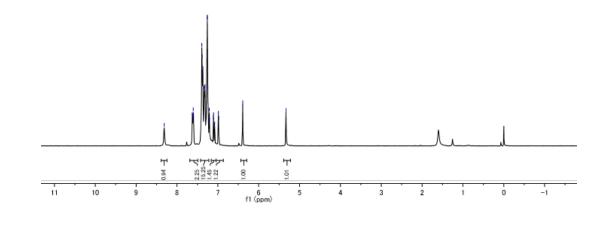

Construction C

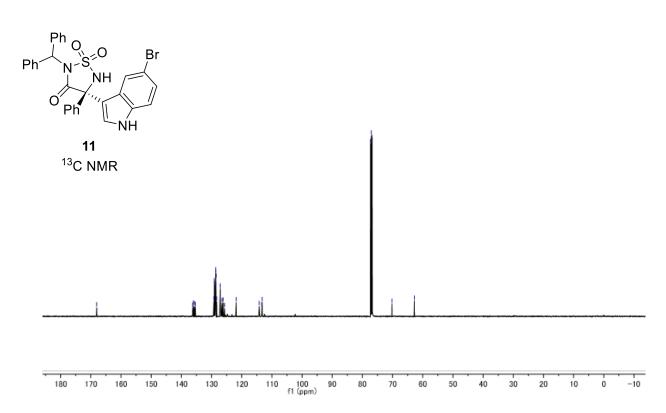


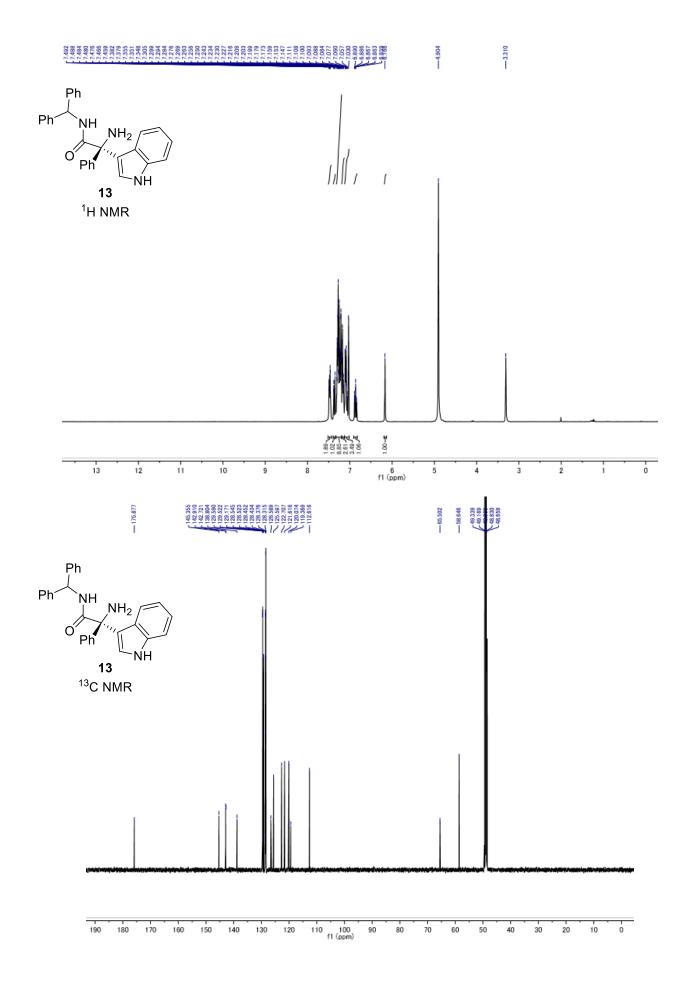


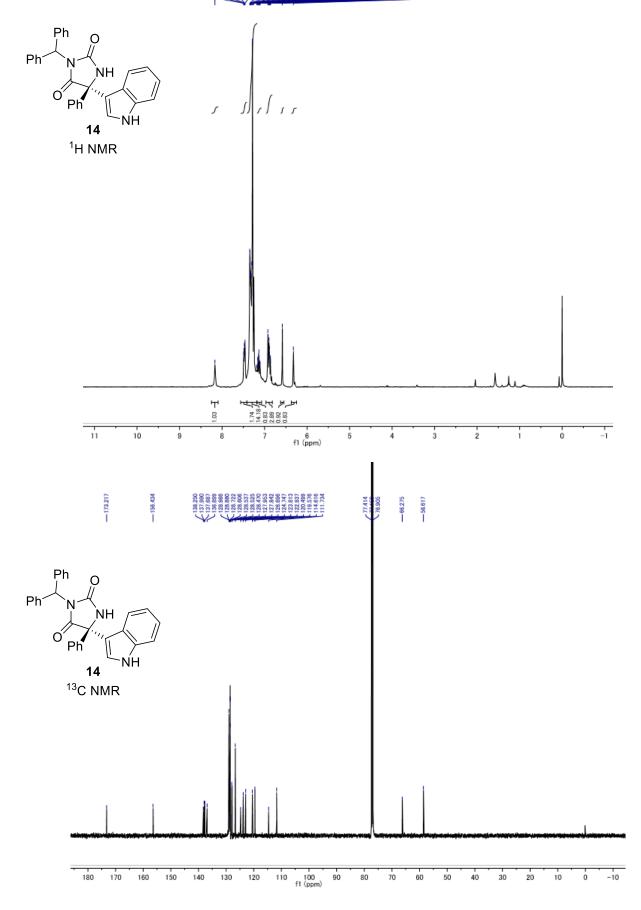


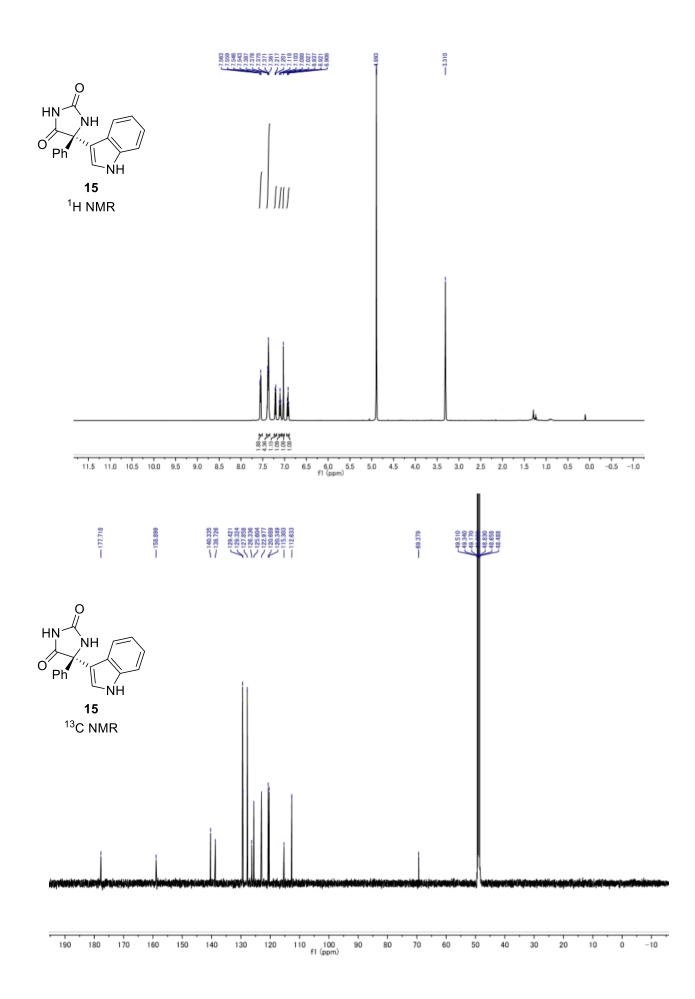


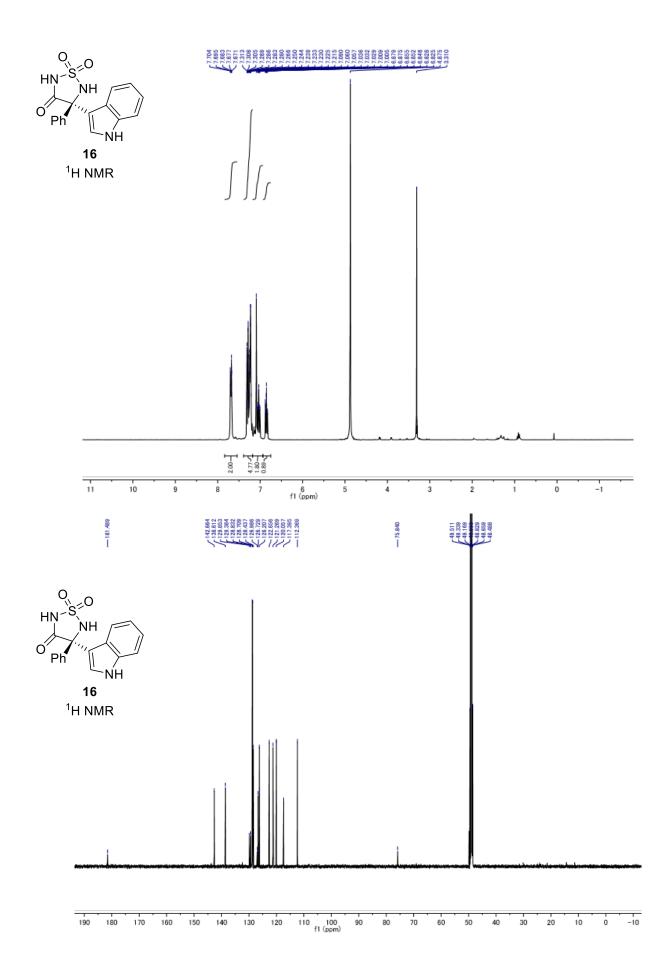


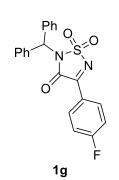


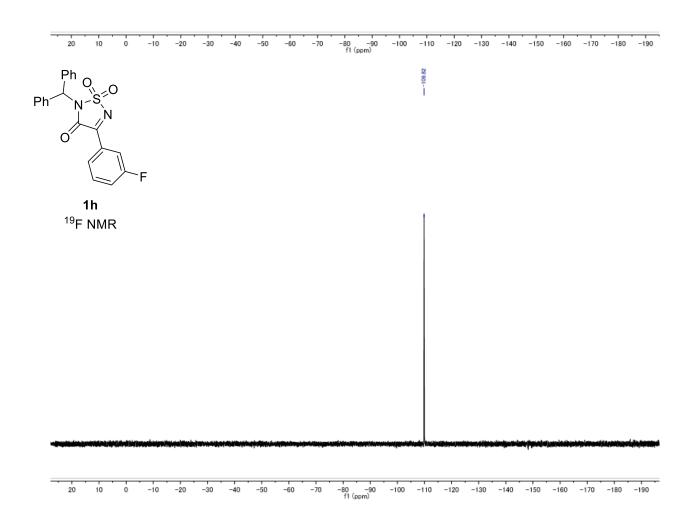


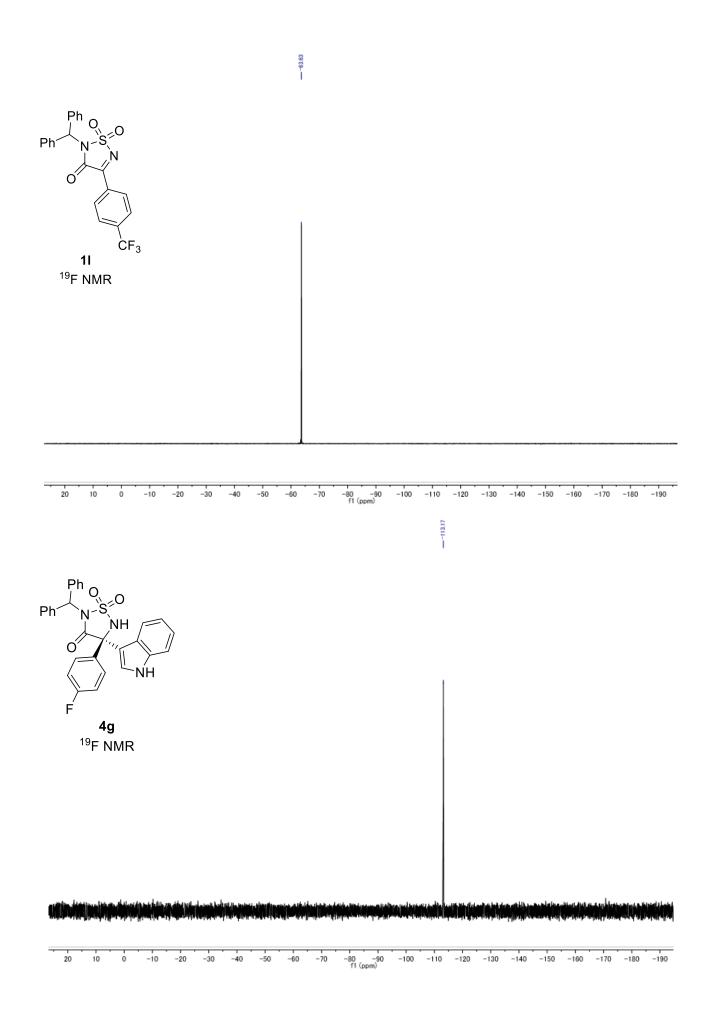


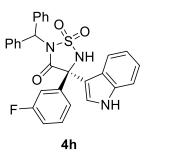




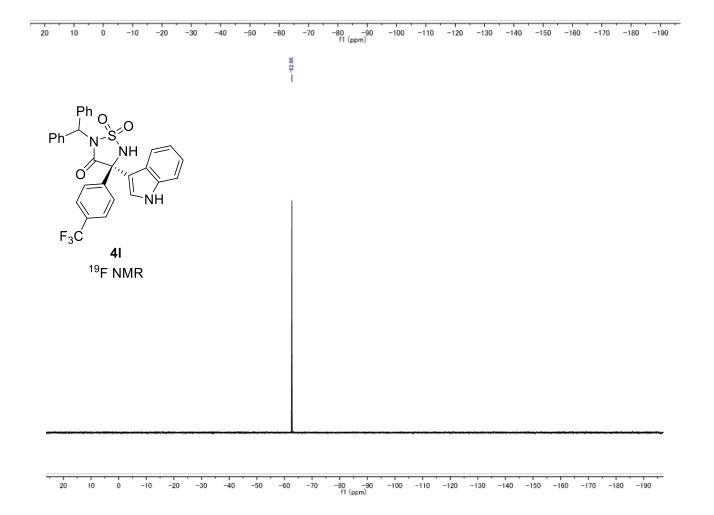


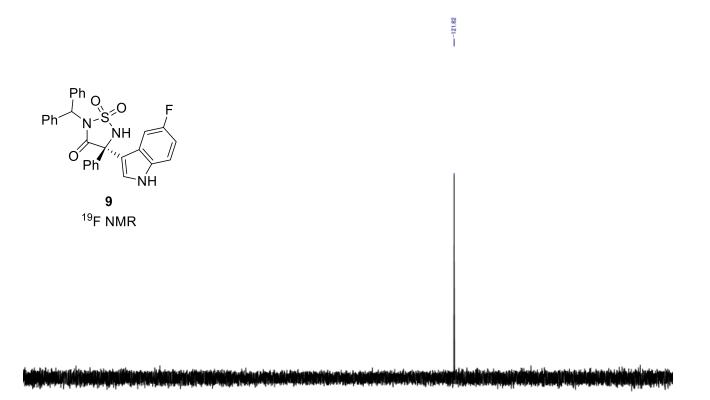




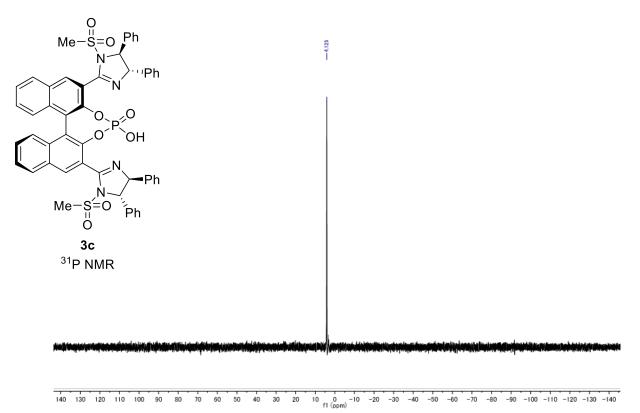


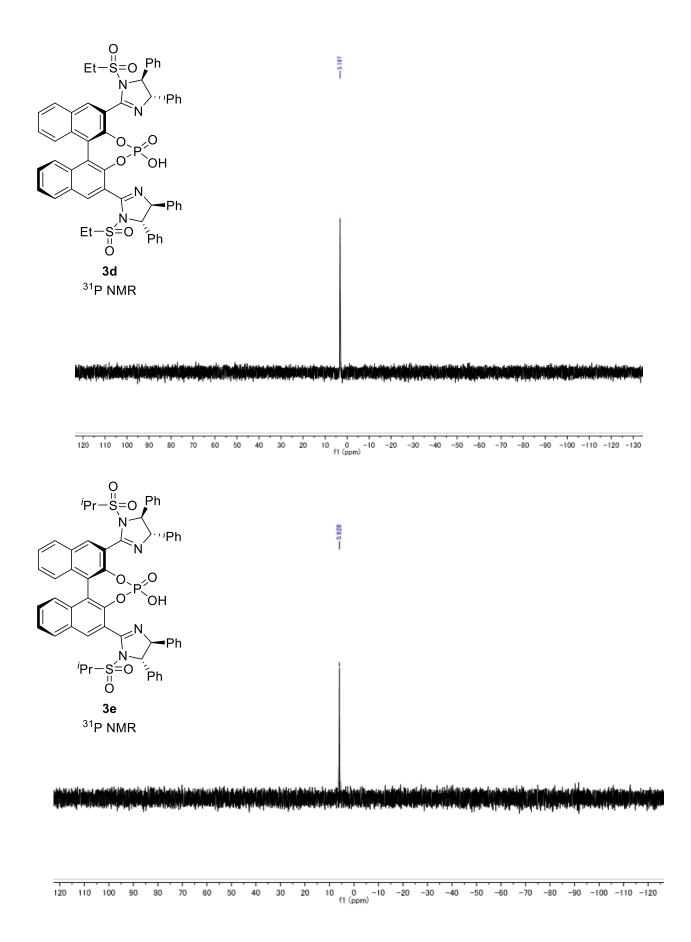
¹⁹F NMR

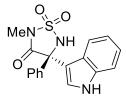


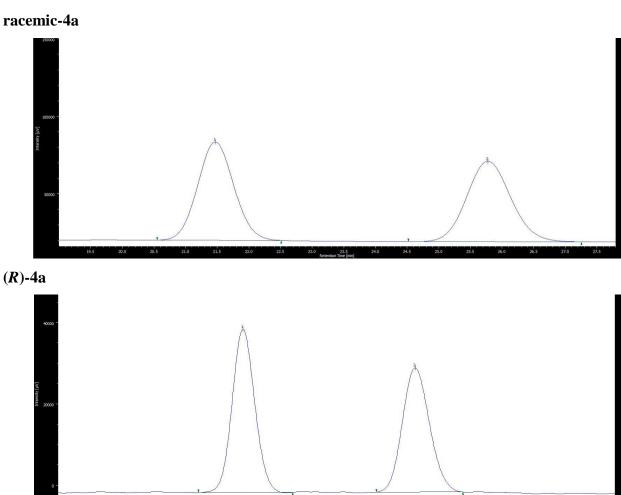


S81


¹⁹F NMR




20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190
											(mag										



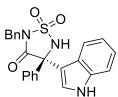
HPLC analysis (*R*)-2-Methyl-4-(1*H*-indol-3-yl)-4-phenyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (4a)

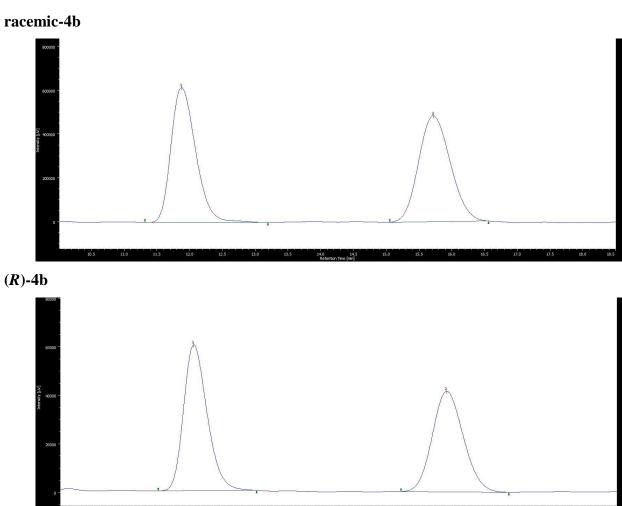
	racemic-4a	
Peak	tR (min)	Area (%)
1	21.5	50.1
2	25.8	49.9

20.5 21.0

21.5

20.0

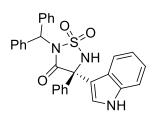

18.5 19.0 19.5

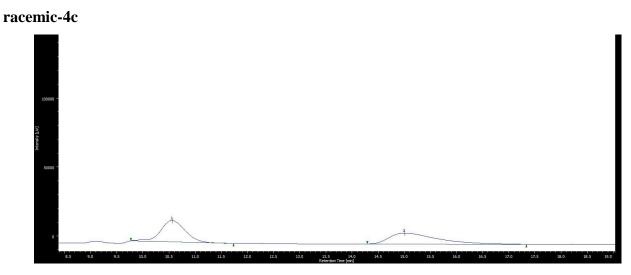

	(<i>R</i>)-4a	
Peak	tR (min)	Area (%)
1	22.9	52.3
2	27.5	47.7

31.0

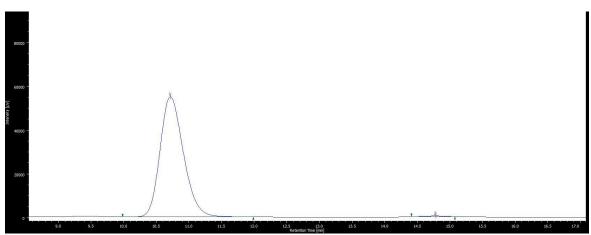
22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5

(R)-2-Benzyl-4-(1H-indol-3-yl)-4-phenyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (4b)

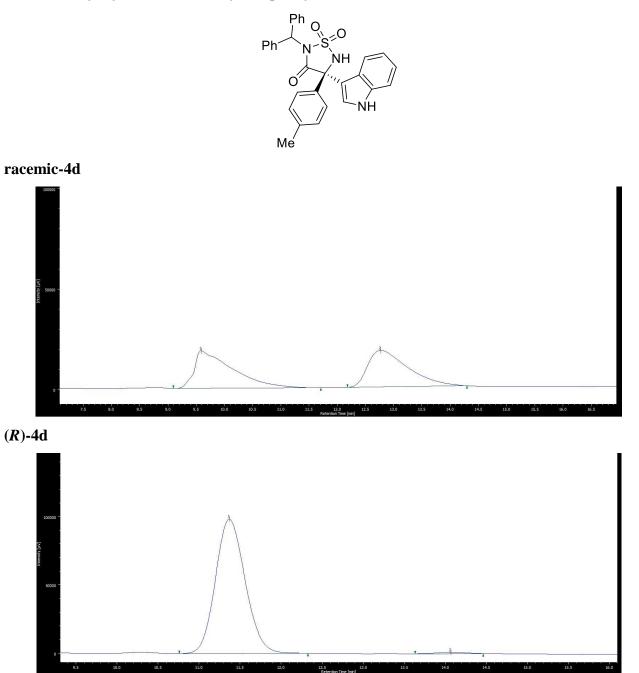




	racemic-4b	
Peak	tR (min)	Area (%)
1	11.9	49.9
2	15.7	50.1


(<i>R</i>)-4b					
Peak	tR (min)	Area (%)			
1	11.8	52.5			
2	15.6	47.5			

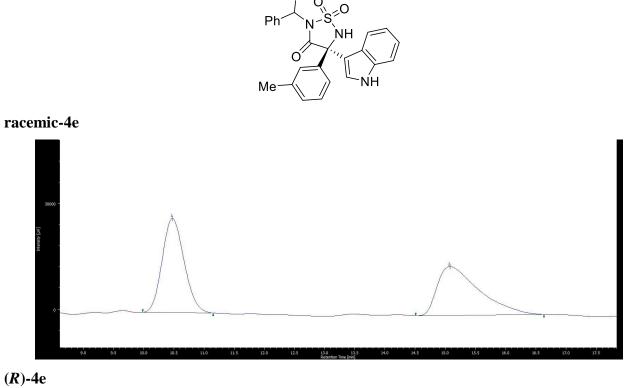
(R)-2-Benzhydryl-4-(1H-indol-3-yl)-4-phenyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (4c)

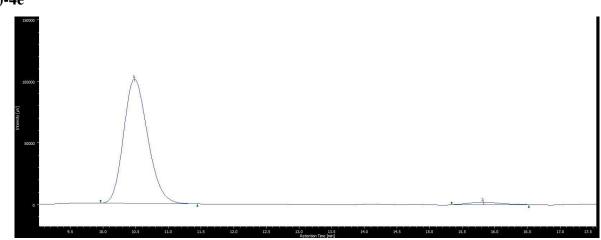


racemic-4c					
Peak	tR (min)	Area (%)			
1	10.6	49.7			
2	15.0	50.3			

	(<i>R</i>)-4c	
Peak	tR (min)	Area (%)
1	10.7	99.5
2	14.8	0.5

(R)-2-Benzhydryl-4-(1H-indol-3-yl)-4-(p-tolyl)-1,2,5-thiadiazolidin-3-one 1,1-dioxide (4d)

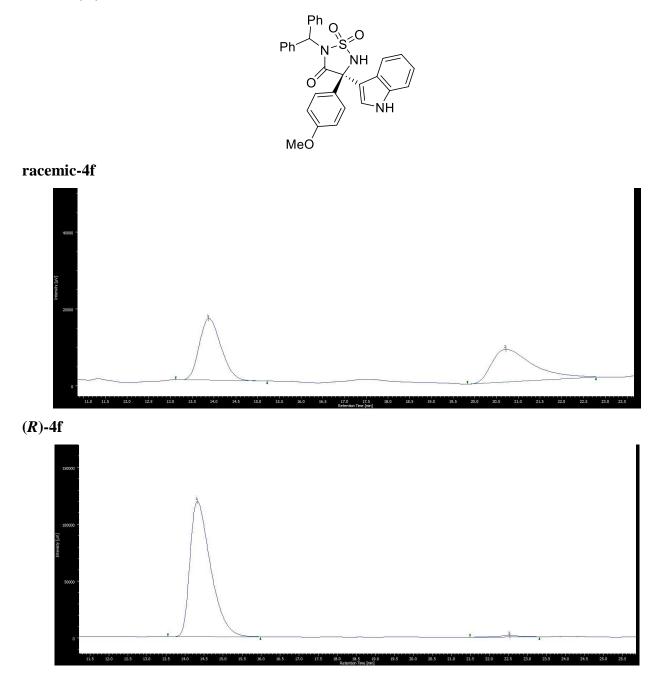



racemic-4d				
Peak	tR (min)	Area (%)		
1	9.6	49.5		
2	12.8	50.5		

	(<i>R</i>)-4d	
Peak	tR (min)	Area (%)
1	11.4	99.1
2	14.1	0.9

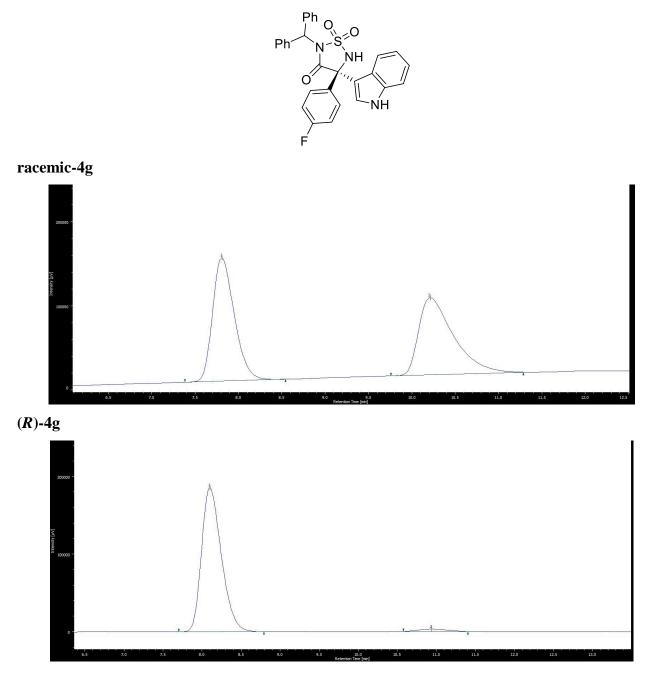
(*R*)-2-Benzhydryl-4-(1*H*-indol-3-yl)-3-(4-methylphenyl)-1,2,5-thiadiazolidin-3-one 1,1-dioxide (4e)

Ph



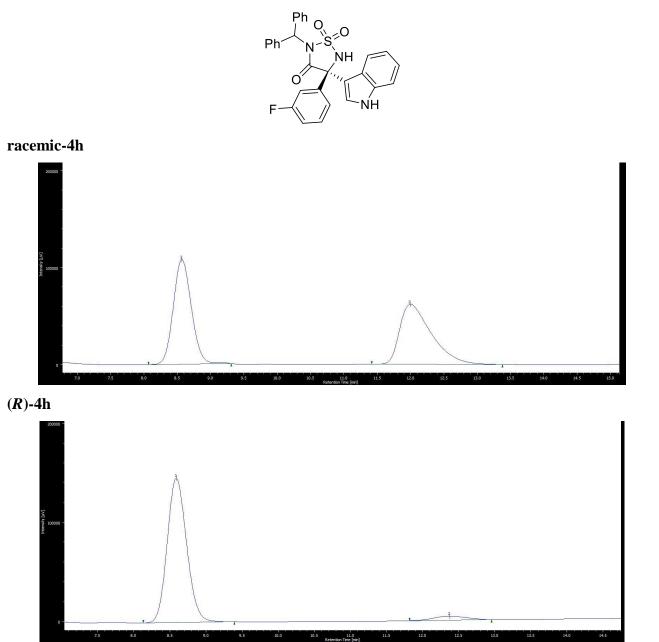
	racemic-4e	
Peak	tR (min)	Area (%)
1	10.5	50.4
2	15.1	49.6

	(<i>R</i>)-4e	
Peak	tR (min)	Area (%)
1	10.5	97.4
2	15.8	2.6


(*R*)-2-Benzhydryl-4-(1*H*-indol-3-yl)-4-(4-methoxyphenyl)-1,2,5-thiadiazolidin-3-one 1,1dioxide (4f)

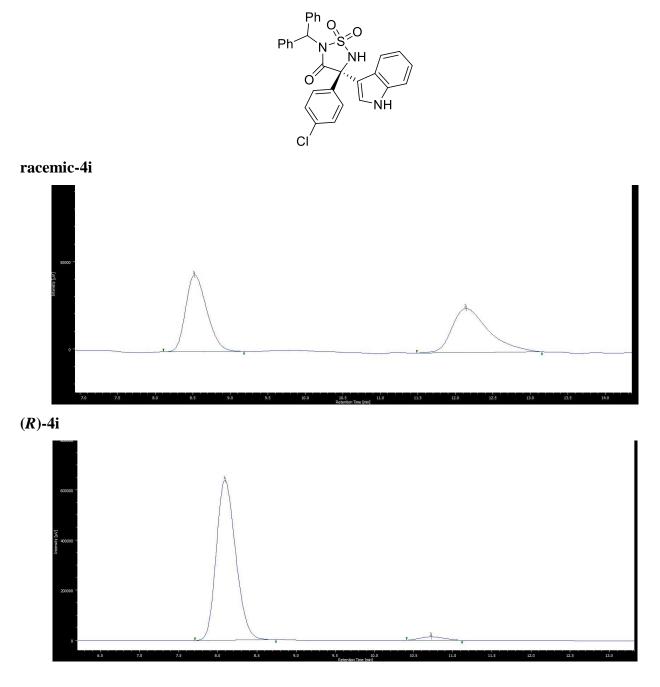
	racemic-4f	
Peak	tR (min)	Area (%)
1	13.9	49.8
2	20.7	50.2

(<i>R</i>)-4f		
Peak	tR (min)	Area (%)
1	14.3	98.9
2	22.5	1.1


(*R*)-2-Benzhydryl-4-(4-fluorophenyl)-4-(1*H*-indol-3-yl)-1,2,5-thiadiazolidin-3-one 1,1-dioxide (4g)

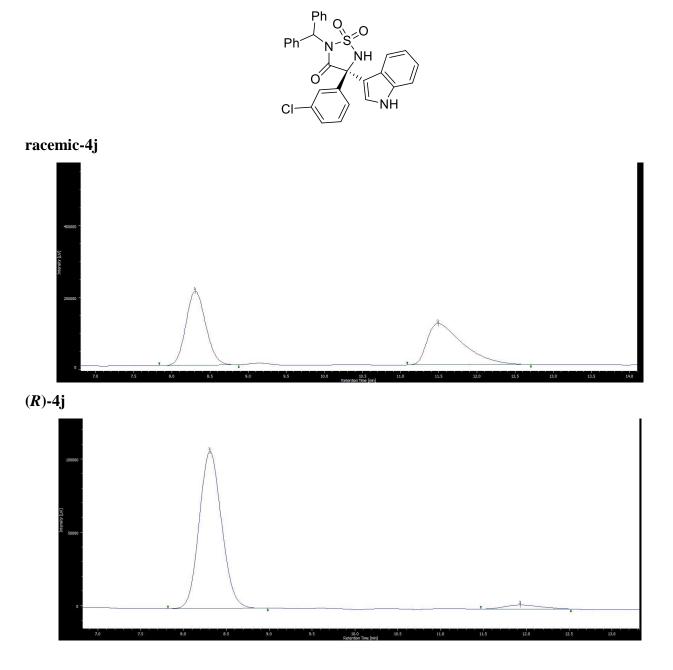
racemic-4g		
Peak	tR (min)	Area (%)
1	7.8	50.0
2	10.2	50.0

(<i>R</i>)-4g		
Peak	tR (min)	Area (%)
1	8.1	97.8
2	10.9	2.2


(*R*)-2-Benzhydryl-4-(4-fluorophenyl)-4-(1*H*-indol-3-yl)-1,2,5-thiadiazolidin-3-one 1,1-dioxide (4h)

racemic-4h		
Peak	tR (min)	Area (%)
1	8.6	50.1
2	12.0	49.9

	(<i>R</i>)-4h	
Peak	tR (min)	Area (%)
1	8.6	95.6
2	12.4	4.4


(*R*)-2-Benzhydryl-4-(4-chlorophenyl)-4-(1*H*-indol-3-yl)-1,2,5-thiadiazolidin-3-one 1,1-dioxide (4i)

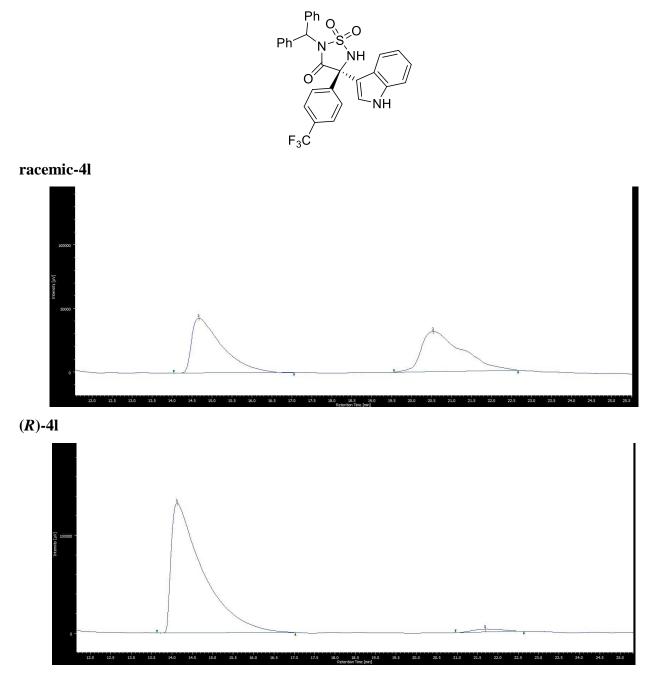
racemic-4i		
Peak	tR (min)	Area (%)
1	8.5	50.2
2	12.1	49.8

	(<i>R</i>)-4i	
Peak	tR (min)	Area (%)
1	8.1	97.3
2	10.7	2.7

(*R*)-2-Benzhydryl-4-(3-chlorophenyl)-4-(1*H*-indol-3-yl)-1,2,5-thiadiazolidin-3-one 1,1-dioxide (4j)

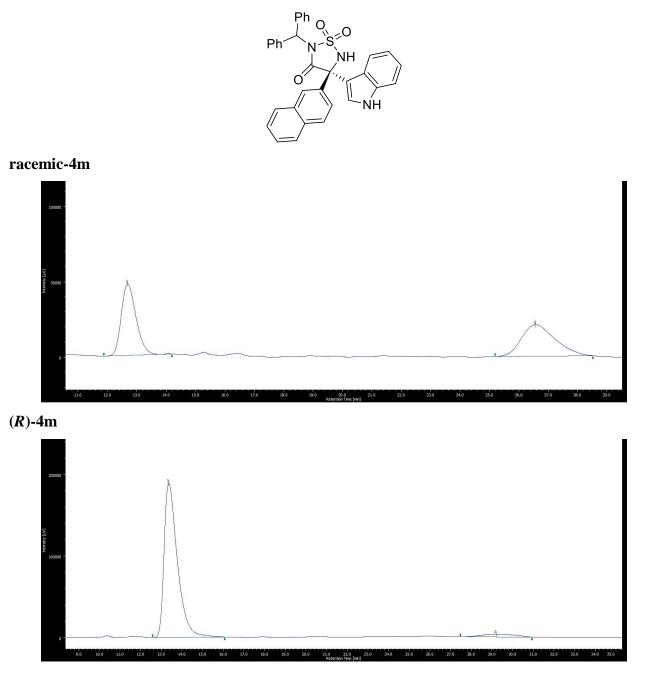
racemic-4j		
Peak	tR (min)	Area (%)
1	8.3	50.0
2	11.5	50.0

	(<i>R</i>)-4j	
Peak	tR (min)	Area (%)
1	8.3	97.5
2	11.9	2.5


(*R*)-2-Benzhydryl-4-(4-bromophenyl)-4-(1*H*-indol-3-yl)-1,2,5-thiadiazolidin-3-one 1,1-dioxide (4k)

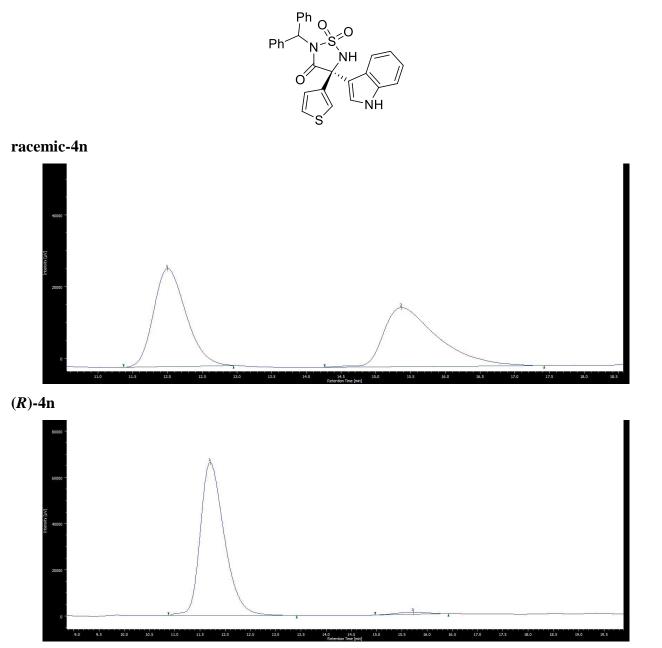
racemic-4k		
Peak	tR (min)	Area (%)
1	9.9	50.1
2	15.4	49.9

(<i>R</i>)-4k		
Peak	tR (min)	Area (%)
1	8.8	97.8
2	13.7	2.2


(*R*)-2-Benzhydryl-4-(1*H*-indol-3-yl)-4-[4-(trifluoromethyl)phenyl]-1,2,5-thiadiazolidin-3-one 1,1-dioxide (4l)

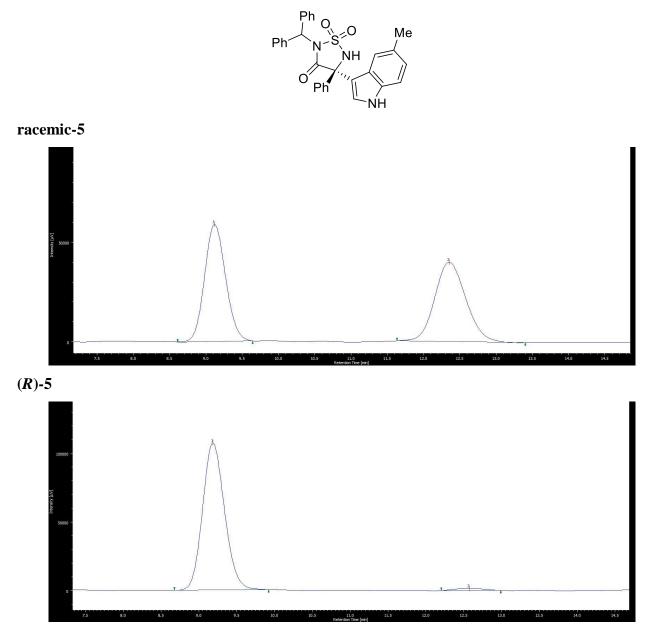
racemic-4l		
Peak	tR (min)	Area (%)
1	14.7	50.2
2	20.5	49.8

(<i>R</i>)-41		
Peak	tR (min)	Area (%)
1	14.1	97.9
2	21.7	2.1


(*R*)-2-Benzhydryl-4-(1*H*-indol-3-yl)-4-(naphthalen-2-yl)-1,2,5-thiadiazolidin-3-one 1,1-dioxide (4m)

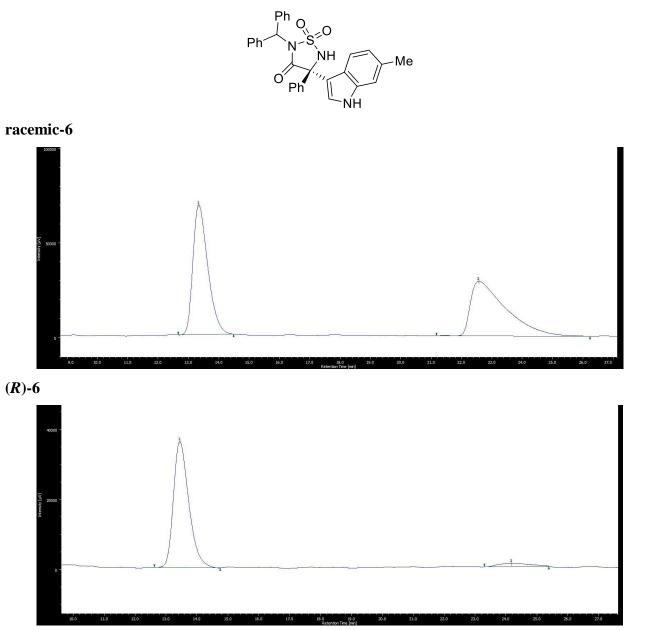
racemic-4m		
Peak	tR (min)	Area (%)
1	12.7	49.9
2	26.6	50.1

(<i>R</i>)-4m		
Peak	tR (min)	Area (%)
1	13.4	95.7
2	29.2	4.3


(*R*)-2-Benzhydryl-4-(1*H*-indol-3-yl)-4-(thiophen-3-yl)-1,2,5-thiadiazolidin-3-one 1,1-dioxide (4n)

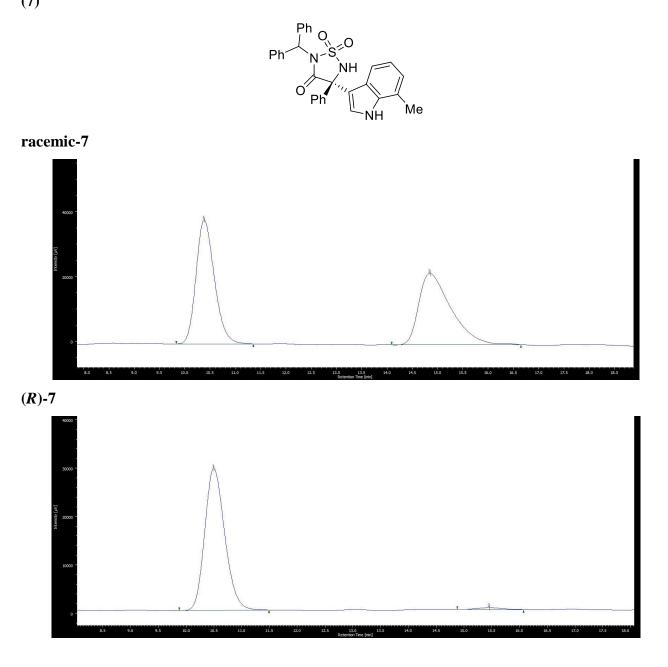
racemic-4n		
Peak	tR (min)	Area (%)
1	12.0	50.0
2	15.4	50.0

(<i>R</i>)-4n		
Peak	tR (min)	Area (%)
1	11.7	98.3
2	15.7	1.7


(*R*)-2-Benzhydryl-4-(5-methyl-1*H*-indol-3-yl)-4-phenyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (5)

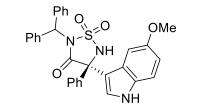
racemic-5		
Peak	tR (min)	Area (%)
1	9.1	50.0
2	12.4	50.0

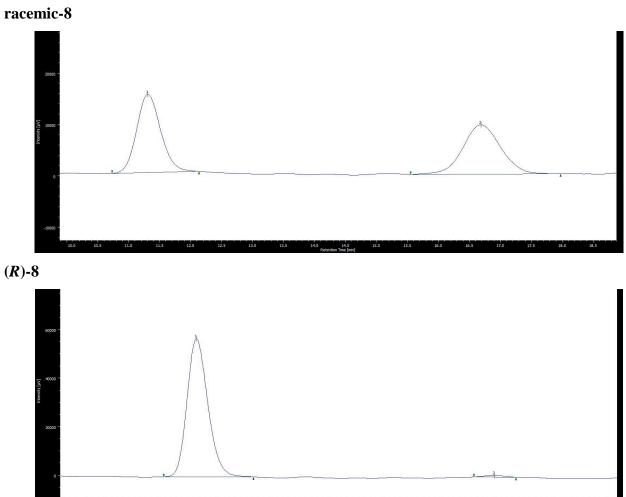
(<i>R</i>)-5		
Peak	tR (min)	Area (%)
1	9.2	98.1
2	12.6	1.9


(*R*)-2-Benzhydryl-4-(6-methyl-1*H*-indol-3-yl)-4-phenyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (6)

racemic-6		
Peak	tR (min)	Area (%)
1	13.3	50.1
2	22.6	49.9

(R)-6		
Peak	tR (min)	Area (%)
1	13.5	95.0
2	24.2	5.0

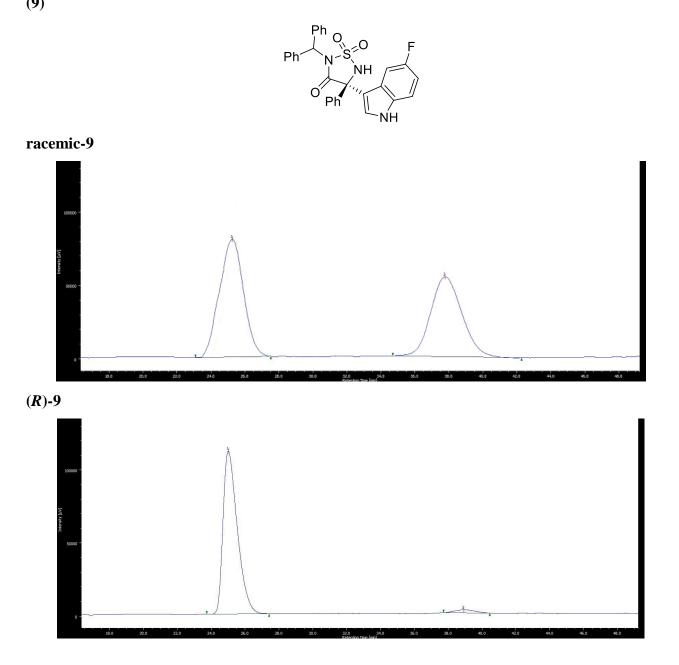

(*R*)-2-Benzhydryl-4-(7-methyl-1*H*-indol-3-yl)-4-phenyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (7)



racemic-7		
Peak	tR (min)	Area (%)
1	10.4	49.9
2	14.9	50.1

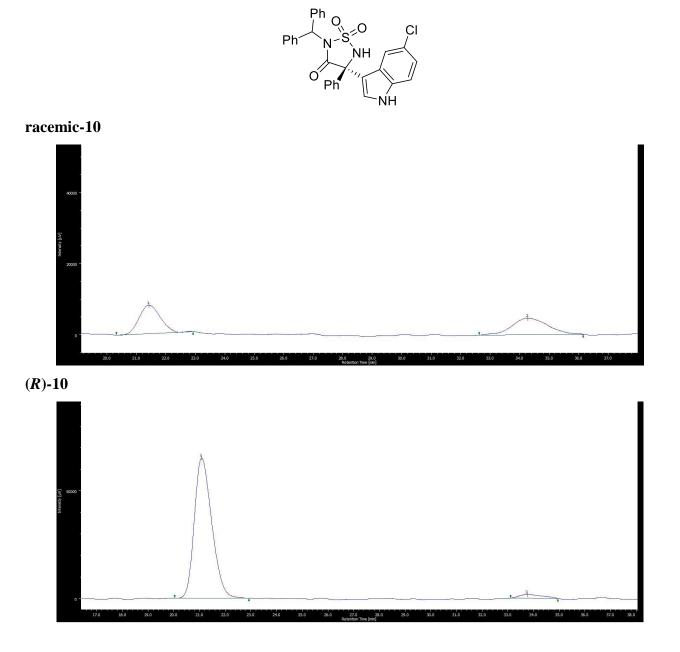
(<i>R</i>)-7		
Peak	tR (min)	Area (%)
1	10.5	98.4
2	15.5	1.6

(*R*)-2-Benzhydryl-4-(5-methoxy-1*H*-indol-3-yl)-4-phenyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (8)



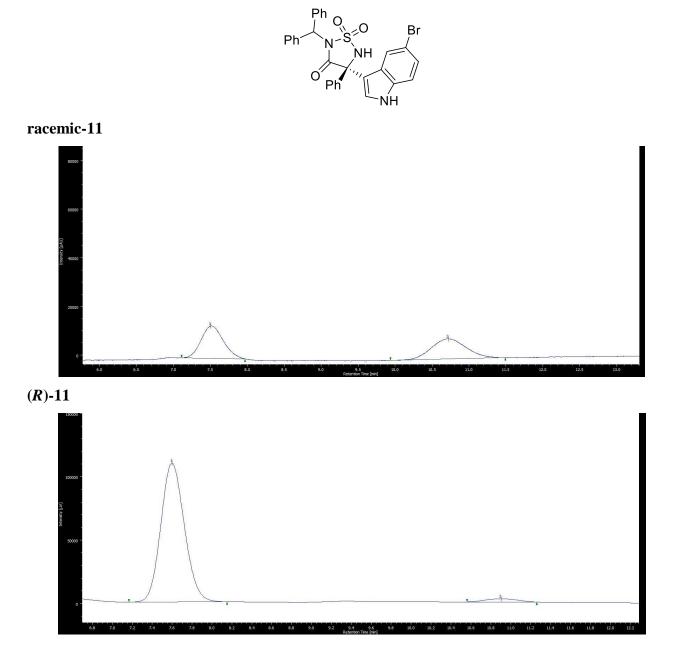
racemic-8		
Peak	tR (min)	Area (%)
1	11.3	50.2
2	16.7	49.8

	(R)-8	
Peak	tR (min)	Area (%)
1	11.3	98.8
2	16.8	1.2


(*R*)-2-Benzhydryl-4-(5-fluoro-1*H*-indol-3-yl)-4-phenyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (9)

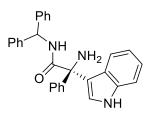
racemic-9		
Peak	tR (min)	Area (%)
1	24.6	50.4
2	38.0	49.6

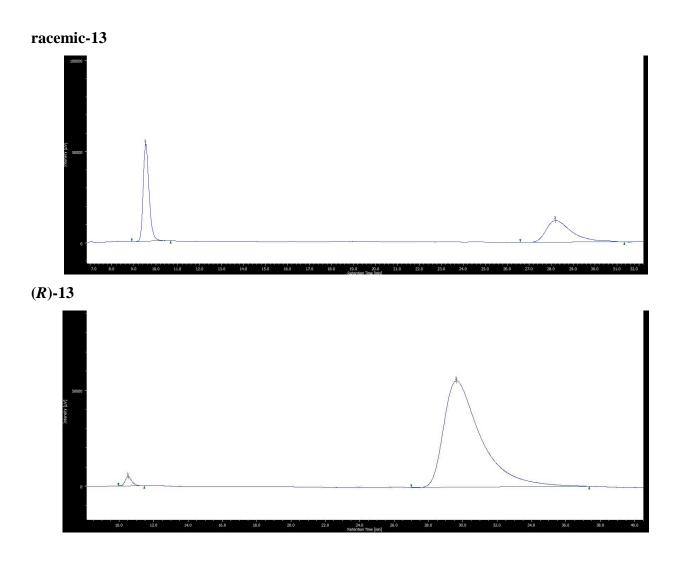
	(R)-9	
Peak	tR (min)	Area (%)
1	25.0	97.3
2	38.9	2.7


(*R*)-2-Benzhydryl-4-(5-chloro-1*H*-indol-3-yl)-4-phenyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (10)

racemic-10		
Peak	tR (min)	Area (%)
1	21.4	49.9
2	34.3	50.1

(<i>R</i>)-10		
Peak	tR (min)	Area (%)
1	21.1	96.6
2	33.8	3.4

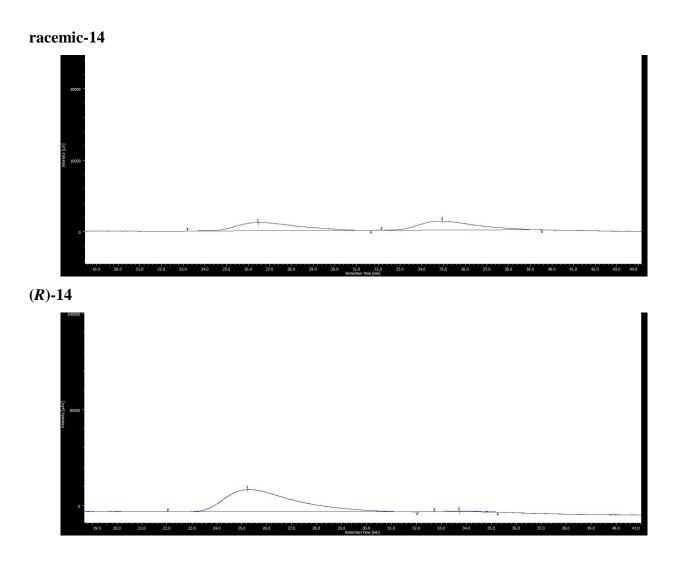

(*R*)-2-Benzhydryl-4-(5-bromo-1*H*-indol-3-yl)-4-phenyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (11)



racemic-11		
Peak	tR (min)	Area (%)
1	7.5	50.5
2	10.7	49.5

(<i>R</i>)-11		
Peak	tR (min)	Area (%)
1	7.6	96.1
2	10.9	3.1

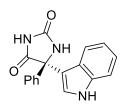
(R)-2-Amino-N-benzhydryl-2-(1H-indol-3-yl)-2-phenylacetamide (13)

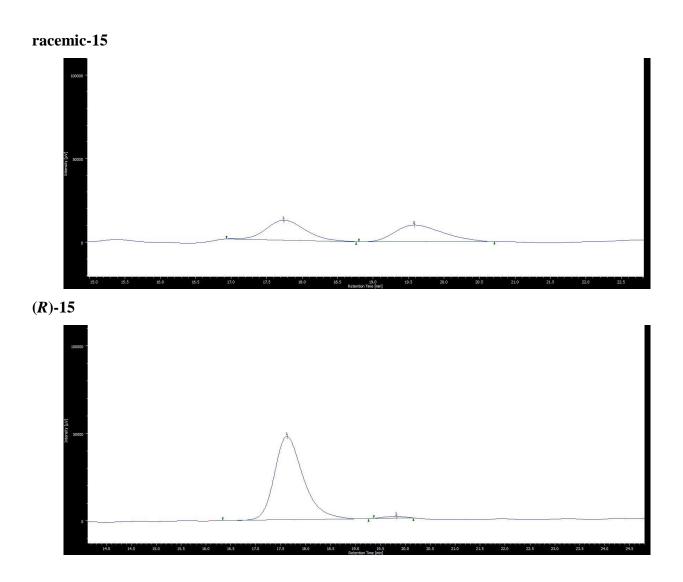


racemic-13		
Peak	tR (min)	Area (%)
1	9.2	50.2
2	28.2	49.8

	(<i>R</i>)-13	
Peak	tR (min)	Area (%)
1	10.6	1.5
2	29.7	98.5

(R)-3-Benzhydryl-5-(1H-indol-3-yl)-5-phenylimidazolidine-2,4-dione (14)

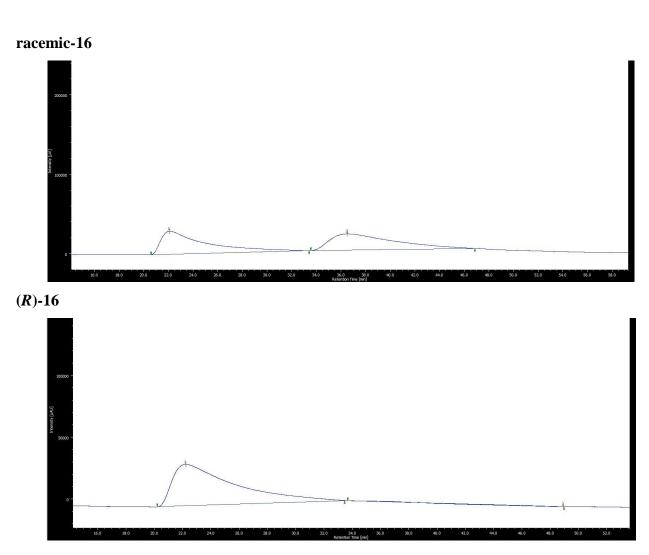




racemic-14		
Peak	tR (min)	Area (%)
1	26.5	49.5
2	35.0	50.5

(<i>R</i>)-14		
Peak	tR (min)	Area (%)
1	25.2	98.5
2	35.0	1.5

(R)-5-(1H-indol-3-yl)-5-phenylimidazolidine-2,4-dione (15)



racemic-15		
Peak	tR (min)	Area (%)
1	17.7	49.5
2	19.6	50.5

(<i>R</i>)-15			
Peak	tR (min)	Area (%)	
1	17.6	98.6	
2	19.8	1.3	

(R)-4-(1H-indol-3-yl)-4-phenyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (16)

	racemic-16	
Peak	tR (min)	Area (%)
1	22.1	49.4
2	36.5	50.6

(<i>R</i>)-16			
Peak	tR (min)	Area (%)	
1	22.3	98.6	
2	34.5	1.4	