## SUPPORTING INFORMATION

## Direct Li<sup>+</sup> incorporation into anodic TiO<sub>2</sub> during its formation

J. A. Peñafiel-Castro, a B. Hahn, b R.L. Maltez, b G. Knörnschild, a P. Alonguec and L. F. P. Dickat

a. Depto. Metalurgia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Bl. 4, 43-427, 91501-970, Porto Alegre, Brazil.

b. Inst. Física, Universidade Federal do Rio Grande do Sul, C.P.15051, 91501-970, Porto Alegre, RS, Brazil

c. Physique de la Matiere Condensee, Ecole Polytechnique - Palaiseau - France.

† lfdick@ufrgs.br@ufrgs.br, tel +55 51 99719286



**Figure S1.** Transient cell voltage response (Vcel) for galvanostatic anodization with 6.3 mA cm<sup>-2</sup> of Ti in 1 M  $H_3PO_4$  with different KClO<sub>4</sub> concentrations.



**Figure S2.** Hydrogen depth profile calculated from ERDA of anodic TiO<sub>2</sub> grown in 1M  $H_3PO_4 + 0.5$  M LiClO<sub>4</sub>. The surface layer ( $\approx$  100 nm) with a lower H concentration corresponds to the anodic oxide. Fig. S3 of the RBS measurement demonstrates that the TiO<sub>2</sub> layer has about this thickness.



**Figure S2.** RBS spectrum carried out by using a 1.2 MeV He<sup>2+</sup> ion beam. Along with the measured RBS spectrum, the red line presents a RBS simulation performed by the RUMP code <sup>1</sup>. The simulation was obtained using as input the model of sample shown in the Figure inset. The model proposed fits well the experimental RBS spectrum, which means that the thickness and the average composition of the anodized layer is 97 nm and  $Ti_{0.86}O_{2.3}H_{0.72}$ , respectively.

## **References for SI**

 L. R. Doolitle, A semiautomatic algorithm for Rutherford Backscattering analysis, Nucl. Instr. Meth. B 15 (1986) 227-231