Supplementary Information

A missing member of conjugated N-heterocycles: Realizing pyrido[1,2-α]azepine by reacting ruthenium alkenylcarbene complex with alkyne

Xiaoxi Zhou, Fanping Huang, Chun Tang, Qingde Zhuo, Zhixin Chen, Hong

Zhang,* and Haiping Xia

State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

*Correspondence and requests for materials should be addressed to H. Z. (email: zh@xmu.edu.cn)

Contents

1.	Density Functional Theory (DFT) Calculations
2.	The Synthesis of Quinolizinium Salts 5b-5e
3.	Proposed Mechanisms for the Formation of the Pyrido[1,2-α]azepine-
	Ruthenium Complexes or Quinolizinium Salts
4.	Energy Profiles of the Key Intermediates with a Cyclobutyl Substituent
	in the Elimination or 1,2-H Shift Reaction Pathway
5.	The Reaction Outcomes of Complex 1 with Other Alkynes
6.	Crystallographic Details
7.	Experimental Procedures
8.	NMR Spectra
9.	Cartesian Coordinates
10	

1. Density Functional Theory (DFT) Calculations

All structures were optimized at the B3LYP level of DFT.¹⁻³ Additionally, Frequency calculations were also performed to identify all the stationary points as minima (zero imaginary frequency) or transition states (one imaginary frequency), and to provide Gibbs free energies at 298.15 K. In the B3LYP calculations, the effective core potentials (ECPs) of Hay and Wadt with a double- ζ valence basis set (LanL2DZ)⁴ were used to describe the Ru, Cl, and P atoms, whereas the standard 6-31G(d) basis set was used for the C, N, and H atoms. Polarization functions were added for Ru (ζ (f) = 1.235), Cl (ζ (d) = 0.514) and P (ζ (d) = 0.340)⁵ in all calculations. All the optimizations were performed with the Gaussian 09 software package.⁶ Nucleus-independent chemical shifts (NICS)⁷⁻¹⁰ values in N-fused pyridines were calculated at the B3LYP/6-31G(d) level. The anisotropy of the induced current density (ACID) calculations were carried out with the ACID program.¹¹ The energies (in kcal/mol) are given including the zero-point energy corrections.

The aromaticity of the archetypal N-fused pyridines, indolizine (I), quinolizinium salt (II), and pyrido $[1,2-\alpha]$ azepine (III) were investigated by the density functional theory (DFT) calculations. It is generally believed that negative values of nucleus-independent chemical shift (NICS) calculations⁷⁻¹⁰ indicate aromaticity while positive values suggest antiaromaticity. As shown in Table S1, the negative NICS values of indolizine (I) and quinolizinium salt (II) indicate their aromaticity. The aromaticity of I and II were further confirmed by the anisotropy of the current-induced density (ACID) calculations.¹¹ The ACID method is a versatile, intuitive, and generally applicable approach to investigating and visualizing electron delocalization. The clockwise current density vectors of I and II plotted on the AICD isosurfaces show diatropic ring current along the periphery of the bicycles (Figure S1a and b), further confirming the aromaticity of I and II.

The DFT geometry optimizations of pyrido[1,2- α]azepine led to a nonplanar, twisted structure III (Table S1, entry 3). Only when we conducted the C_s-constrained optimization, the planar counterpart pyrido[1,2- α]azepine III-constr can be obtained with one imaginary frequency in its Hessian matrix (Table S1, entry 4). The antiaromaticity of III-constr is evidenced by the large positive NICS values (Table S1, entry 4) and the counterclockwise current density vectors plotted on the ACID isosurface along the periphery of fused-ring framework (Figure S1d). Note especially that the NICS values of the nonplanar, distorted system III (Table S1, entry 3) are positive, however, much lower than those of planar structure III-constr. Furthermore, the distorted structure III is 3.1 kcal/mol lower in energy compared to the planar counterpart III-constr. The nonplanarity of the distorted form III might be an attempt to escape from antiaromaticity and lability of planar pyrido[1,2- α]azepine unit in complex 2, which results in the significant π -delocalization of pyridine ring as reflected in the crystallographic data and the calculated NICS values (Table S1, entry 5). We inferred it may be important for the stabilization of the bicyclic pyrido[1,2- α]azepine unit in 2.

Table S1. The computed NICS(0), NICS(1), and NICS(1)_{zz} values (ppm) of indolizine (**I**), quinolizinium salt (**II**), pyrido[1,2- α]azepine (**III**), the planar isomer of pyrido[1,2- α]azepine (**III-constr**), and the cation moiety of **2**. When the environments at points 1 angstrom above and below the ring centers are not equivalent, the averaged values are used for NICS(1) and NICS(1)_{zz}.

entry		1	2	2	3	2	4	5
compound structures			a + b N II			a N Ill-constr ^[a]		$[Ru] = RuCl_2PPh_3$
Optimized structures	the second		Jagaget	the start		3338	له من محمد مناسب	See, Figure S2
	Ring a	Ring b	Ring a/b	Ring a	Ring b	Ring a	Ring b	Ring a
NICS(0)	-6.9	-18.1	-8.6	8.8	16.3	19.9	50.9	-6.6
NICS(1)	-7.7	-14.9	-10.3	5.2	11.7	15.1	40.0	-8.5
NICS(1) _{zz}	-18.2	-39.3	-25.5	22.0	40.9	50.8	124.4	-18.7
[a] III-constr is a C _s -constrained optimization of III . III-constr has one imaginary frequency in its Hessian matrix.								

Figure S1. a) ACID isosurfaces of the indolizines (**I**); b) ACID isosurfaces of the quinolizinium salts (**II**); c) ACID isosurfaces of the pyrido[1,2- α]azepines (**III**); d) ACID isosurfaces of the planar pyrido[1,2- α]azepine (**III-constr**). Current density vectors are plotted onto the ACID isosurface of 0.025. The diatropic (clockwise) ring current indicating the aromaticity. The paratropic (counterclockwise) ring current indicating the antiaromaticity. The magnetic field vector is orthogonal with respect to the ring plane and points upward.

Figure S2. Comparison of the calculated and experimental (in parentheses) bond lengths (Å) for complex **2**. These calculated data for the real system and those for the model are consistent with the experimental values, indicating the reliability of the calculations performed using the model system.

2. The Synthesis of Quinolizinium Salts 5b-5e

Scheme S1. Synthesis of 4-alkenyl-substituted quinolizinium salts **5b-5e**. [a] E/Z ratio was determined by ¹H nuclear magnetic resonance (NMR).

3. Proposed Mechanisms for the Formation of the Pyrido[1,2-α]azepine-

Ruthenium Complexes or Quinolizinium Salts

Scheme S2. Plausible mechanisms for the formation of the pyrido $[1,2-\alpha]$ azepine-ruthenium complex 2 or the hypothetical quinolizinium salt 2'.

Scheme S3. Plausible mechanisms for the formation of the hypothetical pyrido[1,2- α]azepine-ruthenium complex **5a'** or the quinolizinium salt **5a**.

4. Energy Profiles of the Key Intermediates with a Cyclobutyl Substituent in the Elimination or 1,2-H Shift Reaction Pathway

Figure S4. Energy profiles of the key intermediates with a cyclobutyl substituent in the elimination or 1,2-H shift reaction pathway (labelled in red and blue, respectively). The relative Gibbs free energies and electronic energies (in parentheses) are given in kcal/mol.

5. The Reaction Outcomes of Complex 1 with Other Alkynes

Table S2. The reaction outcomes of complex 1 with other alkynes.

6. Crystallographic Details

Figure S5. Single-crystal X-ray structure for cationic complex **2** with thermal ellipsoids drawn at the 50% probability level. The phenyl groups in the triphenylphosphine (PPh₃) moieties were omitted for clarity. Selected bond lengths [Å] and angles [deg]: Ru1–C1 2.188(3), Ru1–C2 2.129(3), Ru1–C3 2.225(3), Ru1–C4 2.136(3), Ru1–C5 2.105(3), N1–C1 1.510(4), C1–C2 1.422(4), C2–C3 1.407(4), C3–C4 1.415(4), C4–C5 1.457(4), C5–C6 1.467(4), N1–C6 1.353(4), C6–C7 1.378(4), C7–C8 1.384(5), C8–C9 1.386(5), C9–C10 1.369(5), N1–C10 1.357(4); C1–C2–C3 126.5(3), C2–C3–C4 121.1(3), C3–C4–C5 122.7(3), C4–C5–C6 119.3(3), C5–C6–N1 116.3(3), C6–N1–C1 118.9(2), N1–C6–C7 119.8(3), C6–C7–C8 119.8(3), C7–C8–C9 119.5(3), C8–C9–C10 119.0(3), C9–C10–N1 120.9(3), C10–N1–C6 120.7(3).

Figure S6. Single-crystal X-ray structure for cationic complex **3** with thermal ellipsoids drawn at the 50% probability level. The phenyl groups in the triphenylphosphine (PPh₃) moieties were omitted for clarity. Selected bond lengths [Å] and angles [deg]: Ru1–C1 2.130(4), Ru1–C2 2.127(4), Ru1–C3 2.169(4), Ru1–C4 2.106(4), Ru1–C5 2.087(4), C1–C2 1.419(6), C2–C3 1.425(6), C3–C4 1.426(6), C4–C5 1.479(6), C5–C6 1.468(6), N1–C6 1.342(6), N1–C1 1.497(5), C6–C7 1.392(6), C7–C8 1.373(7), C8–C9 1.388(8), C9–C10 1.374(7), C10–N1 1.361(6); C1–C2–C3 122.7(4), C2–C3–C4 122.7(4), C3–C4–C5 120.8(4), C4–C5–C6 118.7(3), C5–C6–N1 115.7(4), C6–N1–C1 117.5(3), N1–C1–C2 118.3(3), N1–C6–C7 119.1(4), C6–C7–C8 119.6(4), C7–C8–C9 120.5(4), C8–C9–C10 118.6(5), C9–C10–N1 120.2(5), C10–N1–C6 122.0(4).

Figure S7. Single-crystal X-ray structure for cationic complex **4** with thermal ellipsoids drawn at the 50% probability level. Selected bond lengths [Å] and angles [deg]: N1–C1 1.464(6), C1–C2 1.330(6), C2–C3 1.444(7), C3–C4 1.328(6), C4–C5 1.543(5), C5–C6 1.489(5), C6–N1 1.367(5), C6–C7 1.377(6), C7–C8 1.381(6), C8–C9 1.375(7), C9–C10 1.374(7), C10–N1 1.351(5); N1–C1–C2 120.0(4), C1–C2–C3 127.5(4), C2–C3–C4 122.5(4), C3–C4–C5 119.7(4), C4–C5–C6 107.3(3), C5–C6–N1 118.0(4), C6–N1–C1 122.0(3), N1–C6–C7 118.5(4), C6–C7–C8 121.0(4), C7–C8–C9 119.1(4), C8–C9–C10 119.4(4), C9–C10–N1 120.8(4), C10–N1–C6 121.1(4).

Figure S8. Single-crystal X-ray structure for cationic complex **5c** with thermal ellipsoids drawn at the 50% probability level. Selected bond lengths [Å] and angles [deg]: C1–C2 1.364(5), C2–C3 1.394(5), C3–C4 1.354(5), C4–C5 1.402(6), C5–C6 1.410(5), C6–C7 1.354(6), C7–C8 1.422(6), C8–C9 1.337(5), C9–N1 1.394(5), N1–C1 1.400(4), N1–C5 1.388(5), C1–C10 1.474(5), C10–C11 1.322(5); N1–C1–C2 118.4(3), C1–C2–C3 121.6(3), C2–C3–C4 119.8(4), C3–C4–C5 120.5(4), C4–C5–N1 118.9(3), C5–N1–C1 120.7(3), N1–C5–C6 118.7(4), C5–C6–C7 121.5(4), C6–C7–C8 118.5(4), C7–C8–C9 120.5(4), C8–C9–N1 121.5(4), C9–N1–C5 119.3(3), C1–C10–C11 125.1(3), C10–C11–C12 126.2(3), C10–C11–C16 121.2(3).

Crystallographic analysis

A crystal of **2** suitable for X-ray diffraction was grown from a dichloroethane solution layered with hexane. A crystal suitable for X-ray diffraction of 3 was grown from a dichloroethane/methanol solution layered with hexane. Single crystals of 4 and 5c suitable for X-ray diffraction were grown from a dichloromethane solution layered with hexane. Singlecrystal X-ray diffraction data were collected on an Agilent SuperNova diffractometer or a Rigaku R-AXIS SPIDER IP CCD area detector with graphite-monochromated Mo-Ka radiation ($\lambda = 0.71073$ Å) or Cu-K α radiation ($\lambda = 1.54178$ Å). All the data were corrected for absorption effects using a multi-scan technique. All the structures were solved by the Patterson function, completed by subsequent difference Fourier map calculations, and refined by a fullmatrix least-squares method on F^2 using the SHELXTL program package. All non-hydrogen atoms were refined anisotropically unless otherwise stated. The hydrogen atoms were placed at their idealized positions and assumed the riding model unless otherwise stated. The water (H₂O) solvent molecules in **3** and **4** were refined without the addition of H atoms. X-ray crystal structure information is available at the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers CCDC 1548362 (2), CCDC 1548363 (3), CCDC 1548364 (4), and CCDC 1548359 (5c). For further details on the crystal data, data collection, and refinements, see Table S2.

	$2 \cdot C_2 H_4 C l_2$	$\begin{array}{c} \textbf{3} \cdot C_2 H_4 C l_2 \cdot \\ \textbf{0} \cdot 5 C H_3 O H \cdot 1 \cdot 5 H \\ 2 O \end{array}$	$\begin{array}{c} {\rm 4.0.25H_{2}O} \\ {\rm \cdot0.5CH_{2}Cl_{2}} \end{array}$	5c
Formular	$\begin{array}{c} C_{51}H_{46}BCl_4F_4\\ NP_2Ru \end{array}$	$\begin{array}{c} C_{64.50}H_{60}B_3Cl_5F_1\\ {}_2N_2O_2P_2Ru_2 \end{array}$	$\begin{array}{c} C_{31.5}H_{28}B_2ClF_8N\\ O_{0.25}P \end{array}$	C ₁₆ H ₁₈ BF ₄ N
Mr	1064.51	1596.90	664.59	311.12
Crystal system	Monoclinic	Triclinic	Triclinic	Monoclinic
Space group	$P2_1/n$	P-1	P-1	$P2_1/n$
a [Å]	10.2733(2)	13.9016(3)	9.2290(7)	12.9618(6)
<i>b</i> [Å]	16.5521(3)	15.3374(4)	12.4861(7)	9.9513(4)
<i>c</i> [Å]	27.6804(6)	17.6017(5)	15.3456(7)	13.2243(7)
α [°]	90.00	84.684(2)	107.395(2)	90.00
β[°]	98.924(2)	67.829(2)	100.184(2)	118.4200(10)
γ [°]	90.00	74.648(2)	106.684(2)	90.00
V[Å ³]	4649.93(16)	3351.33(16)	1548.27(16)	1500.19(12)
Ζ	4	2	2	4
$\rho_{\rm calcd} [\rm g cm^{-3}]$	1.521	1.582	1.426	1.378
μ [mm ⁻¹]	0.690	0.776	0.248	0.114
F (000)	2168	1606	680.0	648
2θ range [°]	6.65 to 49.986	6.61 to 50.00	6.294 to 54.966	6.08 to 54.954
Reflns collected	26520	26045	15215	14337
Independent reflns	8173	11764	7031	3431
Obserbed reflns $[I \ge 2\sigma(I)]$	6798	9943	3543	1664
Data/restrains/pa rams	8173/0/577	11764/7/849	7031/12/511	3431/0/209
GOF on F^2	1.045	1.093	1.146	1.072
$ \begin{array}{ c c c }\hline R_1/wR_2 & [I \geq \\ 2\sigma(I)] \end{array} $	0.0391/0.0888	0.0469/0.1280	0.0838/0.2123	0.0982/0.2778
R_1/wR_2 (all data)	0.0514/0.0940	0.0576/0.1363	0.1568/0.3042	0.1653/0.3401
Largest peak/hole [e Å ⁻³]	0.95/-0.71	1.91/-1.25	0.48/-0.81	0.79/-0.72
CCDC No.	1548362	1548363	1548364	1548359

Table S3 Crystal data and structure refinement for 2, 3, 4, and 5c.

7. Experimental Procedures

General comments

All syntheses were performed under an inert atmosphere (N₂) using standard Schlenk techniques, unless otherwise stated. Reagents and solvents were used as received from commercial sources without further purification. The starting material [Ru{CHC(PPh₃)CH(2-Py) Cl_2PPh_3]BF₄ (1) was synthesized according to a previously published procedure.¹² Cyclobutylethyne was prepared according to the literature.¹⁴ Nuclear magnetic resonance (NMR) spectroscopic experiments were performed on a Bruker AV-500 spectrometer (¹H, 500.2 MHz; ¹³C, 125.8 MHz; ³¹P, 202.5 MHz) at room temperature. The ¹H and ¹³C NMR chemical shifts (δ) are relative to tetramethylsilane, and the ³¹P NMR chemical shifts are relative to 85% H₃PO₄. The absolute values of the coupling constants are given in hertz (Hz). Multiplicities are abbreviated as singlet (s), doublet (d), triplet (t), multiplet (m), quartet (q), quintet (quint) and broad (br). High-resolution mass spectra (HRMS) experiments were recorded on a Bruker En Apex Ultra 7.0T Fourier Transform Mass Spectrometer. The theoretical molecular ion peak was calculated by Compass Isotope Pattern software supplied by Bruker Co. Elemental analysis data were obtained on an Elementar Analysensysteme GmbH Vario EL III instrument. Infrared (IR) spectra were obtained using a Thermo Nicolet Avatar 330 FT-IR Spectrometer using thin-film samples.

Preparation and characterization of complex 2

2: A mixture of **1** (200 mg, 0.22 mmol) and cyclopropylethyne (44 mg, 0.66 mmol) in DCM (10 mL) was stirred at room temperature (RT) for 30 min to give an orange solution. The solution was evaporated under vacuum to approximately 5 mL. The addition of diethyl ether (15 mL) to the residual gave an orange precipitate, and the precipitate was collected by filtration. The precipitate was dissolved in 2 mL of DCM, and 20 mL of diethyl ether was added to obtain **2** as an orange solid. Yield: 139 mg, 65%.

Diagnostic peaks for **2** are as follows: ¹H NMR with ¹H-¹³C HSQC (500.2 MHz, CD₂Cl₂): $\delta =$ 9.01 (d, ³*J*_{HH} = 6.0 Hz, 1H, C¹⁰*H*), 7.79–7.12 (32H, other aromatic protons), 6.67 (dd, apparent t, ³*J*_{HH} = 7.0 Hz, ³*J*_{PH} = 7.0 Hz, 1H, C³*H*), 6.46 (d, ³*J*_{HH} = 7.6 Hz, 1H, C⁷*H*), 4.80 (d, ³*J*_{HH} = 7.0 Hz, 1H, C²*H*), 2.60 (d, ³*J*_{PH} = 10.2 Hz, 1H, C⁵*H*), 1.29 (m, 1H, C¹²*H*), 1.21 (m, 1H, C¹³*H*, overlapped with grease, confirmed by ¹H-¹³C HSQC), 0.71 (m, 1H, C¹³*H*), and 0.64 ppm (m, 2H, C¹¹*H* and C¹²*H*). ³¹P NMR (202.5 MHz, CD₂Cl₂): $\delta = 15.67$ (d, ³*J*_{PP} = 5.9 Hz, CPPh₃), and 28.98 ppm (s, ³*J*_{PP} = 5.9 Hz, RuPPh₃). ¹³C NMR with ¹H-¹³C HMBC and ¹H-¹³C HSQC (125.8 MHz, CD₂Cl₂): $\delta = 159.28$ (d, ³*J*_{PC} = 5.7 Hz, C6), 142.71 (s, C8), 141.11 (s, C10), 127.12-135.25 (other aromatic carbons), 125.77 (s, C7), 124.83 (s, C9), 98.65 (dd, apparent t, ²*J*_{PC} = 15.0 Hz, C3), 91.20 (dd, ²*J*_{PC} = 5.7 Hz, ¹*J*_{PC} = 68.3 Hz, C4), 89.52 (d, ²*J*_{PC} = 8.7 Hz, C1), 78.47 (d, ²*J*_{PC} = 9.9 Hz, C2), 46.74 (br, C5), 17.15 (s, C11), 14.77 (s, C13), and 8.03 ppm (s, C12). Elemental analysis calcd (%) for C₄₉H₄₂BCl₂F₄NP₂Ru: C 60.95, H 4.38, N 1.45; found: C 60.78, H 4.66, N 1.61.

Preparation and characterization of complex 3

3: A mixture of **2** (100 mg, 0.10 mmol) and a tetrafluoroboric acid-diethyl ether complex (50 wt% solution in diethyl ether, 27 μ L, 0.10 mmol) was stirred at RT for 5 h in DCM/benzene (4 mL:1 mL) to give a brown suspension. An orange solid was separated by filtration and washed with DCM (3 × 1 mL) to obtain complex **3** as an orange solid. Yield: 56 mg, 77%.

Due to its poor solubility in common organic solvents, complex **3** was only characterized by ¹H NMR and ³¹P NMR. Diagnostic peaks for **3** are as follows: ¹H NMR with ¹H-¹³C HSQC (500.2 MHz, CD₂Cl₂/CD₃OH): $\delta = 9.03$ (br, 2H, C¹⁰H), 7.92–7.25 (36H, other aromatic protons), 6.10 (br, 2H, C³H), 4.51 (br, 2H, C²H), 4.31 (br, 2H, C⁵H), 1.71-0.53 ppm (10H, C¹¹H, C¹²H, C¹³H). ³¹P NMR (202.5 MHz, CD₂Cl₂/CD₃OH): $\delta = 28.94$ ppm (s, CPPh₃). Elemental analysis calcd (%) for C₆₂H₅₄B₃Cl₃F₁₂N₂P₂Ru₂: C 51.08, H 3.73, N 1.92; found: C 51.31, H 4.05, N 1.91.

Preparation and characterization of complex 4

4: A mixture of **2** (100 mg, 0.10 mmol) and tetrafluoroboric acid (48 wt% solution in H₂O, 13 μ L, 0.10 mmol) was sparged with carbon monoxide (CO) and stirred at RT for 2 h in DCM (10 mL) to give an orange solution. The solution was evaporated under vacuum to approximately 2 mL. The addition of diethyl ether (15 mL) to the residual gave an orange precipitate, and the precipitate was collected by filtration. The precipitate was purified by column chromatography (Bio-BeadsTM S-X3 Support, 200-400 mesh, eluent: chloroform), and the second component was collected and evaporated under reduced pressure to obtain **4** as an orange solid. Yield: 40 mg, 64%.

Diagnostic peaks for **4** are as follows: ¹H NMR with ¹H-¹³C HSQC (500.2 MHz, CD₂Cl₂): $\delta =$ 9.18 (d, ³*J*_{HH} = 6.4 Hz, 1H, C¹⁰*H*), 8.08 (t, ³*J*_{HH} = 7.8 Hz, 1H, C⁸*H*), 7.87 (t, ³*J*_{HH} = 6.4 Hz, 1H, C⁹*H*), 7.86–7.68 (15H, Ph*H*), 6.88 (dd, ³*J*_{HH} = 5.5 Hz, ³*J*_{PH} = 17.3 Hz, 1H, C³*H*), 6.72 (d, ³*J*_{HH} = 5.5 Hz, 1H, C²*H*,), 6.44 (d, ³*J*_{HH} = 7.8 Hz, 1H, C⁷*H*), 4.06 (dd, apparent t, ²*J*_{HH} = 11.0 Hz, ³*J*_{PH} = 11.0 Hz, 1H, C⁵*H*), 3.92 (dd, apparent t, ²*J*_{HH} = 11.0 Hz, ³*J*_{PH} = 11.0 Hz, 1H, C⁵*H*), 2.04 (m, 1H, C¹¹*H*), 1.38 (m, 1H, C¹³*H*), 1.23 (m, 1H, C¹³*H*), 1.11 (m, 1H, C¹²*H*), and 1.03 ppm (m, 1H, C¹²*H*). ³¹P NMR (202.5 MHz, CD₂Cl₂): δ = 22.65 ppm (s, C*P*Ph₃). ¹³C NMR plus ¹H-¹³C HMBC and ¹H-¹³C HSQC (125.8 MHz, CD₂Cl₂): δ = 151.29 (s, C6), 150.46 (s, C1), 146.48 (s, C8), 145.84 (d, ²*J*_{PC} = 10.5 Hz, C3), 141.48 (s, C10), 135.30 (d, *J*_{PC} = 3.0 Hz, Ph), 133.94 (d, *J*_{PC} = 10.8 Hz, Ph), 130.16 (d, *J*_{PC} = 12.9 Hz, Ph), 125.54 (s, C9), 125.39 (s, C7), 121.39 (d, ³*J*_{PC} = 17.2 Hz, C2), 119.26 (d, ¹*J*_{PC} = 83.3 Hz, C4), 114.72 (d, *J*_{PC} = 89.8 Hz, Ph), 33.20 (d, ²*J*_{PC} = 11.0 Hz, C5), 17.18 (s, C11), 12.86 (s, C13), and 6.38 ppm (s, C12). HRMS (ESI): *m/z* calcd for [[C₃₁H₂₈NP]²⁺ + BF₄-]⁺, 532.1988; found, 532.1988. IR (film): 3067, 2922, 2852, 1629, 1603, 1492, 1439, 1261, 1053, 956, 796, 725, 692, 521 cm⁻¹.

Preparation and characterization of complex 5a

5a: A mixture of **1** (200 mg, 0.22 mmol) and cyclobutylethyne (12.5 mL, 0.053 mmol/mL in DCM) was stirred at 60 °C for 1 h to give an orange solution. The solution was evaporated under vacuum to approximately 2 mL. The addition of diethyl ether (20 mL) to the residual gave an orange precipitate, and the precipitate was collected by filtration. Then, the precipitate was dissolved in 2 mL of DCM and extracted with water (3×3 mL). The aqueous phases were combined and evaporated under reduced pressure to obtain **5a** as a yellow oil. Yield: 27 mg, 43%.

Diagnostic peaks for **5a** are as follows: ¹H NMR with ¹H-¹³C HSQC (500.2 MHz, CD₂Cl₂): $\delta = 9.11$ (d, ³*J*_{HH} = 7.1 Hz, 1H, C⁹*H*), 8.33 (d, ³*J*_{HH} = 8.5 Hz, 1H, C⁶*H*), 8.17-8.23 (m, 3H, C³*H*, C⁴*H*, C⁷*H*), 8.00 (t, ³*J*_{HH} = 7.1 Hz, 1H, C⁸*H*), 7.73 (d, ³*J*_{HH} = 6.9 Hz, 1H, C²*H*), 6.57 (s, 1H, C¹⁰*H*), 3.06 (t, ³*J*_{HH} = 8.0 Hz, 2H, C¹⁴*H*), 2.92 (t, ³*J*_{HH} = 8.0 Hz, 2H, C¹²*H*), and 2.14 (quint, ³*J*_{HH} = 8.0 Hz, 2H, C¹³*H*). ¹³C NMR with ¹H-¹³C HMBC and ¹H-¹³C HSQC (125.8 MHz, CD₂Cl₂): $\delta = 161.69$ (s, C11), 142.68 (s, C1), 142.47 (s, C5), 135.78 and 135.59 (s, C3 and C7), 131.40 (s, C9), 127.56 (s, C6), 124.91 (s, C4), 123.61 (s, C2), 123.41 (s, C8), 109.99 (s, C10), 32.49 (s, C14), 31.55 (s, C12), and 16.79 ppm (s, C13). HRMS (ESI): *m/z* calcd for [C₁₄H₁₄N]⁺, 196.1121; found, 196.1124; IR (film): 3116, 2960, 2917, 2849, 1653, 1635, 1457, 1405, 1346, 1286, 1261, 1053, 877, 808, 720, 705, 521 cm⁻¹.

Preparation and characterization of complex 5b

5b: A mixture of **1** (200 mg, 0.22 mmol) and cyclopentylethyne (62 mg, 0.66 mmol) in wet 1,2-dichloroethane (10 mL) was stirred at 60 °C for 1 h to give an orange solution. The solution was evaporated under vacuum to approximately 2 mL. The addition of diethyl ether (20 mL) to the residual gave an orange precipitate, and the precipitate was collected by filtration. Then, the precipitate was dissolved in 2 mL of DCM and extracted with water (3 \times 3 mL). The

aqueous phases were combined and evaporated under reduced pressure to obtain **5b** as a yellow oil. Yield: 15 mg, 23%.

Diagnostic peaks for **5b** are as follows: ¹H NMR with ¹H-¹³C HSQC (500.2 MHz, CD₂Cl₂): $\delta = 9.22$ (d, ³*J*_{HH} = 7.1 Hz, 1H, C⁹*H*), 8.47 (d, ³*J*_{HH} = 8.6 Hz, 1H, C⁶*H*), 8.31-8.37 (m, 3H, C³*H*, C⁴*H*, C⁷*H*), 8.10 (t, ³*J*_{HH} = 7.1 Hz, 1H, C⁸*H*), 7.94 (d, ³*J*_{HH} = 7.7 Hz, 1H, C²*H*), 6.71 (s, 1H, C¹⁰*H*), 2.81 (t, ³*J*_{HH} = 7.2 Hz, 2H, C¹⁵*H*), 2.49 (t, ³*J*_{HH} = 7.0 Hz, 2H, C¹²*H*), and 1.92-1.81 ppm (m, 4H, C¹³*H*, C¹⁴*H*). ¹³C NMR with ¹H-¹³C HMBC and ¹H-¹³C HSQC (125.8 MHz, CD₂Cl₂): $\delta = 163.40$ (s, C11), 144.38 (s, C1), 143.33 (s, C5), 136.51 and 136.45 (s, C3 and C7), 132.39 (s, C9), 128.32 (s, C6), 125.85 (s, C4), 125.08 (s, C2), 124.37 (s, C8), 110.33 (s, C10), 35.23 (s, C12), 31.80 (s, C13), 26.36 (s, C14), and 25.52 ppm (s, C15). HRMS (ESI): *m/z* calcd for [C₁₅H₁₆N] ⁺, 210.1277; found, 210.1279; IR (film): 3116, 3070, 2959, 2921, 2851, 1646, 1623, 1456, 1404, 1054, 811, 791, 696, 521 cm⁻¹.

Preparation and characterization of complex 5c

5c: A mixture of **1** (200 mg, 0.22 mmol) and cyclohexylethyne (71 mg, 0.66 mmol) in wet 1,2dichloroethane (10 mL) was stirred at 60 °C for 1 h to give an orange solution. The solution was evaporated under vacuum to approximately 2 mL. The addition of diethyl ether (20 mL) to the residual gave an orange precipitate, and the precipitate was collected by filtration. Then, the precipitate was dissolved in 2 mL of DCM and extracted with water (3×3 mL). The aqueous phases were combined and evaporated under reduced pressure to obtain **5c** as a white solid. Yield: 46 mg, 67%.

Diagnostic peaks for **5c** are as follows: ¹H NMR with ¹H-¹³C HSQC (500.2 MHz, CD₂Cl₂): $\delta = 9.22$ (d, ³*J*_{HH} = 7.2 Hz, 1H, C⁹*H*), 8.50 (d, ³*J*_{HH} = 8.7 Hz, 1H, C⁶*H*), 8.31-8.41 (m, 3H, C³*H*, C⁴*H*, C⁷*H*), 8.10 (t, ³*J*_{HH} = 7.2 Hz, 1H, C⁸*H*), 7.83 (d, ³*J*_{HH} = 7.1 Hz, 1H, C²*H*), 6.47 (s, 1H, C¹⁰*H*), 2.59 (t, ³*J*_{HH} = 6.0 Hz, 2H, C¹⁶*H*), 2.30 (t, ³*J*_{HH} = 6.2 Hz, 2H, C¹²*H*), 1.86 (m, 2H, C¹⁵*H*), 1.72 (m, 2H, C¹⁴*H*), and 1.67 ppm (m, 2H, C¹³*H*). ¹³C NMR with ¹H-¹³C HMBC and ¹H-¹³C HSQC (125.8 MHz, CD₂Cl₂): $\delta = 158.19$ (s, C11), 143.55 (s, C1), 143.49 (s, C5), 136.60 and

136.43 (s, C3 and C7), 132.44 (s, C9), 128.37 (s, C6), 126.25 (s, C4), 126.05 (s, C2), 124.46 (s, C8), 111.64 (s, C10), 37.28 (s, C16), 30.86 (s, C12), 28.30 (s, C15), 27.92 (s, C13), and 25.91 ppm (s, C14). HRMS (ESI): m/z calcd for $[C_{16}H_{18}N]^+$, 224.1434; found, 224.1434. IR (KBr): 3052, 2963, 2937, 2853, 1641, 1622, 1450, 1403, 1345, 1262, 1084, 1031, 802 and 521 cm⁻¹.

Preparation and characterization of complex 5d

5d: A mixture of **1** (200 mg, 0.22 mmol) and 3-methylbut-1-yne (45 mg, 0.66 mmol) in wet 1,2-dichloroethane (10 mL) was stirred at 60 °C for 1 h to give an orange solution. The solution was evaporated under vacuum to approximately 2 mL. The addition of diethyl ether (20 mL) to the residual gave an orange precipitate, and the precipitate was collected by filtration. Then, the precipitate was dissolved in 2 mL of dichloromethane (DCM) and extracted with water (3 \times 3 mL). The aqueous phases were combined and evaporated under reduced pressure to obtain **5d** as a yellow oil. Yield: 35 mg, 59%.

Diagnostic peaks for **5d** are as follows: ¹H NMR with ¹H-¹³C HSQC (500.2 MHz, CDCl₃): $\delta = 9.14$ (d, ³*J*_{HH} = 6.7 Hz, 1H, C⁹*H*), 8.42 (d, ³*J*_{HH} = 8.6 Hz, 1H, C⁶*H*), 8.32 (d, ³*J*_{HH} = 8.6 Hz, 1H, C⁴*H*), 8.23-8.17 (m, 2H, C³*H*, C⁷*H*), 8.00 (t, ³*J*_{HH} = 6.7 Hz, 1H, C⁸*H*), 7.71 (d, ³*J*_{HH} = 7.2 Hz, 1H, C²*H*), 6.48 (s, 1H, C¹⁰*H*), 2.11 (s, 3H, C¹³*H*), and 1.79 ppm (s, 3H, C¹²*H*). ¹³C NMR with ¹H-¹³C HMBC and ¹H-¹³C HSQC (125.8 MHz, CDCl₃): $\delta = 150.26$ (s, C11), 143.55 (s, C1), 143.44 (s, C5), 136.83 and 136.52 (s, C3 and C7), 132.98 (s, C9), 128.72 (s, C6), 126.68 (s, C4), 126.13 (s, C2), 124.81 (s, C8), 115.42 (s, C10), 26.41 (s, C13), and 20.58 ppm (s, C12). HRMS (ESI): *m/z* calcd for [C₁₃H₁₄N]⁺, 184.1121; found, 184.1120; IR (film): 3118, 2981, 2919, 2852, 1644, 1623, 1467, 1404, 1346, 1294, 1055, 885, 811, 787, 757, 521 cm⁻¹.

Preparation and characterization of complexes 5e/e'

5e/e': A mixture of **1** (200 mg, 0.22 mmol) and hex-1-yne (54 mg, 0.66 mmol) in wet 1,2dichloroethane (10 mL) was stirred at 60 °C for 1 h to give an orange solution. The solution was evaporated under vacuum to approximately 2 mL. The addition of diethyl ether (20 mL) to the residual gave an orange precipitate, and the precipitate was collected by filtration. Then, the precipitate was dissolved in 2 mL of DCM and extracted with water (3×3 mL). The aqueous phases were combined and evaporated under reduced pressure to obtain **5e/e'** as a yellow oil. Yield: 39 mg, 62%.

Diagnostic peaks for 5e are as follows: ¹H NMR with ¹H-¹³C HSQC (500.2 MHz, CDCl₃): $\delta =$ 9.23 (d, ${}^{3}J_{HH} = 5.3$ Hz, 1H, C⁹H), 8.51 (d, ${}^{3}J_{HH} = 7.5$ Hz, 1H, C⁴H), 8.43 (d, ${}^{3}J_{HH} = 7.7$ Hz, 1H, $C^{6}H$), 8.26-8.32 (m, 2H, $C^{7}H$, $C^{3}H$), 8.10 (br, 1H, $C^{8}H$), 7.97 (d, ${}^{3}J_{HH} = 6.6$ Hz, 1H, $C^{2}H$), 7.07 (d, ${}^{3}J_{\text{HH}} = 14.9 \text{ Hz}$, 1H, C¹⁰*H*), 6.72 (m, 1H, C¹¹*H*), 2.46 (q, ${}^{3}J_{\text{HH}} = 7.1 \text{ Hz}$, 2H, C¹²*H*), 1.62 (m, 2H, C¹³*H*), and 1.00 ppm (t, ${}^{3}J_{HH} = 7.3$ Hz, 3H, C¹⁴*H*). ${}^{13}C$ NMR with ${}^{1}H{}^{-13}C$ HMBC and ${}^{1}H{}^{-1}$ ¹³C HSQC (125.8 MHz, CDCl₃): δ = 147.61 (s, C11), 143.08 (s, C5), 142.43 (s, C1), 136.89 and 136.71 (s, C3 and C7), 132.52 (s, C9), 128.68 (s, C4), 126.87 (s, C6), 124.87 (s, C8), 123.80 (s, C2), 120.34 (s, C10), 35.44 (s, C12), 21.68 (s, C13), and 13.75 ppm (s, C14). Diagnostic peaks for 5e' are as follows: ¹H NMR with ¹H-¹³C HSQC (500.2 MHz, CDCl₃): δ = 9.19 (d, ${}^{3}J_{HH}$ = 5.3 Hz, 1H, C⁹'H), 8.59 (d, ${}^{3}J_{HH}$ = 7.7 Hz, 1H, C⁶'H), 8.51 (d, ${}^{3}J_{HH}$ = 7.5 Hz, 1H, C⁴'H), 8.26-8.32 (m, 2H, C⁷'H, C³'H), 8.10 (br, 1H, C⁸'H), 7.81 (d, ${}^{3}J_{HH} = 6.6$ Hz, 1H, C²'H), 6.82 (d, ${}^{3}J_{HH} = 11.2$ Hz, 1H, C¹⁰'H), 6.53 (m, 1H, C¹¹'H), 2.17 (q, ${}^{3}J_{HH} = 6.8$ Hz, 2H, C¹²'H), 1.49 (m, 2H, $C^{13'}H$), and 0.88 ppm (t, ${}^{3}J_{HH} = 7.3$ Hz, 3H, $C^{14'}H$). ${}^{13}C$ NMR with ${}^{1}H{}^{-13}C$ HMBC and ¹H-¹³C HSQC (125.8 MHz, CDCl₃): $\delta = 145.13$ (s, C1'), 144.83 (s, C11'), 143.52 (s, C5'), 137.07 and 136.41 (s, C3' and C7'), 132.82 (s, C9'), 128.89 (s, C6'), 127.31 (s, C4'), 125.63 (s, C2'), 124.98 (s, C8'), 119.32 (s, C10'), 31.28 (s, C12'), 22.13 (s, C13'), and 13.69 ppm (s, C14'). HRMS (ESI): *m/z* calcd for [C₁₄H₁₆N]⁺, 198.1277; found, 198.1277; IR (film): 3053, 2960, 2918, 2849, 1643, 1622, 1457, 1399, 1345, 1266, 1053, 813, 733 and 699 cm⁻¹.

8. NMR Spectra

Figure S9 The ¹H NMR (500.2 MHz, CD₂Cl₂) spectrum of complex 2.

Figure S10 The ${}^{31}P{}^{1}H$ NMR (202.5 MHz, CD₂Cl₂) spectrum of complex 2.

Figure S11 The ${}^{13}C{}^{1}H$ NMR (125.8 MHz, CD_2Cl_2) spectrum of complex 2.

Figure S12 The ¹H NMR (500.2 MHz, CD₂Cl₂/CD₃OH) spectrum of complex 3.

Figure S13 The ${}^{31}P{}^{1}H$ NMR (202.5 MHz, CD₂Cl₂/CD₃OH) spectrum of complex 3.

Figure S14 The ¹H NMR (500.2 MHz, CD₂Cl₂) spectrum of complex 4.

Figure S15 The ${}^{31}P{}^{1}H$ NMR (202.5 MHz, CD_2Cl_2) spectrum of complex 4.

Figure S16 The ${}^{13}C{}^{1}H$ NMR (125.8 MHz, CD₂Cl₂) spectrum of complex 4.

Figure S17 The ¹H NMR (500.2 MHz, CD₂Cl₂) spectrum of complex 5a.

Figure S18 The ${}^{13}C{}^{1}H$ NMR (125.8 MHz, CD_2Cl_2) spectrum of complex 5a.

Figure S19 The ¹H NMR (500.2 MHz, CD₂Cl₂) spectrum of complex 5b.

Figure S20 The $^{13}C\{^{1}H\}$ NMR (125.8 MHz, $CD_{2}Cl_{2})$ spectrum of complex 5b.

Figure S21 The ¹H NMR (500.2 MHz, CD₂Cl₂) spectrum of complex 5c.

Figure S22 The ${}^{13}C{}^{1}H$ NMR (125.8 MHz, CD_2Cl_2) spectrum of complex 5c.

Figure S23 The ¹H NMR (500.2 MHz, CDCl₃) spectrum of complex 5d.

Figure S24 The ¹³C{¹H} NMR (125.8 MHz, CDCl₃) spectrum of complex 5d.

Figure S25 The ¹H NMR (500.2 MHz, CDCl₃) spectrum of complex 5e/e'.

Figure S26 The ¹³C{¹H} NMR (125.8 MHz, CDCl₃) spectrum of complex 5e/e'.

9. Cartesian coordinates together with the symmetry and electronic

energies for all the complexes calculated in this study.

i I

Symmetry = C_1		E = -363.7914065 a.u.		
Ν	0.27871900	-0.66451000	-0.00009200	
С	2.41198100	-0.00495600	0.00013300	
С	1.57858200	-1.11239400	-0.00010800	
С	1.61487000	1.15913300	0.00047200	
Н	1.95617100	2.18507200	0.00055300	
С	-0.97209000	1.41526000	-0.00034400	
Н	-0.97826200	2.50105000	-0.00028400	
С	0.28102200	0.75271000	-0.00053500	
С	-0.89744600	-1.38219000	0.00014900	
Н	-0.79329000	-2.46135100	0.00019600	
С	-2.14042300	0.69596900	-0.00000100	
Н	-3.09975700	1.20365100	0.00042100	
С	-2.09593000	-0.73170100	0.00029500	
Н	-3.01085300	-1.31421500	0.00036000	
Н	3.49356300	-0.04347700	0.00060500	
Н	1.79799400	-2.17015400	-0.00157300	

Symmetry = C_1 E = -402.2		.924033 a.u.	
Ν	0.00001900	-0.66515100	0.00011300
С	1.19602700	-1.36422500	-0.00033400
С	2.39443200	-0.71254000	-0.00028400
Н	3.30860300	-1.29539300	-0.00084400
С	0.00003800	0.72844100	0.00001000
С	-1.19624400	-1.36436000	0.00035900
Н	-1.10268900	-2.44309700	0.00041700
С	-2.39438700	-0.71254800	0.00021000
Н	-3.30871800	-1.29517800	0.00076900
С	-1.24556300	1.40158200	-0.00026300
Н	-1.22926500	2.48602100	-0.00038200
С	2.42822600	0.70336800	0.00025600
Н	3.37859000	1.22637800	0.00102700
С	1.24553500	1.40146300	0.00021800

Н	1.22945200	2.48590300	0.00036900
С	-2.42811700	0.70350200	-0.00031400
Н	-3.37859400	1.22630400	-0.00066800
Н	1.10280300	-2.44297800	-0.00061800

Symmetry = C_1		E = -441.145942 a.u.		
N	0.23633200	-0.63539700	-0.05198700	
С	-2.17317200	1.18912900	-0.35975100	
С	-0.84964400	1.56193300	0.07661700	
Н	-0.67496700	2.62251900	0.23665600	
С	0.27025500	0.77218100	0.15539700	
С	1.59395900	1.32428700	0.36566000	
Н	1.65707400	2.35173900	0.71101000	
С	-0.84590300	-1.42439300	0.50106800	
С	2.71427900	0.61010100	0.07448900	
Н	3.69476300	1.06145400	0.20118500	
С	-2.74808500	-0.04005100	-0.35263800	
Н	-3.76317900	-0.15048600	-0.72513500	
С	1.38090200	-1.32411700	-0.37783200	
Н	1.22263500	-2.37627000	-0.59414600	
С	2.61234300	-0.74600800	-0.38660200	
Н	3.48596700	-1.31881500	-0.67223600	
С	-2.14857700	-1.19450400	0.30565400	
Н	-2.82951600	-1.90414400	0.77657500	
Н	-2.77532300	2.01565300	-0.73814600	
Н	-0.50991000	-2.22521100	1.15578400	

Symmetry = C_s		E = -441.142129 a.u.		
N	0.00000000	0.74177300	0.00000000	
С	-0.14765200	-1.76241000	0.00000000	
Н	0.50056800	-2.63353700	0.00000000	
С	0.54486000	-0.57769900	0.00000000	
С	1.99673800	-0.61715700	0.00000000	
Н	2.44302300	-1.60609700	0.00000000	

S35

С	2.78033100	0.49146700	0.00000000
Н	3.86226300	0.39171900	0.00000000
С	0.82110500	1.84794200	0.00000000
Н	0.29586000	2.79585300	0.00000000
С	2.17850900	1.79099200	0.00000000
Н	2.76408600	2.70149000	0.00000000
С	-1.41580800	1.03898200	0.00000000
С	-2.48966500	0.24249600	0.00000000
Н	-3.42929900	0.79133200	0.00000000
С	-2.61113900	-1.21883000	0.00000000
Н	-3.62121500	-1.61695400	0.00000000
С	-1.56532100	-2.06798600	0.00000000
Н	-1.78969300	-3.13367700	0.00000000
Н	-1.57734400	2.11067700	0.00000000

[Ri PPh₃ в

[Ru]' = RuCl₂

Sym	metry = C_1	E = -1382.3942135 a.u.		
Ru	2.41670764	-0.59298638	0.63988472	
Cl	3.06219886	0.22320112	2.74371132	
Cl	2.51564334	-2.81793238	1.33569085	
Р	-2.12846457	-0.00424963	-0.09213435	
N	2.39822905	1.57798804	0.17497890	
С	0.52783364	-0.82340519	-0.18965271	
Н	-0.00315642	-1.67894185	0.23166694	
С	1.34303291	2.28803467	-0.29536883	
С	-0.33040612	0.38378538	-0.27144888	
С	0.01476601	1.68618301	-0.37943006	
Н	-0.77905329	2.41831468	-0.49672255	
С	3.57901584	2.20154029	0.32105825	
Н	4.37863560	1.60559663	0.74340800	
С	1.47702419	3.64438787	-0.63243519	
Н	0.60958886	4.18698249	-0.99454767	
С	3.78094618	3.54087818	-0.00905325	
Н	4.76047480	3.98387529	0.13405459	
С	2.70786031	4.27886289	-0.50048620	
Н	2.82148177	5.32579520	-0.76390394	
С	2.74775794	-0.69397676	-1.22695903	
С	1.48583281	-1.29365324	-1.19683772	

С	3.84588509	-0.62109872	-2.14465141
С	3.85984767	-1.54778236	-3.38072556
С	3.60593868	-0.10355169	-3.57931404
Н	4.81396136	-0.39392532	-1.70864120
Н	3.03474588	-2.24422270	-3.48575404
Н	4.83413010	-1.95609366	-3.62995887
Н	4.39455703	0.52275092	-3.98511357
Н	2.59616000	0.21640439	-3.81718991
С	-2.50213073	-1.35927723	-1.26028180
С	-3.22963400	-2.48986260	-0.86201629
С	-2.03605110	-1.25143867	-2.58313225
С	-3.49988011	-3.49884024	-1.78781059
Н	-3.57212001	-2.59482772	0.16160464
С	-2.31594285	-2.26251718	-3.50063368
Н	-1.44886101	-0.39094174	-2.89240481
С	-3.04898177	-3.38482524	-3.10385235
Н	-4.05843319	-4.37586678	-1.47578713
Н	-1.95671550	-2.17780801	-4.52181219
Н	-3.26113319	-4.17334983	-3.81964729
С	-2.45331481	-0.50325100	1.63357374
С	-3.79048485	-0.69814562	2.03060298
С	-1.41057404	-0.67368319	2.55842764
С	-4.07242010	-1.08473703	3.33884753
Н	-4.60606144	-0.53696783	1.33102216
С	-1.70837821	-1.05871768	3.86701973
Н	-0.37424044	-0.50710241	2.28500657
С	-3.03205224	-1.26892458	4.25522389
Н	-5.10349439	-1.23559570	3.64380846
Н	-0.89778998	-1.19132088	4.57662511
Н	-3.25661915	-1.56930962	5.27431964
С	-3.17507283	1.45074741	-0.45232641
С	-3.83714260	1.58543982	-1.68249329
С	-3.30153200	2.45128273	0.52906162
С	-4.61466630	2.71749915	-1.92860972
Н	-3.76298190	0.81055793	-2.43789284
С	-4.07667258	3.58044075	0.26986528
Н	-2.81139109	2.34295262	1.49203769
С	-4.73260908	3.71390551	-0.95727924
Н	-5.13368366	2.81542965	-2.87718946
Н	-4.17640829	4.34932755	1.02995668
Н	-5.34251397	4.59101955	-1.15220613
Н	1.43506392	-2.35486920	-1.46563355

PPh ₃	
\triangleleft	
С	

I	[Ru]' = RuCl ₂			
Sym	$metry = C_1$	E = -1382.4112795 a.u.		
Ru	-1.42698408	1.01764437	0.32055822	
Cl	-0.98043000	1.72340580	2.50985914	
Cl	-2.02053822	3.25163723	-0.29894500	
Р	1.80799866	-0.18391664	-0.21284504	
Ν	-2.90961925	-1.59850807	-0.02859290	
С	-0.70982549	0.02682926	-1.49534230	
Н	-0.10679650	0.45620102	-2.29143548	
С	-1.81378286	-1.98011820	0.67674498	
С	-0.04119413	-0.40456457	-0.28050944	
С	-0.76180822	-0.97913992	0.84005854	
Н	-0.19167322	-1.10470263	1.75408632	
С	-3.93097107	-2.45539445	-0.27784746	
Н	-4.75024045	-2.05763499	-0.85955146	
С	-1.77756818	-3.26730904	1.22480384	
Н	-0.91279122	-3.55454272	1.81260330	
С	-3.91676014	-3.74126890	0.22737358	
Н	-4.75320386	-4.40053291	0.02639196	
С	-2.83058382	-4.14820737	1.01134961	
Н	-2.80716609	-5.14426032	1.44246963	
С	-2.97351013	-0.15506763	-0.48193993	
С	-2.10743695	0.18967384	-1.59278588	
С	-4.38068092	0.35231424	-0.40080139	
С	-4.84340282	1.60297559	-1.09797826	
С	-5.35187634	0.28399625	-1.59179755	
Н	-4.82285703	0.17210229	0.57726384	
Н	-4.12351822	2.15373846	-1.69260305	
Н	-5.51420453	2.24259733	-0.53320999	
Н	-6.38220090	0.00271172	-1.38859455	
Н	-4.96572403	-0.08423748	-2.53995570	
С	2.44190135	-1.06558020	-1.68530741	
С	3.42564760	-0.48416947	-2.49887424	
С	1.93304802	-2.33923930	-1.99875965	
С	3.89867320	-1.17695749	-3.61477197	
Н	3.81792516	0.50092190	-2.26984472	
С	2.41453179	-3.02347286	-3.11296063	
Н	1.16439408	-2.79423080	-1.38010126	
С	3.39669469	-2.44262898	-3.92121251	

Н	4.65790788	-0.72316277	-4.24427540
Н	2.02139573	-4.00670665	-3.35317931
Н	3.76679072	-2.97674074	-4.79122777
С	2.37619306	1.55097942	-0.23468380
С	3.68750803	1.79554778	0.21850392
С	1.58349363	2.61042328	-0.70075099
С	4.19453886	3.09284199	0.19653011
Н	4.30417567	0.98622763	0.59711074
С	2.09910636	3.90719938	-0.70070800
Н	0.55787546	2.46567703	-1.01937986
С	3.40009739	4.14906601	-0.25948033
Н	5.20421275	3.27922688	0.54957440
Н	1.46636370	4.72419150	-1.03225151
Н	3.79372586	5.16115770	-0.25898615
С	2.44926559	-0.95620903	1.31200509
С	3.21990820	-2.12762189	1.26177092
С	2.17660277	-0.33344920	2.54514778
С	3.71295726	-2.67817612	2.44609428
Н	3.44683817	-2.60200059	0.31279288
С	2.67037863	-0.89970703	3.71949957
Н	1.57357663	0.57011186	2.59401177
С	3.43838795	-2.06719371	3.67121875
Н	4.31693380	-3.57972311	2.40757808
Н	2.45678389	-0.42279714	4.67114514
Н	3.82678548	-2.49757835	4.58965188
Н	-2.47139470	0.81197795	-2.40489511

 $[Ru]' = RuCl_2$

Sym	metry = C_1	E = -1382	.3878622 a.u.
Ru	2.64538074	-0.60233103	0.25997941
Cl	3.07604626	0.05788583	2.49691235
Cl	3.72882106	-2.63340924	0.78338980
Р	-2.10995196	-0.06455759	0.01018716
Ν	2.43558465	1.54358892	0.02450272
С	0.57558360	-0.77144445	0.33460359
Н	0.26252966	-1.16985407	1.30278555
С	1.32499356	2.26990832	-0.23844028
С	-0.30831865	0.35008881	-0.09031976

С	0.01360179	1.63483003	-0.33791719
Н	-0.78190980	2.32872166	-0.59514952
С	3.61022207	2.18642683	0.15214516
Н	4.47069366	1.56965692	0.38657194
С	1.39180651	3.66463322	-0.39004796
Н	0.48169820	4.21678087	-0.60162551
С	3.74427015	3.56538445	0.01235082
Н	4.72199619	4.02022071	0.12662529
С	2.60958276	4.32382273	-0.26566004
Н	2.67052518	5.40138304	-0.38065304
С	1.99694560	-1.69339234	-1.57479187
С	1.08645813	-1.84864360	-0.49491239
С	2.52009575	-0.45077669	-1.96543894
С	3.47935532	-0.11612516	-3.04329193
С	2.16699757	0.65183942	-2.90557163
С	-2.34606340	-1.69026189	-0.78761917
С	-2.99459246	-2.74461351	-0.12893715
С	-1.84216577	-1.87725324	-2.08810064
С	-3.15218522	-3.97156995	-0.77600023
Н	-3.36427743	-2.62158679	0.88291505
С	-2.00947963	-3.10456889	-2.72665570
Н	-1.30875726	-1.07721182	-2.59398574
С	-2.66625148	-4.15079435	-2.07194925
Н	-3.65067166	-4.78737297	-0.26174148
Н	-1.62018856	-3.24682514	-3.73016024
Н	-2.79033590	-5.10754692	-2.57020393
С	-2.59530626	-0.10578386	1.77273349
С	-3.94735278	-0.34112707	2.08715200
С	-1.66629779	0.13483143	2.79779999
С	-4.35413520	-0.36381972	3.41944982
Н	-4.68057987	-0.49373882	1.30010058
С	-2.08780810	0.11142150	4.12880831
Н	-0.62508294	0.34998186	2.58133001
С	-3.42420119	-0.14270623	4.44004064
Н	-5.39682724	-0.54793490	3.65954192
Н	-1.36552602	0.29392465	4.91830232
Н	-3.74493241	-0.16120949	5.47728880
С	-3.15014006	1.20470809	-0.80145499
С	-3.67766967	1.00982940	-2.08741282
С	-3.41583165	2.40001954	-0.10765281
С	-4.45493319	2.00833335	-2.67520471
Н	-3.50480813	0.08303367	-2.62318011
С	-4.18914055	3.39297540	-0.70709632
Н	-3.03885761	2.54791845	0.90001346

С	-4.70770780	3.19860643	-1.99020477
Н	-4.86900446	1.85020982	-3.66630628
Н	-4.39636833	4.31167008	-0.16675392
Н	-5.31675415	3.97049544	-2.45107787
Н	1.02698747	-2.85318778	-0.08509903
Н	2.55717393	-2.59265505	-1.82144740
Н	2.23778783	1.69042049	-2.59957502
Н	1.36911001	0.45574852	-3.61924978
Н	4.38163496	0.43112532	-2.77876186
Н	3.61344266	-0.82113102	-3.86148081

Symmetry = C_1		E = -2083.8777023 a.u.			
Ru	0.41713400	0.12530800	-0.94311600		
Cl	-0.33468800	-2.22450700	-0.61486000		
Cl	1.39588200	-0.50796000	-3.10974100		
Р	-3.12324100	-0.24966400	-0.05993900		
Ν	0.52826300	2.96171300	0.21625200		
С	-1.38961300	1.31628800	-1.57879600		
Н	-2.11904400	1.10872900	-2.35410200		
С	-0.14015700	2.24031400	1.16281100		
С	-1.52897800	0.69530100	-0.29993200		
С	-0.60722900	0.89874200	0.80429300		
Н	-0.76969100	0.26261500	1.66887300		
С	0.92916900	4.23404600	0.46627800		
Н	1.42725500	4.73552300	-0.35049700		
С	-0.33018500	2.80181900	2.43047900		
Н	-0.83046100	2.20242100	3.18322800		
С	0.73734600	4.82501900	1.70179000		
Н	1.08816200	5.83756000	1.86459900		
С	0.11686000	4.08745900	2.71325000		
Н	-0.02231600	4.51210400	3.70266500		
С	0.89496900	2.29702400	-1.08881000		
С	-0.18233600	1.94820800	-1.96373600		
С	2.13507200	2.90755700	-1.67282800		
С	2.55117800	2.72547600	-3.10666500		
С	2.07743500	4.07885100	-2.66479200		
Н	2.95940400	2.94304800	-0.96836900		
Н	1.92980000	2.12564200	-3.76122100		

Н	3.61382100	2.58136800	-3.27341700	Н		4.64898900	-2.25743800	1.39067100
Н	2.80259700	4.88249900	-2.55819400	С		4.52853800	-4.72408500	-0.93692500
Н	1.09607800	4.40480300	-3.00367200	Н		3.14969100	-4.79918300	-2.59250400
С	-4.36216700	1.11552900	-0.15926300	Н		5.76082400	-4.36594300	0.80073500
С	-5.54733200	0.96426300	-0.89340900	Н		5.01923300	-5.65890800	-1.19408300
С	-4.11224200	2.32964200	0.50665800	C		3.89349500	0.49910500	0.05378000
С	-6.47265700	2.00873200	-0.94986400	C		4.00339700	1.62919600	0.88138300
Н	-5.75041900	0.04361100	-1.42831900	C		4.84546300	0.30927400	-0.95917400
С	-5.04289400	3.36539600	0.44872600	C		5.06174500	2.52708400	0.72521800
Н	-3.19324800	2.47304100	1.06690900	Н		3.26931800	1.80407300	1.66268000
С	-6.22540600	3.20631600	-0.27898600	С		5.89302000	1.21809200	-1.12519400
Н	-7.38528400	1.88254400	-1.52444000	Н		4.77162400	-0.54987000	-1.61715700
Н	-4.84261300	4.29839100	0.96730900	С		6.01044400	2.32323900	-0.28008700
Н	-6.94724200	4.01623200	-0.32639000	Н		5.14704000	3.38191400	1.39124500
С	-3.56828200	-1.49245300	-1.32482600	Н		6.62431300	1.05265900	-1.91133900
С	-4.68833100	-2.29645600	-1.04516600	Н		6.83684800	3.01807800	-0.40022600
С	-2.88650800	-1.63293300	-2.54286100	C		2.26466400	-0.91326400	2.05917100
С	-5.13072600	-3.22199300	-1.98980300	C		1.09683700	-1.53904800	2.52691400
Н	-5.20836400	-2.21290600	-0.09539300	C		3.26071200	-0.57535400	2.99059500
С	-3.34243200	-2.56075800	-3.47907000	C		0.91953700	-1.78891400	3.88850700
Н	-1.98148600	-1.07668400	-2.75047200	Н		0.34318800	-1.85963200	1.81530400
С	-4.46118600	-3.35069300	-3.20850500	C		3.07906800	-0.82699200	4.35317200
Н	-5.99177000	-3.84498200	-1.76737300	Н		4.18875400	-0.12010200	2.66483400
Н	-2.80261800	-2.67694200	-4.41364400	C		1.90585500	-1.42782600	4.80852000
Н	-4.80383400	-4.07557900	-3.94102600	Н		0.00871400	-2.27566000	4.22683300
С	-3.26100400	-1.00914500	1.60499200	Н		3.86397900	-0.55795900	5.05482100
С	-3.94972900	-0.34417100	2.63366000	Н		1.76777500	-1.62533900	5.86801500
С	-2.72829800	-2.29061600	1.83087600					
С	-4.08883900	-0.95117100	3.88212600		Ĺ	\sim		
Н	-4.39606500	0.62915900	2.46383600			N		
С	-2.88291300	-2.88965300	3.08111100		CI		Pha	
Н	-2.18778000	-2.80197100	1.04206100	7	, di			
С	-3.55790500	-2.22282700	4.10691100		\vee	CI		
Н	-4.62656100	-0.43490400	4.67180800			B-C1-TS		
Н	-2.47823000	-3.88358900	3.24777200	Sy	ymme	$try = C_1$	E = -1382.3	3631702 a.u.
Н	-3.67878600	-2.69759600	5.07641600	R	u	-2.19432400	-1.15945800	-0.81927300
Н	-0.01879200	2.02696400	-3.03431000	C	1	-1.81917900	0.17544100	-2.70393000
Р	2.47263800	-0.69216000	0.20864400	C	1	-2.62797700	-3.35159000	-0.19229400
С	3.25761200	-2.31333700	-0.27405300	Р		2.05081000	-0.01527000	0.20546800
С	2.84173700	-3.04262800	-1.39477100	Ν		-2.51695200	1.95102300	0.28744500
С	4.31498000	-2.80213500	0.51358500	C		-0.61378100	-0.73962200	0.51844500
С	3.48063400	-4.24276400	-1.72010400	Н		-0.04496600	-1.64149000	0.74685200
Н	2.03410400	-2.67432100	-2.01217400	C		-1.29547300	2.48919600	0.04327700
С	4.94593200	-3.99937400	0.18259800	C		0.24745700	0.42660400	0.24939000

С	-0.04096400	1.74260600	0.09011400
Н	0.80491800	2.40056500	-0.07824800
С	-3.59867400	2.73089600	0.18456000
Н	-4.54838100	2.25532500	0.38933300
С	-1.17981500	3.85408300	-0.28889100
Н	-0.19394400	4.26893400	-0.47142400
С	-3.55087400	4.08161500	-0.15296900
Н	-4.47018400	4.65320100	-0.21970100
С	-2.30737600	4.65799400	-0.39380100
Н	-2.21583400	5.70666800	-0.65865900
С	-2.97581200	-0.07954700	0.55921400
С	-1.89456200	-0.73976600	1.20049800
С	-4.38350200	-0.02158900	0.95952900
С	-4.89088200	-0.99496700	2.02705500
С	-4.81729300	0.46055400	2.34243300
Н	-5.07718300	0.14637400	0.13965300
Н	-4.18079400	-1.67276100	2.48746800
Н	-5.85884100	-1.44206900	1.82441800
Н	-5.73931600	1.03195200	2.40642600
Н	-4.02910400	0.79845800	3.00992500
С	2.37772900	-0.90015000	1.77529200
С	3.00759000	-2.15267800	1.80232100
С	1.94848300	-0.30381100	2.97564600
С	3.22313000	-2.79240100	3.02444400
Н	3.31683400	-2.63689800	0.88291700
С	2.17352200	-0.94867300	4.19023900
Н	1.42968700	0.65098600	2.96225000
С	2.81307600	-2.19165300	4.21532600
Н	3.70680600	-3.76418600	3.04101900
Н	1.84272300	-0.48535500	5.11482800
Н	2.98242800	-2.69435600	5.16281500
С	2.45954200	-1.05035700	-1.23848400
С	3.79532500	-1.46699800	-1.40322300
С	1.49494800	-1.37231200	-2.20294900
С	4.14563200	-2.23398900	-2.51125000
Н	4.55792400	-1.18543100	-0.68243600
С	1.86235900	-2.13634700	-3.31326900
Н	0.47510100	-1.01395500	-2.11951200
С	3.17813100	-2.57382100	-3.46318400
Н	5.17410900	-2.55870100	-2.63644600
Н	1.11286100	-2.37941400	-4.06004800
Н	3.45684500	-3.16984800	-4.32712900
С	3.10523300	1.47686600	0.09297100
С	3.78565600	1.98726900	1.20874600

С	3.23150400	2.10860600	-1.15832000
С	4.58036200	3.12641500	1.07260000
Н	3.71380900	1.49579900	2.17270200
С	4.02200800	3.24989800	-1.28074800
Н	2.72605900	1.70684200	-2.03174800
С	4.69621300	3.75870500	-0.16677700
Н	5.11348900	3.51388300	1.93542300
Н	4.11992600	3.73382500	-2.24777300
Н	5.31851200	4.64292600	-0.26802500
Н	-2.07842500	-1.49444200	1.96540600

Sym	metry = C_1	E = -1382.3790929 a.u	
Ru	-2.11694000	-1.14920700	-0.83570100
Cl	-1.92332600	0.52708800	-2.51424000
Cl	-2.38195400	-3.41019000	-0.30824300
Р	2.07937200	0.01598800	0.19013500
Ν	-2.68108600	1.57191200	0.39993000
С	-0.56451400	-0.83218900	0.57593600
Н	-0.03702200	-1.75946700	0.79176500
С	-1.46111200	2.23131200	0.39923000
С	0.26564500	0.34166400	0.39288700
С	-0.14024400	1.63965300	0.41997500
Н	0.62869100	2.39916000	0.34444400
С	-3.80373200	2.29319300	0.09956500
Н	-4.71630800	1.72829000	0.03461700
С	-1.46567300	3.63681600	0.26280300
Н	-0.50776400	4.14168500	0.31097000
С	-3.81288300	3.65626700	-0.09157000
Н	-4.75234600	4.14518400	-0.32184700
С	-2.61597400	4.36377000	0.03065200
Н	-2.58057800	5.44229300	-0.08040600
С	-2.90269400	0.10747500	0.62490400
С	-1.88418600	-0.77252400	1.15340300
С	-4.33725000	-0.22372700	0.98525400
С	-4.71854600	-1.12773200	2.13446700
С	-5.03036700	0.33779100	2.22329600
Н	-4.98380100	-0.34366500	0.11656500
Н	-3.94916700	-1.51668800	2.79230600
Н	-5.52803500	-1.82672500	1.94969900

Н	-6.06060400	0.67110200	2.13029300	Ru	-2.48016300	-0.56719600	-0.62836400
Н	-4.42953200	0.93100700	2.90842200	Cl	-2.45182000	0.07831300	-2.91428600
С	2.53036800	-1.14506000	1.52925800	Cl	-3.20397000	-2.76169100	-1.17355200
С	3.21451200	-2.33989500	1.26437100	Р	2.12489100	-0.03585900	0.10224200
С	2.14894500	-0.82945000	2.84680500	Ν	-2.36095500	1.53515400	-0.22329200
С	3.53249800	-3.20148900	2.31595600	С	-0.52590300	-0.86426300	0.01683000
Н	3.48620500	-2.60869700	0.24979400	Н	-0.01487000	-1.61104500	-0.59308900
С	2.47539600	-1.69456600	3.88889200	С	-1.34735900	2.21821000	0.36769400
Н	1.58808400	0.07721300	3.05763200	С	0.32286700	0.31806300	0.29704300
С	3.16994300	-2.87881400	3.62422900	С	-0.03621200	1.60062500	0.53222000
Н	4.05761700	-4.12839200	2.10727900	Н	0.74335800	2.31245100	0.78922200
Н	2.18020000	-1.44923000	4.90452800	С	-3.49132900	2.20146500	-0.52452700
Н	3.41807400	-3.55378000	4.43780400	Н	-4.25421500	1.62905300	-1.04064700
С	2.45276900	-0.67953300	-1.45210200	С	-1.49517700	3.57109000	0.71940100
С	3.80084000	-0.94504100	-1.76481000	Н	-0.66783200	4.08403400	1.19984200
С	1.44768800	-0.89604800	-2.40449500	С	-3.69296500	3.54383100	-0.21691100
С	4.12710100	-1.45994900	-3.01646500	Н	-4.62754300	4.02011800	-0.49240600
Н	4.58921700	-0.74279300	-1.04510000	С	-2.67881400	4.24198500	0.43735900
С	1.79201000	-1.40546800	-3.65899400	Н	-2.80071600	5.28691700	0.70484100
Н	0.41206800	-0.64745700	-2.19893400	С	-2.60614300	-0.80160600	1.38893700
С	3.12222600	-1.69530400	-3.96156500	С	-1.44845300	-1.51950000	0.92549400
Н	5.16484900	-1.66972400	-3.25720300	С	-3.24462800	-0.57430500	2.57980500
Н	1.01138900	-1.56559500	-4.39617000	С	-3.26606500	-0.64479400	4.04902100
Н	3.38234200	-2.09410400	-4.93761100	С	-4.43032300	-0.02815800	3.25516000
С	3.04014100	1.56760400	0.33934200	Н	-3.56835100	-1.54495200	1.53969700
С	3.74099400	1.89484600	1.50980600	Н	-2.58329100	0.00822500	4.59153100
С	3.07162700	2.43714600	-0.76687900	Н	-3.43781800	-1.60804800	4.52476800
С	4.46001600	3.08929000	1.57412700	Н	-5.36621500	-0.58316200	3.22787000
Н	3.74450800	1.22085100	2.35935400	Н	-4.55235900	1.05367900	3.24850000
С	3.78770000	3.63056600	-0.68862800	C	2.47803700	-1.59506500	0.98852800
Н	2.55445000	2.17835000	-1.68633400	C	3.21071200	-2.62764300	0.38622700
С	4.48130400	3.95686100	0.48040200	C	1.98729400	-1.75085200	2.29725700
Н	5.00947200	3.33569900	2.47755100	C	3.46209300	-3.80242700	1.09686600
Н	3.81422300	4.29780500	-1.54482300	Н	3.57099900	-2.52817800	-0.63186300
Н	5.04624600	4.88277700	0.53408300	C	2.24793100	-2.92600700	2.99971800
Н	-2.17763800	-1.55524800	1.84254800	Н	1.39515800	-0.96602000	2.76011800
				C	2.98626800	-3.95077800	2.40057100
	\land			Н	4.02445500	-4.60289100	0.62619800
				Н	1.86903000	-3.04532600	4.01028500

Symmetry = C_1

E = -1382.312837 a.u.

S41

Н

С

С

С

С

3.18258100

2.47754600

3.81985400

1.44508000

4.11811600

-4.86768100

-0.19032200

-0.30759400

-0.17705400

-0.43349000

2.94819900

-1.68289800

-2.09342700

-2.63514200

-3.44824000

Н	4.62633700	-0.28762800	-1.36563200
С	1.76058600	-0.30301700	-3.98965900
Н	0.40174600	-0.06360600	-2.35798900
С	3.08881200	-0.43555100	-4.39560800
Н	5.15303000	-0.52394300	-3.76407600
Н	0.95570700	-0.29447500	-4.71790000
Н	3.32634000	-0.53355000	-5.45076000
С	3.16575900	1.31551100	0.76245600
С	3.77621500	1.21371800	2.02221500
С	3.34231600	2.47597000	-0.01350200
С	4.55151500	2.26942500	2.50245300
Н	3.66531700	0.31456600	2.61865200
С	4.11529200	3.52661900	0.47880700
Н	2.89490300	2.55149500	-1.00007100
С	4.71913900	3.42411800	1.73509300
Н	5.03106600	2.18436000	3.47283400
Н	4.25472700	4.41897600	-0.12383400
Н	5.32794400	4.24094000	2.11125000
Н	-1.49293100	-2.60766000	0.89970300

[Ru]' = RuCl₂

Symmetry = C_1		E = -1421.7048116a.u.		
Ru	2.17960500	-0.85566300	0.54895000	
Cl	2.76518600	-0.66817600	2.80953700	
Cl	2.18177600	-3.18208400	0.60373500	
Р	-2.31984500	0.05827700	-0.18192800	
Ν	2.21171300	1.37129400	0.72067000	
С	0.32985100	-0.76837100	-0.38087000	
Н	-0.23688300	-1.69313500	-0.25459900	
С	1.19196900	2.21548900	0.42667800	
С	-0.51003300	0.43263100	-0.15370700	
С	-0.14089200	1.70260300	0.12109400	
Н	-0.91541000	2.46179000	0.17912000	
С	3.38986900	1.89639500	1.09709000	
Н	4.15785800	1.18432800	1.37099100	
С	1.36203500	3.60773700	0.49545400	
Н	0.52180000	4.25415300	0.26307400	
С	3.62702400	3.26808300	1.17257600	

Н	4.60284000	3.62457300	1.48389500
С	2.59214900	4.14493800	0.85941600
Н	2.73346000	5.22003900	0.90965900
С	2.60462900	-0.46700900	-1.26036200
С	1.31494400	-0.94561400	-1.46092500
Н	1.21949400	-1.85000900	-2.07487100
С	-2.64058400	-0.90607000	-1.70035000
С	-3.39179600	-2.08973200	-1.67133300
С	-2.10375500	-0.44060900	-2.91462000
С	-3.61474600	-2.79470900	-2.85523200
Н	-3.78896800	-2.46996900	-0.73653600
С	-2.33706700	-1.14988800	-4.09137100
Н	-1.49711700	0.46068600	-2.94066800
С	-3.09323100	-2.32543300	-4.06200400
Н	-4.19168800	-3.71395600	-2.83026200
Н	-1.92249600	-0.78993300	-5.02811900
Н	-3.26817800	-2.87906000	-4.97962500
С	-2.74969100	-0.89225300	1.31634900
С	-4.11057800	-1.14073300	1.57978200
С	-1.76356400	-1.35705600	2.20109900
С	-4.47265300	-1.87009800	2.71008400
Н	-4.88245000	-0.75764000	0.91811100
С	-2.14115800	-2.08413500	3.33156500
Н	-0.71054100	-1.15940000	2.03321000
С	-3.48870300	-2.34486200	3.58319800
Н	-5.52212700	-2.06177800	2.91190500
Н	-1.37423400	-2.44253400	4.01097300
Н	-3.77566500	-2.91206500	4.46361100
С	-3.32628300	1.58425200	-0.17309400
С	-3.93875800	2.05977600	-1.34286500
С	-3.47635700	2.28715500	1.03691300
С	-4.69033000	3.23468900	-1.30081500
Н	-3.84619100	1.51409400	-2.27570200
С	-4.22515800	3.46241200	1.06554100
Н	-3.02547700	1.91287400	1.95137000
С	-4.83148400	3.93605300	-0.10162500
Н	-5.17089500	3.59612500	-2.20478300
Н	-4.34357000	4.00120800	2.00071600
Н	-5.42109600	4.84757000	-0.07332800
С	3.78229900	-0.32419400	-2.12436800
С	4.17464200	1.11845100	-2.62475100
С	5.22208500	-0.46266300	-1.55328900
Н	3.64001900	-0.97652400	-2.99842300
С	5.66345100	0.71118900	-2.46671600

Н	6.33782300	1.45671000	-2.03761900	
Н	6.09005200	0.35814700	-3.41033100	
Н	3.88035400	1.88689800	-1.90395100	
Н	3.81064600	1.40096000	-3.61605000	
Н	5.70552200	-1.43338700	-1.68704100	
Н	5.25908700	-0.20090300	-0.49113100	

Symmetry = C_1		E = -1421.7237987 a.u.		
Ru	-1.24274600	1.05115200	0.21627800	
Cl	-0.72333300	1.87429600	2.34963300	
Cl	-2.00395300	3.22148200	-0.44989000	
Р	1.99456000	-0.18946300	-0.19150300	
Ν	-2.73401700	-1.56390000	-0.08387900	
С	-0.48778000	-0.00377100	-1.53618800	
Н	0.14087900	0.39822500	-2.32697000	
С	-1.66888800	-1.91090000	0.68697700	
С	0.14770100	-0.40654900	-0.29367700	
С	-0.60976300	-0.91398200	0.83482800	
Н	-0.06422200	-1.00444600	1.76803500	
С	-3.72329300	-2.45131100	-0.35325500	
Н	-4.50421800	-2.11037800	-1.01380500	
С	-1.65114400	-3.17033100	1.29566300	
Н	-0.81086400	-3.42277800	1.93289800	
С	-3.72656100	-3.71310100	0.21028100	
Н	-4.54200200	-4.39129800	-0.01277500	
С	-2.68475000	-4.07133900	1.07274600	
Н	-2.67553100	-5.04642000	1.54976000	
С	-2.78740700	-0.14472700	-0.59131100	
С	-1.88308800	0.16237000	-1.67894700	
С	2.65510900	-1.09829000	-1.63563800	
С	3.66027500	-0.53573400	-2.43613500	
С	2.14603100	-2.37409000	-1.93976100	
С	4.15402200	-1.24906800	-3.52987200	
Н	4.05305300	0.45086200	-2.21444000	
С	2.64823200	-3.07895200	-3.03174600	
Н	1.36089800	-2.81454900	-1.33134900	
С	3.65148300	-2.51671600	-3.82709800	
Н	4.92968400	-0.80970600	-4.14950100	

Н	2.25467800	-4.06372100	-3.26490100
Н	4.03755800	-3.06686300	-4.68001100
С	2.56136800	1.54578000	-0.23806500
С	3.86012900	1.80571600	0.24060600
С	1.77766400	2.59207300	-0.74817900
С	4.36400100	3.10407800	0.20029300
Н	4.46993400	1.00786400	0.65311700
С	2.28947900	3.88988500	-0.76798600
Н	0.76195900	2.43318100	-1.09135300
С	3.57865000	4.14641000	-0.30039200
Н	5.36426800	3.30197500	0.57327600
Н	1.66429800	4.69693000	-1.13628700
Н	3.96958400	5.15941500	-0.31508900
С	2.60801200	-0.93550300	1.35808800
С	3.36339500	-2.11783900	1.34127700
С	2.32876000	-0.28425000	2.57487700
С	3.83349700	-2.65133400	2.54253400
Н	3.59654600	-2.61353400	0.40485900
С	2.80044100	-0.83317200	3.76647300
Н	1.73838300	0.62872100	2.59719400
С	3.55217300	-2.01206300	3.75159900
Н	4.42551700	-3.56150200	2.52971900
Н	2.58262200	-0.33371600	4.70554600
Н	3.92309700	-2.42902700	4.68336200
Н	-2.22623800	0.77523600	-2.50797500
С	-4.16354700	0.50683300	-0.60252100
Н	-3.94616800	1.57584500	-0.65969000
С	-5.20598100	0.30535100	0.53022100
Н	-5.13963800	0.99497300	1.37573400
Н	-5.23817200	-0.71783200	0.92170600
С	-6.31813400	0.54625800	-0.52885400
Н	-7.20261300	-0.09374600	-0.47646900
Н	-6.64302000	1.59002000	-0.54707400
С	-5.29518700	0.24400000	-1.66022200
Н	-5.37324000	-0.78439700	-2.02902300
Н	-5.29200800	0.90657200	-2.53039300

N⁻ // `[‡]Ph₃ [Ru] Ъ C-1

 $[Ru]' = RuCl_2$

S43

Symi	metry = C_1	E = -1421.7	7301295 a.u.	Н	4.08687442	-0.51562096	5.20673045
Ru	-2.38217658	-0.05578585	0.76751598	С	3.37630656	-0.75200575	-1.22991124
Cl	-1.78729561	-1.07984854	2.78286685	С	3.81726662	-0.24776491	-2.46329257
Cl	-3.34159480	1.73896944	1.98947587	С	3.78125697	-2.03197405	-0.80829895
Р	2.26615198	0.21842912	-0.14683152	С	4.65073829	-1.02343552	-3.26959161
Ν	-2.05440607	-1.91128370	-0.19811806	Н	3.53161465	0.74678076	-2.78842059
С	-0.44872871	0.60478276	0.33436372	С	4.61056489	-2.79995255	-1.62447751
Н	-0.03280524	1.13206791	1.19282421	Н	3.46662138	-2.41929083	0.15626542
С	-0.94790092	-2.33541466	-0.86230778	С	5.04480789	-2.29709270	-2.85401601
С	0.50798309	-0.33820893	-0.29221175	Н	4.99795742	-0.62698308	-4.21884274
С	0.28020441	-1.54588776	-0.85639114	Н	4.92595971	-3.78502209	-1.29419046
Н	1.11866061	-2.06049304	-1.31751706	Н	5.69772933	-2.89453458	-3.48333754
С	-3.11325514	-2.74049044	-0.12242412	С	-3.53208879	1.24581028	-1.63713766
Н	-3.96295344	-2.37489160	0.44709760	С	-4.40069867	2.39753556	-1.18317337
С	-0.93038092	-3.58337151	-1.50840692	С	-4.61366345	0.69774423	-2.54687854
Н	-0.03681492	-3.88600995	-2.04513513	С	-5.59094481	1.76465623	-1.96475644
С	-3.14963038	-3.99494476	-0.72165349	Н	-4.05394307	3.35684571	-1.59042414
Н	-4.03457268	-4.61299999	-0.61756647	Н	-4.50274582	2.51205776	-0.09773693
С	-2.03681707	-4.42148863	-1.44608211	Н	-1.84995149	0.01610824	-2.01131599
Н	-2.02803655	-5.38780864	-1.94014457	Н	-6.07797145	2.40837123	-2.69996534
С	-2.23571933	0.84257307	-1.41928238	Н	-6.35252014	1.33794760	-1.30782442
С	-1.43276918	1.40182257	-0.35849467	Н	-4.87703720	-0.35661566	-2.40568714
Н	-1.64621531	2.40303157	0.00614227	Н	-4.37653375	0.84162719	-3.60961458
С	2.31218640	1.98577954	-0.60801323				
С	2.95373771	2.93351063	0.20202211		\land		
С	1.67738050	2.39013153	-1.79652388				
С	2.97037862	4.27487144	-0.18389405				
Н	3.42507797	2.63653227	1.13237183	\sim	/ Ru	PPh ₃	
С	1.70375805	3.73116735	-2.17471081		∫ ° Cl		
Н	1.15541071	1.66720891	-2.41756638		B-1-C'1-TS		
С	2.35120180	4.67305840	-1.36965616	Syn	$metry = C_1$	E = -1421.6	771258 a.u.
Н	3.46271481	5.00752706	0.44804350	Ru	-2.04331100	-1.05726700	-1.02423700
Н	1.21321838	4.04164543	-3.09226275	Cl	-1.59167200	0.34523700	-2.83722800
Н	2.36494615	5.71820363	-1.66397842	Cl	-2.46463700	-3.28388800	-0.52610900
С	2.81897274	-0.03140864	1.57510864	Р	2.18448500	-0.05399800	0.26546100
С	4.17606323	0.19025825	1.88124453	Ν	-2.34719700	2.01596700	0.14334300
С	1.92621429	-0.44739884	2.57553779	С	-0.50782300	-0.73089300	0.38793600
С	4.62477533	0.01742023	3.18846860	Н	0.02782400	-1.65845900	0.59103300
Н	4.87928315	0.48255901	1.10624116	С	-1.09603500	2.53598600	0.05343200
С	2.39223505	-0.61777770	3.88101992	С	0.39045100	0.42791000	0.23964000
Н	0.87978829	-0.65101328	2.36876081	C	0.13659100	1.75808400	0.15842100
С	3.73239650	-0.38220231	4.18893215	Н	1.00498900	2.40595800	0.10154100
Н	5.67060053	0.18914169	3.42447952	С	-3.39394600	2.82434100	-0.06024900
Н	1.69612345	-0.93611530	4.65067748	Н	-4.37218300	2.36774200	-0.00412400

С	-0.91967500	3.91203100	-0.19743500	
Н	0.08796700	4.31087200	-0.25109800	
С	-3.28426800	4.18601800	-0.33284700	
Н	-4.17983400	4.77746500	-0.48891700	
С	-2.01228200	4.74629300	-0.39247300	
Н	-1.87203300	5.80365000	-0.59379400	
С	-2.85413200	-0.01918300	0.36553800	
С	-1.81212100	-0.71999600	1.02416500	
С	-4.28065000	0.06594000	0.78432400	
С	-4.95790100	-1.27315700	1.26207000	
С	-4.67140600	0.68707900	2.16410100	
Н	-4.89059700	0.47604200	-0.02604400	
Н	-4.23940300	-1.97302800	1.69336100	
Н	-5.54306500	-1.80289600	0.50769800	
Н	-5.03644500	1.71845900	2.16931500	
Н	-3.84385600	0.60619700	2.87674100	
С	2.39691600	-1.09812300	1.75460200	
С	3.00919200	-2.35806200	1.69312100	
С	1.90055300	-0.61743800	2.98061000	
С	3.14035200	-3.12082800	2.85514100	
Н	3.36862200	-2.75337000	0.74978100	
С	2.04138200	-1.38479500	4.13518100	
Н	1.39436200	0.34275700	3.03285500	
С	2.66363000	-2.63525500	4.07339900	
Н	3.61024400	-4.09808600	2.80277000	
Н	1.65847500	-1.01072300	5.07984900	
Н	2.76720900	-3.23354100	4.97363300	
С	2.65411400	-0.95076800	-1.25042500	
С	3.98931500	-1.37807800	-1.38987100	
С	1.73206200	-1.16284400	-2.28455900	
С	4.38054600	-2.04645300	-2.54700900	
Н	4.72038000	-1.18075400	-0.61080600	
С	2.14059200	-1.82877200	-3.44268300	
Н	0.71406800	-0.79571200	-2.21566900	
С	3.45502200	-2.27724600	-3.57078500	
Н	5.40843900	-2.37958800	-2.65350500	
Н	1.42393400	-1.98705800	-4.24260100	
Н	3.76576300	-2.79697500	-4.47226000	
С	3.27593300	1.41220800	0.36626900	
С	3.88038200	1.80401300	1.57044500	
С	3.51046600	2.14765800	-0.81055600	
С	4.70714300	2.92803500	1.59537400	
Н	3.72612800	1.23236800	2.47897900	
С	4.33235800	3.27264900	-0.77218000	

Н	3.06574700	1.83723000	-1.75166300
С	4.93082400	3.66280200	0.42936200
Н	5.18142600	3.22332600	2.52632800
Н	4.51411900	3.83604600	-1.68238600
Н	5.57837300	4.53425400	0.45380400
Н	-2.04504400	-1.48233800	1.76911600
С	-5.70662000	-0.45170000	2.34160500
Н	-5.79151500	-0.89866000	3.33530900
Н	-6.70383800	-0.15088200	2.00662200

Symm	$etry = C_1$	E = -1421.6	942702 a.u.
Ru	-1.97117100	-1.03769900	-1.02751100
Cl	-1.67401800	0.67451800	-2.65448500
Cl	-2.32827500	-3.30614600	-0.58998300
Р	2.22147900	-0.02825100	0.24495100
Ν	-2.49206300	1.64862400	0.25535200
С	-0.46544000	-0.80987100	0.45334800
Н	0.02371200	-1.76168000	0.65139000
С	-1.26190500	2.27642100	0.39254000
С	0.40945800	0.34260300	0.37797800
С	0.03946500	1.64864300	0.46899300
Н	0.83065900	2.38875200	0.49193800
С	-3.55585400	2.40909400	-0.14747200
Н	-4.46042300	1.86984700	-0.36300300
С	-1.22447200	3.68671000	0.32698000
Н	-0.26544000	4.16402500	0.49261200
С	-3.51739100	3.77830500	-0.27860200
Н	-4.41317000	4.29818300	-0.59789500
С	-2.33021500	4.45178100	0.01507100
Н	-2.26387000	5.53332100	-0.03575300
С	-2.77797200	0.19436100	0.44390900
С	-1.80467900	-0.72715400	0.98187500
С	-4.24661600	-0.07646300	0.80217600
С	-4.70434800	-1.41902900	1.45278500
С	-4.94113100	0.66621000	1.99361600
Н	-4.86550100	0.03988100	-0.09635600
Н	-3.97165500	-1.83054100	2.15014800
Н	-5.01391500	-2.21214000	0.77007200
Н	-5.47059800	1.60223800	1.78890300

Н	-4.23474100	0.83461600	2.81460800	
С	2.56491000	-1.32816400	1.48451200	
С	3.25363400	-2.50026300	1.14146400	
С	2.10074400	-1.14376300	2.80035700	
С	3.49165500	-3.47177400	2.11540900	
Н	3.59029200	-2.66673500	0.12440400	
С	2.34739200	-2.11822900	3.76499800	
Н	1.53674800	-0.25415900	3.06806000	
С	3.04507400	-3.28084200	3.42351000	
Н	4.01994100	-4.38091600	1.84553700	
Н	1.98752300	-1.97469000	4.77924400	
Н	3.23024400	-4.04136700	4.17608100	
С	2.66050600	-0.57649000	-1.43611100	
С	4.01846800	-0.82551400	-1.71843700	
С	1.69095600	-0.70953400	-2.43930800	
С	4.38957300	-1.23887700	-2.99508700	
Н	4.77959800	-0.68860200	-0.95525400	
С	2.08038000	-1.11667900	-3.71762400	
Н	0.64849200	-0.47485400	-2.25303000	
С	3.42017600	-1.38899600	-3.99318300	
Н	5.43481000	-1.43561100	-3.21341800	
Н	1.32710700	-1.21080800	-4.49360200	
Н	3.71561600	-1.70794000	-4.98836700	
С	3.21901800	1.46512900	0.59999400	
С	3.83620000	1.65962000	1.84500700	
С	3.36182600	2.42956800	-0.41492300	
С	4.58369100	2.81566500	2.07317400	
Н	3.75330400	0.91229800	2.62649600	
С	4.10532800	3.58378800	-0.17317700	
Н	2.91026000	2.27359700	-1.39038300	
С	4.71595400	3.77711200	1.06926100	
Н	5.06850900	2.95907900	3.03400400	
Н	4.21813300	4.32413400	-0.95939400	
Н	5.30278500	4.67269700	1.25064000	
Н	-2.14072700	-1.51427100	1.64565400	
С	-5.78294000	-0.61337600	2.22153200	
Н	-5.98155700	-0.90441500	3.25579600	
Н	-6.73206100	-0.57408500	1.67818300	

CI Ru CI CI CI B-1-C-1-TS	
Symmetry = C_1]

Symmetry = C_1		E = -1421.6532926 a.u.	
Ru	-2.26305800	-0.19669800	0.87539700
Cl	-2.31312200	-2.00650800	2.41013500
Cl	-2.93750800	1.30589400	2.57598300
Р	2.26872700	0.22126900	-0.11453900
Ν	-2.02141000	-1.75304100	-0.61427000
С	-0.43360900	0.64410000	0.37402100
Н	0.06637100	1.06745000	1.24715100
С	-1.00951500	-1.89108300	-1.51166500
С	0.49376200	-0.13795700	-0.47667000
С	0.23222600	-1.14392400	-1.34260200
Н	1.05315300	-1.53788200	-1.93518300
С	-3.06791700	-2.59743600	-0.70103300
Н	-3.82243600	-2.48850400	0.06878300
С	-1.07676900	-2.84631500	-2.54127800
Н	-0.25194400	-2.92344800	-3.24282900
С	-3.18821900	-3.56914900	-1.69064100
Н	-4.05825500	-4.21670700	-1.69893200
С	-2.17821300	-3.68686600	-2.64449500
Н	-2.23887200	-4.42612300	-3.43707700
С	-2.67351100	1.04340800	-0.65925900
С	-1.48968700	1.54982800	-0.05574700
С	-3.67931700	1.60561500	-1.44192300
С	-5.14924200	1.26969300	-1.56759600
С	-3.81862300	2.92482000	-2.17352700
Н	-2.73998100	0.54741000	-1.78457700
Н	-5.61589000	0.84813000	-0.67416400
Н	-5.38289000	0.64427700	-2.43589800
Н	-3.59988000	2.84794600	-3.24403100
Н	-3.26584900	3.76752300	-1.75011200
С	2.47395000	2.03686500	-0.07110200
С	3.14070300	2.67121400	0.98658500
С	1.94002000	2.79999500	-1.12499900
С	3.28338800	4.05971800	0.98041100
Н	3.53433000	2.09467900	1.81650400
С	2.09270800	4.18527800	-1.12410600
Н	1.39947600	2.31816800	-1.93531900
С	2.76537400	4.81495200	-0.07280400

Н	3.79488000	4.54893700	1.80356300
Н	1.68133100	4.77328100	-1.93904500
Н	2.87793000	5.89500200	-0.07206400
С	2.67012300	-0.53125900	1.50096100
С	4.01378700	-0.53556600	1.92338000
С	1.67397800	-1.10715000	2.30662500
С	4.34752600	-1.09303600	3.15560500
Н	4.79498900	-0.12078600	1.29235200
С	2.02446500	-1.66332400	3.53856600
Н	0.63336500	-1.14170800	2.00082800
С	3.35298300	-1.65225700	3.96478200
Н	5.38355000	-1.09583400	3.48065500
Н	1.24744100	-2.10364100	4.15548900
Н	3.61822200	-2.08571300	4.92453300
С	3.38737600	-0.50973300	-1.36341800
С	3.95186300	0.27287900	-2.38259600
С	3.66922200	-1.88673400	-1.29623900
С	4.78545300	-0.32162800	-3.33028600
Н	3.75995900	1.33936100	-2.43065000
С	4.49976600	-2.47095400	-2.25153600
Н	3.25725200	-2.49394100	-0.49570500
С	5.05700400	-1.69002800	-3.26785000
Н	5.22843900	0.28782400	-4.11206400
Н	4.71966100	-3.53271600	-2.19464300
Н	5.71024100	-2.14700600	-4.00528400
Н	-1.60692600	2.47337700	0.51148500
С	-5.35046300	2.78979700	-1.88349500
Н	-6.01683900	3.02233300	-2.71543700
Н	-5.65013500	3.35310900	-0.99826600

10.References

- 1 A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- 2 B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett., 1989, 157, 200.
- 3 C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B.*, 1988, **37**, 785.
- 4 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299.
- 5 S. Huzinaga, (ed.) Gaussian Basis Sets for Molecular Calculations (Elsevier, 1984).
- 6 *Gaussian 09, Revision D.01*, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Jr. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, K J. E. nox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. akrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. aniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Wallingford CT, 2013.
- 7 H. Fallah-Bagher-Shaidaei, C. S. Wannere, C. Corminboeuf, R. Puchta and P. v. R. Schleyer, Org. Lett., 2006, 8, 863.
- 8 Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta and P. v. R. Schleyer, *Chem. Rev.*, 2005, 105, 3842.
- 9 P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao and N. J. R. v. E. Hommes, J. Am. Chem. Soc., 1996, 118, 6317.
- 10 D. Geuenich, K. Hess, F. Köhler and R. Herges, Chem. Rev., 2005, 105, 3758.
- 11 R. Herges and D. Geuenich, J. Phys. Chem. A, 2001, 105, 3214.
- 12 C. Zhang, H. Zhang, L. Zhang, T. B. Wen, X. He and H. Xia, Organometallics, 2013, 32, 3738.
- 13 X. Zhou, C. Zhang, Y. Lin, X. He, Y. Zhang, J. Wang and H. Xia, Org. Chem. Front., 2014, 1, 1077.
- 14 S. I. Kozhushkov, K. Wagner-Gillen, A. F. Khlebnikov and de Meijere, Synthesis, 2010, 3967.