# Copper-catalyzed decarboxylative cyclization via tandem C-P and

## C-N bond formation: access to 2-phosphorylmethyl indoles

Bao-Cheng Wang,<sup>‡a</sup> Ya-Ni Wang,<sup>‡a</sup> Mao-Mao Zhang,<sup>a</sup> Wen-Jing Xiao<sup>ab</sup> and Liang-Qiu Lu<sup>\*ac</sup> <sup>a</sup> CCNU-uOttawa Joint Research Centre on Synthesis and Catalysis, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China

<sup>b</sup> Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal College, Huanggang 438000, China

<sup>c</sup> State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China

<sup>*t*</sup> These authors contributed equally to this work.

\*luliangqiu@mail.ccnu.edu.cn

# **Table of Contents**

| 1. General Information                                                                | S3  |
|---------------------------------------------------------------------------------------|-----|
| 2. Preparation and Spectral Data of the Substrates                                    |     |
| 2.1 General procedure for the preparation of substrates <b>11-t</b> and <b>2f-j</b>   |     |
| 2.2 Spectral data of the substrate <b>1t</b>                                          |     |
| 3. Optimization of the Reaction Conditions                                            |     |
| 3.1 The effect of solvent, base and the loading of base                               |     |
| 3.2 The effect of ligand, copper and the loading of <b>2a</b>                         | S6  |
| 4. General Procedure and Spectral Data of the Products                                |     |
| 4.1 General procedure for the synthesis of <b>3</b>                                   | S6  |
| 4.2 Spectral data of the desired products <b>3a-t and 3a'</b>                         |     |
| 5. X-ray Crystal Structure of 3e                                                      | S14 |
| 6. Copies of <sup>1</sup> H NMR , <sup>13</sup> C NMR and <sup>31</sup> P NMR Spectra |     |

## **1. General Information**

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. All the solvents were treated according to general methods. Flash column chromatography was performed using 200-300 mesh silica gel. <sup>1</sup>H NMR spectra were recorded on 400 MHz spectrophotometers. Chemical shifts are reported in delta ( $\delta$ ) units in parts per million (ppm) relative to the singlet (0 ppm) for tetramethylsilane (TMS). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet), coupling constants (Hz) and integration. <sup>13</sup>C NMR spectra were recorded on Varian Mercury 100 MHz with complete proton decoupling spectrophotometers (CDCl<sub>3</sub>: 77.0 ppm). <sup>31</sup>P NMR spectra were recorded on Varian Mercury 162 MHz spectrophotometers. HRMS was recorded on Bruker ultrafleXtreme MALDITOF/TOF mass spectrometer.

#### 2. Preparation and Spectral Data of Substrates

## 2.1 General procedure for the preparation of substrates 11-t and 2f-j.

Substrates(**11-t and 2f-j**) were prepared according to the reported procedures<sup>[1,2,3]</sup>. Ligands were synthesized according to the literature<sup>[4]</sup> or commercially available.

#### Synthesis of substrate 1t



Procedure: Under argon atmosphere, an oven dried 250 mL three-necked flask, equipped with a magnetic stirring bar, was charged with trimethylsilylacetylene (3.1 mL, 22 mmol) and anhydrous THF (100 mL). To this solution was added n-BuLi (8.8 mL, 2.5 M in hexane, 22 mmol) dropwise over 15 min at 0 °C, stirring for 30 min. Then the solution was °C -94 cooled to (liquid N<sub>2</sub>/Acetone bath). and the N-(2-acetylphenyl)-4-methylbenzenesulfonamide<sup>[5]</sup> (2.89 g, 10 mmol) was added. The reaction was stirred for 0.5 h at the same temperature. After this interval, a solution of triphosgen (2.96 g, 10 mmol) in anhydrous THF (50 mL) was added dropwise over a period of 0.5 h. The yellow solution was maintained at -94 °C for 1 h, and the reaction was then carefully quenched by dropwise addition of H<sub>2</sub>O over a period of 15 min. The resulting yellow solution was allowed to warm to room temperature. The organic phase was separated, and aqueous phases were extracted with EtOAc (50 mL×3). The combined organic layers were washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated. The crude product was used directly without further purification.

The trimethylsilanylethynyl-benzoxazinanone from previous step was charged into a dry 100 mL flask along with anhydrous THF (50 mL). The flask was then cooled to -94 °C and TBAF (10.0 mL, 10.0 mmol, 1.0 M solution in THF) was added dropwise. The resulting solution was stirred for 5 min at -94 °C (liquid N<sub>2</sub>/Acetone bath). The reaction was quenched with H<sub>2</sub>O. The resulting red solution was allowed to warm to room temperature. The organic phase was separated, and aqueous phases were extracted with EtOAc (30 mL×3). The combined organic layers were washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated. The residue was purified by flash silica gel chromatography (PE/EtOAc/DCM = 20:1:1) to give the product as white solid (2.21 g, 65% yield over two steps).

#### References

[1] (a) T.-R. Li, B.-Y. Cheng, Y.-N. Wang, M.-M. Zhang, L.-Q. Lu and W.-J. Xiao, *Angew. Chem., Int. Ed.*, 2016, 55, 12422-12426; (b) Q. Wang, T.-R. Li, L.-Q. Lu, M.-M. Li, K. Zhang and W.-J. Xiao, *J. Am. Chem. Soc.*, 2016, 138, 8360-8363.

[2] (a) H.-G. Cheng, L.-Q. Lu, T. W, Q.-Q. Yang, X.-P. Liu, Y. Li, Q.-H. Deng, J.-R. Chen and W.-J. Xiao, *Angew. Chem., Int. Ed.*, 2013, **52**, 3250-3254; (b) C. Liu, W. Zhang, L.-X. Dai and S.-L. You, *Org. Biomol. Chem.*, 2012, **10**, 7177-7183; (c) J. Yang, H. Song, W. Chen and Y. Qin, *Org. Lett.*, 2006, **8**, 2187-2190.

[3] (a) J. Ke, Y. Tang, H. Yi, Y. Li, Y. Cheng, C. Liu and A. Lei, *Angew. Chem., Int. Ed.*, 2015, 54, 1-5; (b) R.
Shen, B. Luo, J. Yang, L. Zhang and L.-B. Han, *Chem. Commun.*, 2016, 52, 6451-6454.

[4] Y.-Y. Zhu, C. Cui, N. Li, B.-W. Wang, Z.-M. Wang and S. Gao, Eur. J. Inorg. Chem., 2013, 17, 3101-3111.

[5] G. C. Senadi, W. P. Hu, S. S. K. Boominathan and J.-J. Wang, Chem. Eur. J., 2015, 21, 998-1003.

## 2.2 Spectral data of the substrate 1t

## 4-Ethynyl-4-methyl-1-tosyl-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one (1t)

Yield of **1t** : 65% as a white solid. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta = 8.14$  (d, J = 1.8 Hz, 1H), 8.12 (d, J = 1.8 Hz, 1H), 7.66 (dd, J = 8.3 Hz, 1.0 Hz, 1H), 7.45 (m, 1H), 7.42 – 7.38 (m, 2H), 7.37 (s, 1H), 7.30 (m, 1H), 2.69 (s, 1H), 2.46 (s, 3H), 2.00 (s, 3H). <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta = 148.4$ , 145.8, 135.4, 133.4,

129.6, 129.5, 129.5, 129.3, 126.3, 123.4, 121.2, 81.0, 76.1, 75.5, 26.2, 21.8. **M.P.**: 164 – 166 <sup>o</sup>C. **HRMS (ESI)** for C<sub>18</sub>H<sub>15</sub>NO<sub>4</sub>S [M + Na]<sup>+</sup>: calcd 364.0614, found 364.0609.

## **3.** Optimization of the Reaction Conditions

## 3.1 The effect of solvent, base and the loading of base <sup>a</sup>

|       | 0<br>0 + H−P−OMe<br>0 OMe          | 5 mol% Cul<br>base (x equiv.)<br>Solvent (2 mL), rt | $\xrightarrow{Neo}_{N}$ | D O MeO O<br>P-OMe P-OMe<br>+ N<br>Ts |
|-------|------------------------------------|-----------------------------------------------------|-------------------------|---------------------------------------|
| 1a    | 2a                                 |                                                     | 3a                      | 3a'                                   |
| Entry | Solvent                            | Base                                                | Base(x equiv.)          | <b>Yield of 3a</b> (%) <sup>b</sup>   |
| 1     | THF                                | <sup><i>i</i></sup> Pr <sub>2</sub> NEt             | 2.0                     | 69                                    |
| 2     | MIBE                               | <sup>i</sup> Pr <sub>2</sub> NEt                    | 2.0                     | 52                                    |
| 3     | CH <sub>3</sub> CN                 | <sup><i>i</i></sup> Pr <sub>2</sub> NEt             | 2.0                     | 43                                    |
| 4     | CF <sub>3</sub> CH <sub>2</sub> OH | <sup>i</sup> Pr <sub>2</sub> NEt                    | 2.0                     | Trace                                 |
| 5     | EtOH                               | <sup><i>i</i></sup> Pr <sub>2</sub> NEt             | 2.0                     | 79                                    |
| 6     | MeOH                               | <sup><i>i</i></sup> Pr <sub>2</sub> NEt             | 2.0                     | <b>89</b> <sup>c</sup>                |
| 7     | <sup>i</sup> PrOH                  | <sup><i>i</i></sup> Pr <sub>2</sub> NEt             | 2.0                     | 41                                    |
| 8     | MeOH/DCM                           | <sup><i>i</i></sup> Pr <sub>2</sub> NEt             | 2.0                     | 65                                    |
| 9     | MeOH/THF                           | <sup><i>i</i></sup> Pr <sub>2</sub> NEt             | 2.0                     | 69                                    |
| 10    | MeOH                               | Et <sub>3</sub> N                                   | 2.0                     | $72^c$                                |
| 11    | MeOH                               | DBU                                                 | 2.0                     | $50^{c}$                              |
| 12    | MeOH                               | DABCO                                               | 2.0                     | 23                                    |
| 13    | MeOH                               | Cs <sub>2</sub> CO <sub>3</sub>                     | 2.0                     | 19                                    |
| 14    | MeOH                               | K <sub>3</sub> PO <sub>4</sub>                      | 2.0                     | 48                                    |
| 15    | MeOH                               | <sup><i>i</i></sup> Pr <sub>2</sub> NEt             | 0                       | N.R.                                  |
| 16    | MeOH                               | <sup><i>i</i></sup> Pr <sub>2</sub> NEt             | 0.1                     | Trace                                 |
| 17    | MeOH                               | <sup><i>i</i></sup> Pr <sub>2</sub> NEt             | 1.0                     | 73 <sup>c</sup>                       |
| 18    | MeOH                               | <sup><i>i</i></sup> Pr <sub>2</sub> NEt             | 1.5                     | $77^{c}$                              |

<sup>*a*</sup> Reaction Conditions: 1a (0.2 mmol), 2a (0.5 mmol), CuI (5 mol%) in 2 mL of solvent at rt for 1h. <sup>*b*</sup> Isolated yields. <sup>*c*</sup> a trace of 3a' (<10% yield) was determined by <sup>1</sup>H NMR. MTBE: methyl tert-butyl ether.

|       | $ \begin{array}{c}                                     $ | e <sup>5 mol%</sup> Copr<br><sup>/</sup> Pr <sub>2</sub> NEt<br>MeOł | MeO_O<br><u>mol% Copper, 6 mol% Ligand</u><br><sup>/</sup> Pr <sub>2</sub> NEt (2.0 equiv.)<br>MeOH (2 mL), rt<br>Ts |                                  |  |  |
|-------|----------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------|--|--|
|       | 1a 2a                                                    |                                                                      |                                                                                                                      | 3a                               |  |  |
| Entry | Copper                                                   | Ligand                                                               | 2a (equiv.)                                                                                                          | <b>Yield (3a %)</b> <sup>b</sup> |  |  |
| 1     | CuI                                                      | dppe                                                                 | 2.5                                                                                                                  | 77                               |  |  |
| 2     | CuI                                                      | dppb                                                                 | 2.5                                                                                                                  | 79                               |  |  |
| 3     | CuI                                                      | dppp                                                                 | 2.5                                                                                                                  | 89                               |  |  |
| 4     | CuI                                                      | PPh <sub>3</sub>                                                     | 2.5                                                                                                                  | 79                               |  |  |
| 5     | CuI                                                      | pybox                                                                | 2.5                                                                                                                  | 96                               |  |  |
| 6     | CuF <sub>2</sub>                                         | pybox                                                                | 2.5                                                                                                                  | 90                               |  |  |
| 7     | CuCl <sub>2</sub>                                        | pybox                                                                | 2.5                                                                                                                  | 83                               |  |  |
| 8     | $Cu(acac)_2$                                             | pybox                                                                | 2.5                                                                                                                  | 94                               |  |  |
| 9     | Cu(OAc) <sub>2</sub>                                     | pybox                                                                | 2.5                                                                                                                  | 96                               |  |  |
| 10    | Cu(CH <sub>3</sub> CN) <sub>4</sub> BF <sub>4</sub>      | pybox                                                                | 2.5                                                                                                                  | 96                               |  |  |
| 11    | CuI                                                      | pybox                                                                | 2.0                                                                                                                  | 96                               |  |  |
| 12    | CuI                                                      | pybox                                                                | 1.5                                                                                                                  | 88                               |  |  |
| 13    | CuI                                                      | pybox                                                                | 1.2                                                                                                                  | 87                               |  |  |

## 3.2 The effect of Ligand , copper and the loading of 2a<sup>a</sup>

Ш

<sup>*a*</sup> Reaction Conditions: **1a** (0.2 mmol), **2a** (x mmol), Copper salt (5 mol%), Ligand (6 mol%), <sup>*i*</sup>Pr<sub>2</sub>NEt (2.0 equiv.) in 2 mL of MeOH at rt for 1h. <sup>*b*</sup> Isolated yields.

## 4. General Procedure and Spectral Data of the Products

## 4.1 General procedure for the synthesis of 3



**Procedure:** Under argon atmosphere, a flame-dried 10 mL Schlenk tube was charged with CuI (0.01 mmol, 5 mol %), **pybox** (0.012 mmol, 6 mol%) and anhydrous MeOH (2 mL). The resulting solution was stirred for 5 min at room temperature. Then,  ${}^{i}$ Pr<sub>2</sub>NEt (0.4 mmol, 2.0 equiv.) and **2** (0.4 mmol, 2.0 equiv.) were added, the resulting solution was stirred for 10 min at rt. Then ethynyl benzoxazinanone **1** (0.2 mmol, 1.0 equiv.) was added. The resulting solution was stirred until complete conversion of ethynyl benzoxazinanones (monitored by TLC). The product was purified by flash column chromatography on silica gel (petrol ether/ EtOAc = 5/1 to 1/1) to give product **3**.

#### 4.2 Spectral data of the desired products 3a-3t and 3a'

#### Dimethyl ((1-tosyl-1H-indol-2-yl)methyl)phosphonate (3a)

Yield of **3a** : 96% as a yellow oil. <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta = 8.13$  -8.07 (m, 1H), 7.66 – 7.60 (m, 2H), 7.47 – 7.41 (m, 1H), 7.29 (d, J = 7.6Hz, 1H), 7.23 (dd, J = 7.5 Hz, 1.1 Hz, 1H), 7.20 (s, 1H), 7.17 (s, 1H), 6.84 - 6.78 (m, 1H), 3.82 (d, J = 1.0 Hz, 1H), 3.78 (s, 3H), 3.77 (d, J = 1.0 Hz, 1H), 3.76 (s, 3H), 2.33 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta = 144.8$ , 136.7, 135.2, 130.5 (d, J = 4.0 Hz), 129.7, 129.3 (d, J = 1.0 Hz), 126.2, 124.3, 123.6, 120.5, 114.8, 112.4 (d, J = 5.0 Hz), 52.9 (d, J = 5.0 Hz), 25.1 (d, J = 94.0 Hz), 21.3. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta = 26.40$ . HRMS (ESI) for C<sub>18</sub>H<sub>20</sub>NO<sub>5</sub>PS [M + H]<sup>+</sup>: calcd 394.0873, found 394.0866.

#### Diethyl ((1-tosyl-1H-indol-2-yl)methyl)phosphonate (3b)

Yield of **3b** : 84% as a yellow oil. <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta = 8.11$ (d, J = 8.3 Hz, 1H), 7.63 (d, J = 8.1 Hz, 2H), 7.43 (d, J = 7.6 Hz, 1H), 7.30 – 7.24 (m, 1H), 7.21 (d, J = 7.5 Hz, 1H), 7.18 (s, 1H), 7.16 (s, 1H), 7.30 – 7.24 (m, 1H), 7.21 (d, J = 7.5 Hz, 1H), 7.18 (s, 1H), 7.16 (s, 1H), 6.83 (d, J = 3.6 Hz, 1H), 4.13 (m, 4H), 3.80 (s, 1H), 3.75 (s, 1H), 2.31 (s, 3H), 1.29 (t, J = 7.1 Hz, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta = 144.9$ , 136.9, 135.5, 131.0 (d, J = 5.0 Hz), 129.8, 129.5 (d, J = 3.0 Hz), 126.3, 124.4, 123.7, 120.6, 114.9, 112.4 (d, J = 6.0 Hz), 62.4 (d, J = 6.0 Hz), 26.0 (d, J = 142.0 Hz), 21.4, 16.3 (d, J = 5.0 Hz). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta = 23.82$ . HRMS (ESI) for C<sub>20</sub>H<sub>24</sub>NO<sub>5</sub>PS [M + Na]<sup>+</sup>: calcd 444.1005, found 444.0998.

Dibutyl ((1-tosyl-1H-indol-2-yl)methyl)phosphonate (3c)

Yield of **3c** : 65% as a yellow oil. <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta = 8.11$ (d, J = 8.3 Hz, 1H), 7.62 (d, J = 7.9 Hz, 2H), 7.43 (d, J = 7.7 Hz, 1H), 7.27 (t, J = 4.4 Hz, 1H), 7.22 (d, J = 7.5 Hz, 1H), 7.18 (s, 1H), 7.16 (s, 1H), 6.83 (t, J = 2.4 Hz, 1H), 4.07 (dd, J = 6.9 Hz, 1.7 Hz, 2H), 4.03 (dd, J = 6.9 Hz, 1.8 Hz, 2H), 3.79 (s, 1H), 3.74 (s, 1H), 2.32 (d, J = 1.9 Hz, 3H), 1.61 (m, 4H), 1.35 (m, 4H), 0.89 (m, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta = 145.0$ , 137.0, 135.6, 131.1, 129.9, 129.7, 126.4, 124.5, 123.8, 120.7, 115.0, 112.6 (d, J = 7.0 Hz), 66.2 (d, J = 7.0 Hz), 32.5 (d, J = 7.0 Hz), 26.0 (d, J = 142.0 Hz), 21.6, 18.7, 13.6. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta = 23.87$ . HRMS (ESI) for C<sub>24</sub>H<sub>32</sub>NO<sub>5</sub>PS [M + Na]<sup>+</sup>: calcd 500.1631, found 500.1627.

## Diphenyl ((1-tosyl-1H-indol-2-yl)methyl)phosphonate (3d)

Yield of **3d** : 93% as a yellow oil. <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta = 8.12$ (d, J = 8.3 Hz, 1H), 7.62 (s, 1H), 7.61 – 7.59 (m, 1H), 7.44 (d, J = 7.7 Hz, 1H), 7.29 (s, 1H), 7.27 (s, 2H), 7.24 (d, J = 6.9 Hz, 2H), 7.21 (d, J = 7.4 Hz, 1H), 7.17 – 7.13 (m, 4H), 7.13 – 7.09 (m, 4H), 6.97 (d, J = 3.5 Hz, 1H), 4.15 (s, 1H), 4.10 (s, 1H), 2.27 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta = 150.3$  (d, J = 9.0 Hz), 145.1, 137.1, 135.6, 129.9, 129.8, 129.7 (d, J = 4.0 Hz), 129.5 (d, J = 3.0 Hz), 126.4, 125.4, 124.8, 123.9, 120.9, 120.6 (d, J = 5.0 Hz), 115.1, 113.1 (d, J = 6.0 Hz), 26.4 (d, J = 144.0 Hz), 21.6. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta = 16.93$ . HRMS (ESI) for C<sub>28</sub>H<sub>24</sub>NO<sub>5</sub>PS [M + Na]<sup>+</sup>: calcd 540.1005, found 540.1002.

## Diphenyl((1-tosyl-1H-indol-2-yl)methyl)phosphine oxide (3e)

Yield of **3e** : 94% as a white solid. <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta = 8.02$ (d, J = 8.3 Hz, 1H), 7.81 (s, 1H), 7.78 (d, J = 4.2 Hz, 2H), 7.76 (s, 1H), Ts 7.55 (s, 1H), 7.52 (d, J = 6.7 Hz 2H), 7.50 (s, 1H), 7.45 (m, 4H), 7.37 (d, J = 7.6 Hz, 1H), 7.22 (t, J = 7.7 Hz, 1H), 7.19 – 7.14 (m, 2H), 7.13 (s, 1H), 7.02 (d, J = 2.4 Hz, 1H), 4.27 (s, 1H), 4.24 (s, 1H), 2.32 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta = 145.0$ , 136.8, 135.4, 132.6, 132.1 (d, J = 3.0 Hz), 131.6, 131.1, 131.0, 129.9, 128.7 (d, J = 12.0 Hz), 126.3, 124.5, 123.8, 120.9, 114.9, 113.5 (d, J = 6.0 Hz), 30.0 (d, J = 68.0 Hz), 21.6. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta = 28.82$ . M.P.: 176 – 178 °C. HRMS (ESI) for C<sub>28</sub>H<sub>24</sub>NO<sub>3</sub>PS [M + H]<sup>+</sup>: calcd 486.1287, found 486.1283.

#### Di-p-tolyl((1-tosyl-1H-indol-2-yl)methyl)phosphine oxide (3f)



Yield of **3f** : 96% as a white solid. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.03 (d, *J* = 8.3 Hz, 1H), 7.67 (s, 1H), 7.65 (d, *J* = 3.6 Hz, 2H), 7.63 (s, 1H), 7.54 (s, 1H), 7.52 (s, 1H), 7.36 (d, *J* = 7.6 Hz, 1H), 7.25 (s, 2H), 7.23 (s, 3H), 7.15 (t, *J* = 10.8 Hz, 3H), 7.02 (s, 1H), 4.21 (s, 3H), 7.23 (s, 3H), 7.15 (t, *J* = 10.8 Hz, 3H), 7.02 (s, 1H), 4.21 (s, 3H), 7.23 (s, 3H), 7.15 (t, *J* = 10.8 Hz, 3H), 7.02 (s, 1H), 4.21 (s, 3H), 7.23 (s, 3H), 7.15 (t, *J* = 10.8 Hz, 3H), 7.02 (s, 1H), 4.21 (s, 3H), 7.23 (s, 3H), 7.15 (t, *J* = 10.8 Hz, 3H), 7.02 (s, 1H), 4.21 (s, 3H), 7.23 (s, 3H), 7.15 (t, *J* = 10.8 Hz, 3H), 7.02 (s, 1H), 4.21 (s, 3H), 7.23 (s, 3H), 7.15 (t, *J* = 10.8 Hz, 3H), 7.02 (s, 1H), 4.21 (s, 3H), 7.23 (s, 3H), 7.15 (t, *J* = 10.8 Hz, 3H), 7.02 (s, 1H), 4.21 (s, 3H), 7.23 (s, 3H), 7.15 (t, *J* = 10.8 Hz, 3H), 7.02 (s, 1H), 4.21 (s, 3H), 7.23 (s, 3H), 7.15 (t, *J* = 10.8 Hz, 3H), 7.02 (s, 1H), 4.21 (s, 3H), 7.23 (s, 3H), 7.15 (t, *J* = 10.8 Hz, 3H), 7.02 (s, 1H), 4.21 (s, 3H), 7.23 (s, 3H), 7.15 (t, *J* = 10.8 Hz, 3H), 7.02 (s, 1H), 4.21 (s, 3H), 7.23 (s, 3H), 7.15 (t, *J* = 10.8 Hz, 3H), 7.02 (s, 1H), 4.21 (s, 3H), 7.23 (s, 3H), 7.15 (t, *J* = 10.8 Hz, 3H), 7.02 (s, 1H), 4.21 (s, 3H), 7.23 (s, 3H), 7.15 (t, *J* = 10.8 Hz, 3H), 7.02 (s, 1H), 4.21 (s, 3H), 7.23 (s, 3H), 7.15 (t, *J* = 10.8 Hz, 3H), 7.02 (s, 1H), 4.21 (s, 3H), 7.23 (s, 3H), 7.15 (t, *J* = 10.8 Hz, 3H), 7.02 (s, 1H), 4.21 (s, 3H), 7.23 (s, 3H), 7.15 (s, 3H), 7.23 (s, 3H), 7.15 (s, 3H), 7.23 (s, 3H), 7.15 (s,

1H), 4.18 (s, 1H), 2.37 (s, 6H), 2.32 (d, J = 3.0 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta = 145.0, 142.7, 136.8, 135.4, 131.7$  (d, J = 10.0 Hz), 131.1 (d, J = 9.0 Hz), 129.9, 129.8, 129.6, 129.4, 126.3, 124.4, 123.8, 120.9, 114.9, 113.7, 30.0 (d, J = 67.0 Hz), 29.3, 21.6 (d, J = 6.0 Hz). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta = 29.42$ . M.P.: 193 – 194 °C. HRMS (ESI) for C<sub>30</sub>H<sub>28</sub>NO<sub>3</sub>PS [M + Na]<sup>+</sup>: calcd 536.1420, found 536.1417.

## Bis(3,5-dimethylphenyl)((1-tosyl-1H-indol-2-yl)methyl)phosphine oxide (3g)



Yield of 3g : 93% as a white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.00 (d, J = 8.3 Hz, 1H), 7.55 (d, J = 2.1 Hz, 1H), 7.53 (s, 1H), 7.41 (s, 2H), 7.37 (d, J = 7.4 Hz, 3H), 7.22 (d, J = 7.7 Hz, 1H), 7.17 (d, J = 17.4 Hz, 2H), 7.12 (s, 3H), 7.00 (s, 1H), 4.21 (d, J = 13.6 Hz, 2H),

2.31 (s, 15H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 144.9, 138.4 (d, *J* = 13.0 Hz), 136.8, 135.5, 133.8 (d, *J* = 3.0 Hz), 132.4, 131.4 (d, *J* = 5.0 Hz), 129.9 (d, *J* = 2.0 Hz), 129.9, 128.5 (d, *J* = 9.0 Hz), 126.3, 124.3, 123.7, 120.9, 114.9, 113.5 (d, *J* = 6.0 Hz), 30.0 (d, *J* = 67.0 Hz), 21.6, 21.3. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  = 29.40. M.P.: 172 – 174 °C. HRMS (ESI) for C<sub>32</sub>H<sub>32</sub>NO<sub>3</sub>PS [M + Na]<sup>+</sup>: calcd 564.1733, found 564.1737.

## Bis(4-fluorophenyl)((1-tosyl-1H-indol-2-yl)methyl)phosphine oxide (3h)



Yield of **3h** : 96% as a colorless oil. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$ = 7.98 (d, J = 8.3 Hz, 1H), 7.78 (m, 4H), 7.52 (d, J = 1.9 Hz, 1H), 7.51 (d, J = 1.9 Hz, 1H), 7.31 (d, J = 7.8 Hz, 1H), 7.25 – 7.19 (m, 1H), 7.18 – 7.13 (m, 3H), 7.12 (d, J = 2.3 Hz, 3H), 7.10 (d, J = 2.2 Hz, 1H), 7.02 (d, J = 3.0 Hz, 1H), 4.36 (s, 1H), 4.33 (s, 1H), 2.30 (s,

3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 166.5 (d, *J* = 4.0 Hz), 164.0 (d, *J* = 3.0 Hz), 145.2, 136.9, 135.2, 133.7 (dd, *J* = 10.0 Hz, 8.0 Hz), 129.9, 129.6 (d, *J* = 2.0 Hz), 126.2, 124.7, 124.0, 120.9, 116.4 (d, *J* = 13.0 Hz), 116.2 (d, *J* = 13.0 Hz), 115.0, 114.0 (d, *J* = 6.0 Hz), 30.5 (d, *J* = 68.0 Hz), 21.6. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  = 27.55. HRMS (ESI) for C<sub>28</sub>H<sub>22</sub>F<sub>2</sub>NO<sub>3</sub>PS [M + H]<sup>+</sup>: calcd 522.1099, found 522.1110.

 $Bis (4-chlorophenyl) ((1-tosyl-1H-indol-2-yl) methyl) phosphine\ oxide\ (3i)$ 



Yield of **3i** : 99% as a white solid. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ = 8.04 – 7.99 (m, 1H), 7.73 (d, *J* = 1.9 Hz, 1H), 7.71 (t, *J* = 2.3 Hz, 2H), 7.69 (d, *J* = 1.9 Hz, 1H), 7.52 (d, *J* = 1.9 Hz, 1H), 7.50 (d, *J* = 1.9 Hz, 1H), 7.44 (d, *J* = 2.4 Hz, 2H), 7.42 (d, *J* = 2.3 Hz, 2H), 7.41 – 7.37 (m, 1H), 7.26 – 7.22 (m, 1H), 7.18 (m, 1H), 7.15 (s, 1H),

7.13 (s, 1H), 6.99 (d, J = 2.7 Hz, 1H), 4.29 – 4.25 (m, 1H), 4.25 – 4.21 (m, 1H), 2.32 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta = 145.1$ , 138.9 (d, J = 4.0 Hz), 136.0 (d, J = 155.0 Hz), 132.3 (d, J = 11.0 Hz), 130.6, 130.1 (d, J = 5.0 Hz), 129.9, 129.5 (d, J = 2.0 Hz), 129.2, 129.1, 126.1, 124.7, 123.9, 120.8, 114.9, 113.6 (d, J = 6.0 Hz), 30.0 (d, J = 68.0 Hz), 21.5. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta = 27.55$ . **M.P.**: 170 – 172 °C. **HRMS (ESI)** for C<sub>28</sub>H<sub>22</sub>Cl<sub>2</sub>NO<sub>3</sub>PS [M + H]<sup>+</sup>: calcd 554.0508, found 554.0502.

#### Methyl phenyl((1-tosyl-1H-indol-2-yl)methyl)phosphinate (3j)

Yield of **3j** : 72% as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta =$ 8.03 (d, J = 8.2 Hz, 1H), 7.77 (dd, J = 11.9 Hz, 7.6 Hz, 2H), 7.55 (m, 3H), 7.44 (m, 3H), 7.20 (m, 2H), 7.13 (d, J = 8.0 Hz, 2H), 6.81 (d, J =3.3 Hz, 1H), 3.98 (d, J = 6.9 Hz, 1H), 3.93 (d, J = 5.5 Hz, 1H), 3.67 (dd, J = 11.1 Hz, 1.9 Hz, 3H), 2.30 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta = 144.8$ , 136.8, 135.5, 132.6 (d, J = 2.0 Hz), 132.0 (d, J = 9.0 Hz), 130.6 (d, J = 5.0 Hz), 129.8, 129.7, 129.5 (d, J =3.0 Hz), 128.6 (d, J = 12.0 Hz), 126.2, 124.3, 123.7, 120.6, 114.9, 112.7 (d, J = 7.0 Hz), 51.6 (d, J = 7.0 Hz), 29.7 (d, J = 98.0 Hz), 21.5. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta = 39.52$ . HRMS (ESI) for C<sub>23</sub>H<sub>22</sub>NO<sub>4</sub>PS [M + H]<sup>+</sup>: calcd 440.1080, found 440.1085.

## (6-((1-Tosyl-1H-indol-2-yl)methyl)dibenzo[c,e][1,2]oxaphosphinine 6-oxide (3k)



Yield of **3k** : 98% as a white solid. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.96 - 7.88 (m, 2H), 7.88 - 7.81 (m, 1H), 7.71 (dd, *J* = 8.0 Hz, 1.5, 1H), 7.66 (t, *J* = 7.8 Hz, 1H), 7.47 (s, 1H), 7.45 (d, *J* = 2.6 Hz, 2H), 7.30 (d, *J* = 7.6 Hz, 1H), 7.26 (d, *J* = 7.6 Hz, 1H), 7.21 (d, *J* = 7.5 Hz, 1H), 7.26 (d, *J* = 7.6 Hz, 1H), 7.21 (d, *J* = 7.5 Hz, 1H), 7.26 (d, *J* = 7.6 Hz, 1H), 7.21 (d, *J* = 7.5 Hz, 1H), 7.26 (d, *J* = 7.6 Hz, 1H), 7.21 (d, *J* = 7.5 Hz, 1H), 7.26 (d, *J* = 7.6 Hz, 1H), 7.21 (d, *J* = 7.5 Hz, 1H), 7.26 (d, *J* = 7.6 Hz, 1H), 7.21 (d, *J* = 7.5 Hz, 1H), 7.26 (d, *J* = 7.6 Hz, 1H), 7.21 (d, *J* = 7.5 Hz, 1H), 7.21 (d, J = 7.5 Hz, 1H

1H), 7.19 – 7.17 (m, 1H), 7.17 – 7.13 (m, 1H), 7.12 – 7.07 (m, 1H), 7.06 (s, 1H), 7.04 (s, 1H), 6.66 (d, J = 3.7 Hz, 1H), 4.13 (t, J = 17.1 Hz, 1H), 3.98 (t, J = 16.7 Hz, 1H), 2.24 (s, 3H). <sup>13</sup>C **NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta = 149.3$  (d, J = 8.0 Hz), 144.8, 136.7, 136.1 (d, J = 7.0 Hz), 135.0, 133.5, 130.6 (d, J = 10.0 Hz), 130.3, 129.6, 129.4, 129.3 (d, J = 5.0 Hz), 128.3 (d, J = 13.0 Hz), 126.1, 124.8, 124.3 (d, J = 6.0 Hz), 124.0, 123.6, 123.5 (d, J = 10.0 Hz), 122.7, 121.8 (d, J = 11 Hz), 120.5, 120.1 (d, J = 6.0 Hz), 114.8, 113.5 (d, J = 7.0 Hz), 29.8 (d, J = 92.0 Hz), 21.4. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta = 32.28$ . M.P.: 170 – 171 °C. HRMS (ESI) for C<sub>28</sub>H<sub>22</sub>NO<sub>4</sub>PS [M + H]<sup>+</sup>: calcd 500.1080, found 500.1073.

## Dimethyl ((5-methoxy-1-tosyl-1H-indol-2-yl)methyl)phosphonate) (3l)

Yield of **3l** : 84% as a yellow oil. <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta = 8.00$  (d, J = 9.8 Hz, 1H), 7.59 (d, J = 8.1 Hz, 2H), 7.16 (d, J = 8.1 Hz, 2H), 6.93 – 6.85 (m, 2H), 6.74 (d, J = 3.6 Hz, 1H), 3.79 (d, J = 3.6 Hz, 4H), 3.77 (s, 3H), 3.74 (s, 4H), 2.31 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta = 156.7$ , 144.9, 135.3, 131.6, 131.4 (d, J = 7.0 Hz), 130.6 (d, J = 3.0 Hz), 129.8, 126.3, 116.0, 113.4, 113.0 (d, J = 7.0 Hz), 103.1, 55.6, 53.1 (d, J = 7.0 Hz), 25.4 (d, J = 142.0 Hz), 21.5. <sup>31</sup>P NMR

(162 MHz, CDCl<sub>3</sub>)  $\delta$  = 26.37. **HRMS (ESI)** for C<sub>19</sub>H<sub>22</sub>NO<sub>6</sub>PS [M + Na]<sup>+</sup>: calcd 446.0798, found 446.0801.

Dimethyl ((5-methyl-1-tosyl-1H-indol-2-yl)methyl)phosphonate (3m)

Yield of **3m** : 99% colorless oil. <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta = 7.97$  (d, J = 8.5 Hz, 1H), 7.62 (d, J = 1.7 Hz, 1H), 7.60 (d, J = 1.9 Hz, 1H), 7.21 (d, J = 1.7 Hz, 1H), 7.18 (s, 1H), 7.16 (s, 1H), 7.11 – 7.07 (m, 1H), 6.75 – 6.72 (m, 1H), 3.81 – 3.79 (m, 1H), 3.77 (s, 3H), 3.74 (s, 4H), 2.38 (s, 3H), 2.31 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta = 144.8$ , 135.5, 135.1, 133.4, 130.6, 130.6, 129.7, 126.3, 125.8, 120.5, 114.7, 112.5 (d, J = 7.0 Hz), 53.0 (d, J = 6.0 Hz), 25.2 (d, J = 142.0 Hz), 21.4, 21.1. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta = 26.42$ . HRMS (ESI) for C<sub>19</sub>H<sub>22</sub>NO<sub>5</sub>PS [M + Na]<sup>+</sup>: calcd 430.0849, found 430.0854.

## Dimethyl ((5-chloro-1-tosyl-1H-indol-2-yl)methyl)phosphonate (3n)

Yield of **3n** : 97% as a yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta = 8.03$  (d, J = 8.9 Hz, 1H), 7.61 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 2.1 Hz, 1H), 7.28 – 7.23 (m, 1H), 7.22 (d, J = 4.2 Hz, 2H), 7.19 (s, 1H), 6.76 (d, J = 3.6 Hz, 1H), 3.82 (s, 1H), 3.79 (s, 3H), 3.76 (s, 4H), 2.34 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta = 145.6$ , 135.6, 135.5, 132.5 (d, J = 6.0 Hz), 131.0 (d, J = 3.0 Hz), 130.3, 129.9, 126.7, 125.0, 120.5, 116.4, 112.2 (d, J = 7.0 Hz), 53.6 (d, J = 6.0 Hz), 25.6 (d, J = 142.0 Hz), 21.9. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta = 25.99$ . HRMS (ESI) for C<sub>18</sub>H<sub>19</sub>ClNO<sub>5</sub>PS [M + Na]<sup>+</sup>: calcd 450.0302, found 450.0302.

## Dimethyl ((5-bromo-1-tosyl-1H-indol-2-yl)methyl)phosphonate (30)



1H), 3.8 (s, 3H), 3.8 (s, 4H), 2.3 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 144.8, 135.5, 135.1, 133.4, 130.6, 130.6, 129.7, 126.3, 125.8, 120.5, 114.7, 112.5 (d, *J* = 7.0 Hz), 53.0 (d, *J* = 6.0 Hz), 25.2 (d, *J* = 142.0 Hz), 21.4. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  = 25.94. HRMS (ESI) for C<sub>18</sub>H<sub>19</sub>BrNO<sub>5</sub>PS [M + Na]<sup>+</sup>: calcd493.9797, found 493.9798.

## Dimethyl ((4-fluoro-1-tosyl-1H-indol-2-yl)methyl)phosphonate (3p)

Yield of **3p** : 97% as a yellow oil. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.89 (d, *J* = 8.4 Hz, 1H), 7.68 - 7.62 (m, 2H), 7.21 (d, *J* = 7.9 Hz, 3H), 6.95 - 6.84 (m, 2H), 3.81 (s, 1H), 3.80 (d, *J* =



Hz), 53.1 (d, J = 6.0 Hz), 25.3 (d, J = 142.0 Hz), 21.5. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta = 25.93$ . **HRMS (ESI)** for C<sub>18</sub>H<sub>19</sub>FNO<sub>5</sub>PS [M + Na]<sup>+</sup>: calcd 434.0598, found 434.0604.

#### Dimethyl ((6-fluoro-1-tosyl-1H-indol-2-yl)methyl)phosphonate (3q)

MeO O<br/>P-OMeYield of 3q : 93% as a yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  =<br/>7.85 (dd, J = 10.4 Hz, 2.3 Hz, 1H), 7.65 (s, 1H), 7.63 (d, J = 1.9 Hz,<br/>1H), 7.36 (dd, J = 8.6 Hz, 5.4 Hz, 1H), 7.22 (s, 1H), 7.20 (s, 1H), 6.97

(m, 1H), 6.78 (d, J = 3.6 Hz, 1H), 3.78 (s, 4H), 3.75 (s, 3H), 3.73 (s, 3H), 2.34 (s, 3H). <sup>13</sup>C **NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta = 160.8$  (d, J = 240.0 Hz), 145.3, 137.1 (d, J = 13.0 Hz), 135.3, 131.1 – 131.0 (m), 130.0, 126.4, 126.0 – 125.2 (m), 121.3 (d, J = 10.0 Hz), 112.3, 112.2 – 112.0 (m), 102.6 (d, J = 29.0 Hz), 53.1 (d, J = 7.0 Hz), 25.3 (d, J = 142.0 Hz), 21.6. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta = 26.24$ . **HRMS (ESI)** for C<sub>18</sub>H<sub>19</sub>FNO<sub>5</sub>PS [M + Na]<sup>+</sup>: calcd 434.0598, found 434.0602.

## Dimethyl ((6-chloro-1-tosyl-1H-indol-2-yl)methyl)phosphonate (3r)

Yield of  $3\mathbf{r}$  : 93% as a yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta =$  N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0N = 0

 $(d, J = 3.0 \text{ Hz}), 126.4, 124.5, 121.3, 115.1, 112.0 (d, J = 7.0 \text{ Hz}), 53.1 (d, J = 6.0 \text{ Hz}), 25.2 (d, J = 142.0 \text{ Hz}), 21.5. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) <math>\delta = 26.04$ . HRMS (ESI) for C<sub>18</sub>H<sub>19</sub>ClNO<sub>5</sub>PS [M + Na]<sup>+</sup>: calcd 450.0302, found 450.0297.

## Dimethyl ((7-methyl-1-tosyl-1H-indol-2-yl)methyl)phosphonate (3s)

MeQ O<br/>N<br/>MeYield of 3s: 99% as a yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.84Yield of 3s: 99% as a yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.84Yield of 3s: 99% as a yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.84Yield of 3s: 99% as a yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.84Yield of 3s: 99% as a yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.84Yield of 3s: 99% as a yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 144.8, 137.3, 135.5, 134.5, 129.8, 129.7, 127.1 (d, J = 3.0 Hz), 126.2, 125.2, 125.2

120.1, 115.1, 112.5 (d, J = 7.0 Hz), 53.0 (d, J = 6.0 Hz), 25.2 (d, J = 141.0 Hz), 21.9, 21.4. <sup>31</sup>**P** NMR (162 MHz, CDCl<sub>3</sub>)  $\delta = 26.51$ . **HRMS (ESI)** for C<sub>19</sub>H<sub>22</sub>NO<sub>5</sub>PS [M + Na]<sup>+</sup>: calcd 430.0849, found 430.0849.

Dimethyl ((3-methyl-1-tosyl-1H-indol-2-yl)methyl)phosphonate (3t)

Yield of **3t** : 40% as a yellow oil. <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta = 8.09$ (d, J = 8.1 Hz, 1H), 7.62 – 7.52 (m, 2H), 7.38 (dd, J = 6.9 Hz, 1.7 Hz, 1H), 7.31 – 7.27 (m, 1H), 7.26 – 7.20 (m, 1H), 7.14 (s, 1H), 7.12 (s, 1H), 3.86 (s, 1H), 3.81 (s, 1H), 3.76 (d, J = 1.3 Hz, 3H), 3.73 (d, J = 1.3 Hz, 3H), 2.30 (s, 3H), 2.21 (dd, J = 4.8 Hz, 1.3 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta = 144.8$ , 137.3, 135.5, 134.5, 129.8, 129.7, 127.1 (d, J = 3.0 Hz), 126.2, 125.2, 120.1, 115.1, 112.5 (d, J = 7.0 Hz), 53.0 (d, J = 6.0 Hz), 25.2 (d, J = 141.0 Hz), 21.9, 21.4. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta =$ 26.51. **HRMS (ESI)** for C<sub>19</sub>H<sub>22</sub>NO<sub>5</sub>PS [M + Na]<sup>+</sup>: calcd 430.0849, found 430.0848.

## Dimethyl (2-methyl-1-tosyl-1H-indol-3-yl)phosphonate (3a')



CDCl<sub>3</sub>)  $\delta = 147.0$  (d, J = 28.0 Hz), 145.6, 136.5 (d, J = 13.0 Hz), 135.8, 130.1, 128.8 (d, J = 12.0 Hz), 126.7, 124.9, 124.2, 120.9, 114.4, 105.0 (d, J = 210.0 Hz), 52.3 (d, J = 5.0 Hz), 21.6, 14.2. <sup>31</sup>**P NMR** (162 MHz, CDCl<sub>3</sub>)  $\delta = 18.18$ . **HRMS (ESI)** for C<sub>18</sub>H<sub>20</sub>NO<sub>5</sub>PS [M + H]<sup>+</sup>: calcd 394.0873, found 394.0877.

# **5.**X-ray Crystal Structure Determination of 3e.





































































